summaryrefslogtreecommitdiffstats
path: root/mm/slab.h
blob: 6c6fe6d630ce3d919c29bafd15b401324618da1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H

#include <linux/reciprocal_div.h>
#include <linux/list_lru.h>
#include <linux/local_lock.h>
#include <linux/random.h>
#include <linux/kobject.h>
#include <linux/sched/mm.h>
#include <linux/memcontrol.h>
#include <linux/kfence.h>
#include <linux/kasan.h>

/*
 * Internal slab definitions
 */

#ifdef CONFIG_64BIT
# ifdef system_has_cmpxchg128
# define system_has_freelist_aba()	system_has_cmpxchg128()
# define try_cmpxchg_freelist		try_cmpxchg128
# endif
#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128
typedef u128 freelist_full_t;
#else /* CONFIG_64BIT */
# ifdef system_has_cmpxchg64
# define system_has_freelist_aba()	system_has_cmpxchg64()
# define try_cmpxchg_freelist		try_cmpxchg64
# endif
#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64
typedef u64 freelist_full_t;
#endif /* CONFIG_64BIT */

#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
#undef system_has_freelist_aba
#endif

/*
 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
 * problems with cmpxchg of just a pointer.
 */
typedef union {
	struct {
		void *freelist;
		unsigned long counter;
	};
	freelist_full_t full;
} freelist_aba_t;

/* Reuses the bits in struct page */
struct slab {
	unsigned long __page_flags;

	struct kmem_cache *slab_cache;
	union {
		struct {
			union {
				struct list_head slab_list;
#ifdef CONFIG_SLUB_CPU_PARTIAL
				struct {
					struct slab *next;
					int slabs;	/* Nr of slabs left */
				};
#endif
			};
			/* Double-word boundary */
			union {
				struct {
					void *freelist;		/* first free object */
					union {
						unsigned long counters;
						struct {
							unsigned inuse:16;
							unsigned objects:15;
							unsigned frozen:1;
						};
					};
				};
#ifdef system_has_freelist_aba
				freelist_aba_t freelist_counter;
#endif
			};
		};
		struct rcu_head rcu_head;
	};

	unsigned int __page_type;
	atomic_t __page_refcount;
#ifdef CONFIG_SLAB_OBJ_EXT
	unsigned long obj_exts;
#endif
};

#define SLAB_MATCH(pg, sl)						\
	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
SLAB_MATCH(flags, __page_flags);
SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
SLAB_MATCH(_refcount, __page_refcount);
#ifdef CONFIG_MEMCG
SLAB_MATCH(memcg_data, obj_exts);
#elif defined(CONFIG_SLAB_OBJ_EXT)
SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
#endif
#undef SLAB_MATCH
static_assert(sizeof(struct slab) <= sizeof(struct page));
#if defined(system_has_freelist_aba)
static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
#endif

/**
 * folio_slab - Converts from folio to slab.
 * @folio: The folio.
 *
 * Currently struct slab is a different representation of a folio where
 * folio_test_slab() is true.
 *
 * Return: The slab which contains this folio.
 */
#define folio_slab(folio)	(_Generic((folio),			\
	const struct folio *:	(const struct slab *)(folio),		\
	struct folio *:		(struct slab *)(folio)))

/**
 * slab_folio - The folio allocated for a slab
 * @slab: The slab.
 *
 * Slabs are allocated as folios that contain the individual objects and are
 * using some fields in the first struct page of the folio - those fields are
 * now accessed by struct slab. It is occasionally necessary to convert back to
 * a folio in order to communicate with the rest of the mm.  Please use this
 * helper function instead of casting yourself, as the implementation may change
 * in the future.
 */
#define slab_folio(s)		(_Generic((s),				\
	const struct slab *:	(const struct folio *)s,		\
	struct slab *:		(struct folio *)s))

/**
 * page_slab - Converts from first struct page to slab.
 * @p: The first (either head of compound or single) page of slab.
 *
 * A temporary wrapper to convert struct page to struct slab in situations where
 * we know the page is the compound head, or single order-0 page.
 *
 * Long-term ideally everything would work with struct slab directly or go
 * through folio to struct slab.
 *
 * Return: The slab which contains this page
 */
#define page_slab(p)		(_Generic((p),				\
	const struct page *:	(const struct slab *)(p),		\
	struct page *:		(struct slab *)(p)))

/**
 * slab_page - The first struct page allocated for a slab
 * @slab: The slab.
 *
 * A convenience wrapper for converting slab to the first struct page of the
 * underlying folio, to communicate with code not yet converted to folio or
 * struct slab.
 */
#define slab_page(s) folio_page(slab_folio(s), 0)

/*
 * If network-based swap is enabled, sl*b must keep track of whether pages
 * were allocated from pfmemalloc reserves.
 */
static inline bool slab_test_pfmemalloc(const struct slab *slab)
{
	return folio_test_active(slab_folio(slab));
}

static inline void slab_set_pfmemalloc(struct slab *slab)
{
	folio_set_active(slab_folio(slab));
}

static inline void slab_clear_pfmemalloc(struct slab *slab)
{
	folio_clear_active(slab_folio(slab));
}

static inline void __slab_clear_pfmemalloc(struct slab *slab)
{
	__folio_clear_active(slab_folio(slab));
}

static inline void *slab_address(const struct slab *slab)
{
	return folio_address(slab_folio(slab));
}

static inline int slab_nid(const struct slab *slab)
{
	return folio_nid(slab_folio(slab));
}

static inline pg_data_t *slab_pgdat(const struct slab *slab)
{
	return folio_pgdat(slab_folio(slab));
}

static inline struct slab *virt_to_slab(const void *addr)
{
	struct folio *folio = virt_to_folio(addr);

	if (!folio_test_slab(folio))
		return NULL;

	return folio_slab(folio);
}

static inline int slab_order(const struct slab *slab)
{
	return folio_order(slab_folio(slab));
}

static inline size_t slab_size(const struct slab *slab)
{
	return PAGE_SIZE << slab_order(slab);
}

#ifdef CONFIG_SLUB_CPU_PARTIAL
#define slub_percpu_partial(c)			((c)->partial)

#define slub_set_percpu_partial(c, p)		\
({						\
	slub_percpu_partial(c) = (p)->next;	\
})

#define slub_percpu_partial_read_once(c)	READ_ONCE(slub_percpu_partial(c))
#else
#define slub_percpu_partial(c)			NULL

#define slub_set_percpu_partial(c, p)

#define slub_percpu_partial_read_once(c)	NULL
#endif // CONFIG_SLUB_CPU_PARTIAL

/*
 * Word size structure that can be atomically updated or read and that
 * contains both the order and the number of objects that a slab of the
 * given order would contain.
 */
struct kmem_cache_order_objects {
	unsigned int x;
};

/*
 * Slab cache management.
 */
struct kmem_cache {
#ifndef CONFIG_SLUB_TINY
	struct kmem_cache_cpu __percpu *cpu_slab;
#endif
	/* Used for retrieving partial slabs, etc. */
	slab_flags_t flags;
	unsigned long min_partial;
	unsigned int size;		/* Object size including metadata */
	unsigned int object_size;	/* Object size without metadata */
	struct reciprocal_value reciprocal_size;
	unsigned int offset;		/* Free pointer offset */
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/* Number of per cpu partial objects to keep around */
	unsigned int cpu_partial;
	/* Number of per cpu partial slabs to keep around */
	unsigned int cpu_partial_slabs;
#endif
	struct kmem_cache_order_objects oo;

	/* Allocation and freeing of slabs */
	struct kmem_cache_order_objects min;
	gfp_t allocflags;		/* gfp flags to use on each alloc */
	int refcount;			/* Refcount for slab cache destroy */
	void (*ctor)(void *object);	/* Object constructor */
	unsigned int inuse;		/* Offset to metadata */
	unsigned int align;		/* Alignment */
	unsigned int red_left_pad;	/* Left redzone padding size */
	const char *name;		/* Name (only for display!) */
	struct list_head list;		/* List of slab caches */
#ifdef CONFIG_SYSFS
	struct kobject kobj;		/* For sysfs */
#endif
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	unsigned long random;
#endif

#ifdef CONFIG_NUMA
	/*
	 * Defragmentation by allocating from a remote node.
	 */
	unsigned int remote_node_defrag_ratio;
#endif

#ifdef CONFIG_SLAB_FREELIST_RANDOM
	unsigned int *random_seq;
#endif

#ifdef CONFIG_KASAN_GENERIC
	struct kasan_cache kasan_info;
#endif

#ifdef CONFIG_HARDENED_USERCOPY
	unsigned int useroffset;	/* Usercopy region offset */
	unsigned int usersize;		/* Usercopy region size */
#endif

	struct kmem_cache_node *node[MAX_NUMNODES];
};

#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
#define SLAB_SUPPORTS_SYSFS 1
void sysfs_slab_unlink(struct kmem_cache *s);
void sysfs_slab_release(struct kmem_cache *s);
#else
static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
static inline void sysfs_slab_release(struct kmem_cache *s) { }
#endif

void *fixup_red_left(struct kmem_cache *s, void *p);

static inline void *nearest_obj(struct kmem_cache *cache,
				const struct slab *slab, void *x)
{
	void *object = x - (x - slab_address(slab)) % cache->size;
	void *last_object = slab_address(slab) +
		(slab->objects - 1) * cache->size;
	void *result = (unlikely(object > last_object)) ? last_object : object;

	result = fixup_red_left(cache, result);
	return result;
}

/* Determine object index from a given position */
static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
					  void *addr, void *obj)
{
	return reciprocal_divide(kasan_reset_tag(obj) - addr,
				 cache->reciprocal_size);
}

static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
{
	if (is_kfence_address(obj))
		return 0;
	return __obj_to_index(cache, slab_address(slab), obj);
}

static inline int objs_per_slab(const struct kmem_cache *cache,
				const struct slab *slab)
{
	return slab->objects;
}

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;

/* The list of all slab caches on the system */
extern struct list_head slab_caches;

/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
	const char *name[NR_KMALLOC_TYPES];
	unsigned int size;
} kmalloc_info[];

/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(void);

extern u8 kmalloc_size_index[24];

static inline unsigned int size_index_elem(unsigned int bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 *
 * This assumes size is larger than zero and not larger than
 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
 */
static inline struct kmem_cache *
kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
{
	unsigned int index;

	if (!b)
		b = &kmalloc_caches[kmalloc_type(flags, caller)];
	if (size <= 192)
		index = kmalloc_size_index[size_index_elem(size)];
	else
		index = fls(size - 1);

	return (*b)[index];
}

gfp_t kmalloc_fix_flags(gfp_t flags);

/* Functions provided by the slab allocators */
int do_kmem_cache_create(struct kmem_cache *s, const char *name,
			 unsigned int size, struct kmem_cache_args *args,
			 slab_flags_t flags);

void __init kmem_cache_init(void);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			unsigned int size, slab_flags_t flags,
			unsigned int useroffset, unsigned int usersize);

int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
		slab_flags_t flags, const char *name, void (*ctor)(void *));
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *));

slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);

static inline bool is_kmalloc_cache(struct kmem_cache *s)
{
	return (s->flags & SLAB_KMALLOC);
}

static inline bool is_kmalloc_normal(struct kmem_cache *s)
{
	if (!is_kmalloc_cache(s))
		return false;
	return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
}

/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )

#ifdef CONFIG_SLUB_DEBUG
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)

/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT | \
			      SLAB_KMALLOC | \
			      SLAB_NO_MERGE | \
			      SLAB_NO_USER_FLAGS)

bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void slab_kmem_cache_release(struct kmem_cache *);

struct seq_file;
struct file;

struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);

#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
long validate_slab_cache(struct kmem_cache *s);
static inline bool __slub_debug_enabled(void)
{
	return static_branch_unlikely(&slub_debug_enabled);
}
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
static inline bool __slub_debug_enabled(void)
{
	return false;
}
#endif

/*
 * Returns true if any of the specified slab_debug flags is enabled for the
 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
 * the static key.
 */
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
	if (__slub_debug_enabled())
		return s->flags & flags;
	return false;
}

#if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT)
bool slab_in_kunit_test(void);
#else
static inline bool slab_in_kunit_test(void) { return false; }
#endif

#ifdef CONFIG_SLAB_OBJ_EXT

/*
 * slab_obj_exts - get the pointer to the slab object extension vector
 * associated with a slab.
 * @slab: a pointer to the slab struct
 *
 * Returns a pointer to the object extension vector associated with the slab,
 * or NULL if no such vector has been associated yet.
 */
static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
{
	unsigned long obj_exts = READ_ONCE(slab->obj_exts);

#ifdef CONFIG_MEMCG
	VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
							slab_page(slab));
	VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
#endif
	return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
}

int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
                        gfp_t gfp, bool new_slab);

#else /* CONFIG_SLAB_OBJ_EXT */

static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
{
	return NULL;
}

#endif /* CONFIG_SLAB_OBJ_EXT */

static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
{
	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
}

#ifdef CONFIG_MEMCG
bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
				  gfp_t flags, size_t size, void **p);
void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
			    void **p, int objects, struct slabobj_ext *obj_exts);
#endif

size_t __ksize(const void *objp);

static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
#endif
	if (s->flags & SLAB_KASAN)
		return s->object_size;
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

#ifdef CONFIG_SLUB_DEBUG
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
				&init_on_alloc)) {
		if (c->ctor)
			return false;
		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
			return flags & __GFP_ZERO;
		return true;
	}
	return flags & __GFP_ZERO;
}

static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
				&init_on_free))
		return !(c->ctor ||
			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
	return false;
}

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
void debugfs_slab_release(struct kmem_cache *);
#else
static inline void debugfs_slab_release(struct kmem_cache *s) { }
#endif

#ifdef CONFIG_PRINTK
#define KS_ADDRS_COUNT 16
struct kmem_obj_info {
	void *kp_ptr;
	struct slab *kp_slab;
	void *kp_objp;
	unsigned long kp_data_offset;
	struct kmem_cache *kp_slab_cache;
	void *kp_ret;
	void *kp_stack[KS_ADDRS_COUNT];
	void *kp_free_stack[KS_ADDRS_COUNT];
};
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
#endif

void __check_heap_object(const void *ptr, unsigned long n,
			 const struct slab *slab, bool to_user);

#ifdef CONFIG_SLUB_DEBUG
void skip_orig_size_check(struct kmem_cache *s, const void *object);
#endif

#endif /* MM_SLAB_H */