summaryrefslogtreecommitdiffstats
path: root/kernel/time/sched_clock.c
blob: ca3bc5c7027ca8214b85c3c1e546a66275c83000 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * sched_clock.c: support for extending counters to full 64-bit ns counter
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/syscore_ops.h>
#include <linux/hrtimer.h>
#include <linux/sched_clock.h>
#include <linux/seqlock.h>
#include <linux/bitops.h>

struct clock_data {
	ktime_t wrap_kt;
	u64 epoch_ns;
	u64 epoch_cyc;
	seqcount_t seq;
	unsigned long rate;
	u32 mult;
	u32 shift;
	bool suspended;
};

static struct hrtimer sched_clock_timer;
static int irqtime = -1;

core_param(irqtime, irqtime, int, 0400);

static struct clock_data cd = {
	.mult	= NSEC_PER_SEC / HZ,
};

static u64 __read_mostly sched_clock_mask;

static u64 notrace jiffy_sched_clock_read(void)
{
	/*
	 * We don't need to use get_jiffies_64 on 32-bit arches here
	 * because we register with BITS_PER_LONG
	 */
	return (u64)(jiffies - INITIAL_JIFFIES);
}

static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;

static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
	return (cyc * mult) >> shift;
}

unsigned long long notrace sched_clock(void)
{
	u64 epoch_ns;
	u64 epoch_cyc;
	u64 cyc;
	unsigned long seq;

	if (cd.suspended)
		return cd.epoch_ns;

	do {
		seq = raw_read_seqcount_begin(&cd.seq);
		epoch_cyc = cd.epoch_cyc;
		epoch_ns = cd.epoch_ns;
	} while (read_seqcount_retry(&cd.seq, seq));

	cyc = read_sched_clock();
	cyc = (cyc - epoch_cyc) & sched_clock_mask;
	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
}

/*
 * Atomically update the sched_clock epoch.
 */
static void notrace update_sched_clock(void)
{
	unsigned long flags;
	u64 cyc;
	u64 ns;

	cyc = read_sched_clock();
	ns = cd.epoch_ns +
		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
			  cd.mult, cd.shift);

	raw_local_irq_save(flags);
	raw_write_seqcount_begin(&cd.seq);
	cd.epoch_ns = ns;
	cd.epoch_cyc = cyc;
	raw_write_seqcount_end(&cd.seq);
	raw_local_irq_restore(flags);
}

static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
{
	update_sched_clock();
	hrtimer_forward_now(hrt, cd.wrap_kt);
	return HRTIMER_RESTART;
}

void __init sched_clock_register(u64 (*read)(void), int bits,
				 unsigned long rate)
{
	u64 res, wrap, new_mask, new_epoch, cyc, ns;
	u32 new_mult, new_shift;
	ktime_t new_wrap_kt;
	unsigned long r;
	char r_unit;

	if (cd.rate > rate)
		return;

	WARN_ON(!irqs_disabled());

	/* calculate the mult/shift to convert counter ticks to ns. */
	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);

	new_mask = CLOCKSOURCE_MASK(bits);

	/* calculate how many nanosecs until we risk wrapping */
	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
	new_wrap_kt = ns_to_ktime(wrap);

	/* update epoch for new counter and update epoch_ns from old counter*/
	new_epoch = read();
	cyc = read_sched_clock();
	ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
			  cd.mult, cd.shift);

	raw_write_seqcount_begin(&cd.seq);
	read_sched_clock = read;
	sched_clock_mask = new_mask;
	cd.rate = rate;
	cd.wrap_kt = new_wrap_kt;
	cd.mult = new_mult;
	cd.shift = new_shift;
	cd.epoch_cyc = new_epoch;
	cd.epoch_ns = ns;
	raw_write_seqcount_end(&cd.seq);

	r = rate;
	if (r >= 4000000) {
		r /= 1000000;
		r_unit = 'M';
	} else if (r >= 1000) {
		r /= 1000;
		r_unit = 'k';
	} else
		r_unit = ' ';

	/* calculate the ns resolution of this counter */
	res = cyc_to_ns(1ULL, new_mult, new_shift);

	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
		bits, r, r_unit, res, wrap);

	/* Enable IRQ time accounting if we have a fast enough sched_clock */
	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
		enable_sched_clock_irqtime();

	pr_debug("Registered %pF as sched_clock source\n", read);
}

void __init sched_clock_postinit(void)
{
	/*
	 * If no sched_clock function has been provided at that point,
	 * make it the final one one.
	 */
	if (read_sched_clock == jiffy_sched_clock_read)
		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);

	update_sched_clock();

	/*
	 * Start the timer to keep sched_clock() properly updated and
	 * sets the initial epoch.
	 */
	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	sched_clock_timer.function = sched_clock_poll;
	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}

static int sched_clock_suspend(void)
{
	update_sched_clock();
	hrtimer_cancel(&sched_clock_timer);
	cd.suspended = true;
	return 0;
}

static void sched_clock_resume(void)
{
	cd.epoch_cyc = read_sched_clock();
	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
	cd.suspended = false;
}

static struct syscore_ops sched_clock_ops = {
	.suspend = sched_clock_suspend,
	.resume = sched_clock_resume,
};

static int __init sched_clock_syscore_init(void)
{
	register_syscore_ops(&sched_clock_ops);
	return 0;
}
device_initcall(sched_clock_syscore_init);