1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
// SPDX-License-Identifier: GPL-2.0
//! Kernel page allocation and management.
use crate::{
alloc::{AllocError, Flags},
bindings,
error::code::*,
error::Result,
uaccess::UserSliceReader,
};
use core::ptr::{self, NonNull};
/// A bitwise shift for the page size.
pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
/// The number of bytes in a page.
pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
/// A bitmask that gives the page containing a given address.
pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
/// A pointer to a page that owns the page allocation.
///
/// # Invariants
///
/// The pointer is valid, and has ownership over the page.
pub struct Page {
page: NonNull<bindings::page>,
}
// SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
// threads is safe.
unsafe impl Send for Page {}
// SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
// them concurrently is safe.
unsafe impl Sync for Page {}
impl Page {
/// Allocates a new page.
///
/// # Examples
///
/// Allocate memory for a page.
///
/// ```
/// use kernel::page::Page;
///
/// # fn dox() -> Result<(), kernel::alloc::AllocError> {
/// let page = Page::alloc_page(GFP_KERNEL)?;
/// # Ok(()) }
/// ```
///
/// Allocate memory for a page and zero its contents.
///
/// ```
/// use kernel::page::Page;
///
/// # fn dox() -> Result<(), kernel::alloc::AllocError> {
/// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
/// # Ok(()) }
/// ```
pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
// SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
// is always safe to call this method.
let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
let page = NonNull::new(page).ok_or(AllocError)?;
// INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
// allocated page. We transfer that ownership to the new `Page` object.
Ok(Self { page })
}
/// Returns a raw pointer to the page.
pub fn as_ptr(&self) -> *mut bindings::page {
self.page.as_ptr()
}
/// Runs a piece of code with this page mapped to an address.
///
/// The page is unmapped when this call returns.
///
/// # Using the raw pointer
///
/// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
/// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
/// only be mapped on the current thread, and when that is the case, dereferencing it on other
/// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
/// cause data races, the memory may be uninitialized, and so on.
///
/// If multiple threads map the same page at the same time, then they may reference with
/// different addresses. However, even if the addresses are different, the underlying memory is
/// still the same for these purposes (e.g., it's still a data race if they both write to the
/// same underlying byte at the same time).
fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
// SAFETY: `page` is valid due to the type invariants on `Page`.
let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
let res = f(mapped_addr.cast());
// This unmaps the page mapped above.
//
// SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
// where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
//
// In other words, if this call to `kunmap_local` happens when a different page should be
// unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
// call just above in `with_page_mapped` that made that possible. In this case, it is the
// unsafe block that wraps that other call that is incorrect.
unsafe { bindings::kunmap_local(mapped_addr) };
res
}
/// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
///
/// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
/// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
/// this task, as this method uses a local mapping.
///
/// If `off` and `len` refers to a region outside of this page, then this method returns
/// [`EINVAL`] and does not call `f`.
///
/// # Using the raw pointer
///
/// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
/// `len` bytes and for the duration in which the closure is called. The pointer might only be
/// mapped on the current thread, and when that is the case, dereferencing it on other threads
/// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
/// data races, the memory may be uninitialized, and so on.
///
/// If multiple threads map the same page at the same time, then they may reference with
/// different addresses. However, even if the addresses are different, the underlying memory is
/// still the same for these purposes (e.g., it's still a data race if they both write to the
/// same underlying byte at the same time).
fn with_pointer_into_page<T>(
&self,
off: usize,
len: usize,
f: impl FnOnce(*mut u8) -> Result<T>,
) -> Result<T> {
let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
if bounds_ok {
self.with_page_mapped(move |page_addr| {
// SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
// result in a pointer that is in bounds or one off the end of the page.
f(unsafe { page_addr.add(off) })
})
} else {
Err(EINVAL)
}
}
/// Maps the page and reads from it into the given buffer.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// * Callers must ensure that `dst` is valid for writing `len` bytes.
/// * Callers must ensure that this call does not race with a write to the same page that
/// overlaps with this read.
pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |src| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then
// it has performed a bounds check and guarantees that `src` is
// valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::copy_nonoverlapping(src, dst, len) };
Ok(())
})
}
/// Maps the page and writes into it from the given buffer.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// * Callers must ensure that `src` is valid for reading `len` bytes.
/// * Callers must ensure that this call does not race with a read or write to the same page
/// that overlaps with this write.
pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::copy_nonoverlapping(src, dst, len) };
Ok(())
})
}
/// Maps the page and zeroes the given slice.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// # Safety
///
/// Callers must ensure that this call does not race with a read or write to the same page that
/// overlaps with this write.
pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes.
//
// There caller guarantees that there is no data race.
unsafe { ptr::write_bytes(dst, 0u8, len) };
Ok(())
})
}
/// Copies data from userspace into this page.
///
/// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
/// outside of the page, then this call returns [`EINVAL`].
///
/// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
/// However, they are not allowed on the page you are copying into.
///
/// # Safety
///
/// Callers must ensure that this call does not race with a read or write to the same page that
/// overlaps with this write.
pub unsafe fn copy_from_user_slice_raw(
&self,
reader: &mut UserSliceReader,
offset: usize,
len: usize,
) -> Result {
self.with_pointer_into_page(offset, len, move |dst| {
// SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
// bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
// exclusive access to the slice since the caller guarantees that there are no races.
reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
})
}
}
impl Drop for Page {
fn drop(&mut self) {
// SAFETY: By the type invariants, we have ownership of the page and can free it.
unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
}
}
|