1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
// SPDX-License-Identifier: GPL-2.0
//! String representations.
use core::fmt::{self, Write};
use core::ops::{self, Deref, Index};
use crate::{
bindings,
error::{code::*, Error},
};
/// Byte string without UTF-8 validity guarantee.
///
/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
pub type BStr = [u8];
/// Creates a new [`BStr`] from a string literal.
///
/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
/// characters can be included.
///
/// # Examples
///
/// ```
/// # use kernel::b_str;
/// # use kernel::str::BStr;
/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
/// ```
#[macro_export]
macro_rules! b_str {
($str:literal) => {{
const S: &'static str = $str;
const C: &'static $crate::str::BStr = S.as_bytes();
C
}};
}
/// Possible errors when using conversion functions in [`CStr`].
#[derive(Debug, Clone, Copy)]
pub enum CStrConvertError {
/// Supplied bytes contain an interior `NUL`.
InteriorNul,
/// Supplied bytes are not terminated by `NUL`.
NotNulTerminated,
}
impl From<CStrConvertError> for Error {
#[inline]
fn from(_: CStrConvertError) -> Error {
EINVAL
}
}
/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
/// end.
///
/// Used for interoperability with kernel APIs that take C strings.
#[repr(transparent)]
pub struct CStr([u8]);
impl CStr {
/// Returns the length of this string excluding `NUL`.
#[inline]
pub const fn len(&self) -> usize {
self.len_with_nul() - 1
}
/// Returns the length of this string with `NUL`.
#[inline]
pub const fn len_with_nul(&self) -> usize {
// SAFETY: This is one of the invariant of `CStr`.
// We add a `unreachable_unchecked` here to hint the optimizer that
// the value returned from this function is non-zero.
if self.0.is_empty() {
unsafe { core::hint::unreachable_unchecked() };
}
self.0.len()
}
/// Returns `true` if the string only includes `NUL`.
#[inline]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Wraps a raw C string pointer.
///
/// # Safety
///
/// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
/// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
/// must not be mutated.
#[inline]
pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
// SAFETY: The safety precondition guarantees `ptr` is a valid pointer
// to a `NUL`-terminated C string.
let len = unsafe { bindings::strlen(ptr) } + 1;
// SAFETY: Lifetime guaranteed by the safety precondition.
let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
// SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
// As we have added 1 to `len`, the last byte is known to be `NUL`.
unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
}
/// Creates a [`CStr`] from a `[u8]`.
///
/// The provided slice must be `NUL`-terminated, does not contain any
/// interior `NUL` bytes.
pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
if bytes.is_empty() {
return Err(CStrConvertError::NotNulTerminated);
}
if bytes[bytes.len() - 1] != 0 {
return Err(CStrConvertError::NotNulTerminated);
}
let mut i = 0;
// `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
// while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
while i + 1 < bytes.len() {
if bytes[i] == 0 {
return Err(CStrConvertError::InteriorNul);
}
i += 1;
}
// SAFETY: We just checked that all properties hold.
Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
}
/// Creates a [`CStr`] from a `[u8]` without performing any additional
/// checks.
///
/// # Safety
///
/// `bytes` *must* end with a `NUL` byte, and should only have a single
/// `NUL` byte (or the string will be truncated).
#[inline]
pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
// SAFETY: Properties of `bytes` guaranteed by the safety precondition.
unsafe { core::mem::transmute(bytes) }
}
/// Returns a C pointer to the string.
#[inline]
pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
self.0.as_ptr() as _
}
/// Convert the string to a byte slice without the trailing 0 byte.
#[inline]
pub fn as_bytes(&self) -> &[u8] {
&self.0[..self.len()]
}
/// Convert the string to a byte slice containing the trailing 0 byte.
#[inline]
pub const fn as_bytes_with_nul(&self) -> &[u8] {
&self.0
}
/// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
///
/// If the contents of the [`CStr`] are valid UTF-8 data, this
/// function will return the corresponding [`&str`] slice. Otherwise,
/// it will return an error with details of where UTF-8 validation failed.
///
/// # Examples
///
/// ```
/// # use kernel::str::CStr;
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
/// assert_eq!(cstr.to_str(), Ok("foo"));
/// ```
#[inline]
pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
core::str::from_utf8(self.as_bytes())
}
/// Unsafely convert this [`CStr`] into a [`&str`], without checking for
/// valid UTF-8.
///
/// # Safety
///
/// The contents must be valid UTF-8.
///
/// # Examples
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// // SAFETY: String literals are guaranteed to be valid UTF-8
/// // by the Rust compiler.
/// let bar = c_str!("ツ");
/// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
/// ```
#[inline]
pub unsafe fn as_str_unchecked(&self) -> &str {
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
}
}
impl fmt::Display for CStr {
/// Formats printable ASCII characters, escaping the rest.
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
/// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
///
/// let ascii = c_str!("so \"cool\"");
/// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for &c in self.as_bytes() {
if (0x20..0x7f).contains(&c) {
// Printable character.
f.write_char(c as char)?;
} else {
write!(f, "\\x{:02x}", c)?;
}
}
Ok(())
}
}
impl fmt::Debug for CStr {
/// Formats printable ASCII characters with a double quote on either end, escaping the rest.
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
/// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
///
/// // Embedded double quotes are escaped.
/// let ascii = c_str!("so \"cool\"");
/// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("\"")?;
for &c in self.as_bytes() {
match c {
// Printable characters.
b'\"' => f.write_str("\\\"")?,
0x20..=0x7e => f.write_char(c as char)?,
_ => write!(f, "\\x{:02x}", c)?,
}
}
f.write_str("\"")
}
}
impl AsRef<BStr> for CStr {
#[inline]
fn as_ref(&self) -> &BStr {
self.as_bytes()
}
}
impl Deref for CStr {
type Target = BStr;
#[inline]
fn deref(&self) -> &Self::Target {
self.as_bytes()
}
}
impl Index<ops::RangeFrom<usize>> for CStr {
type Output = CStr;
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
// Delegate bounds checking to slice.
// Assign to _ to mute clippy's unnecessary operation warning.
let _ = &self.as_bytes()[index.start..];
// SAFETY: We just checked the bounds.
unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
}
}
impl Index<ops::RangeFull> for CStr {
type Output = CStr;
#[inline]
fn index(&self, _index: ops::RangeFull) -> &Self::Output {
self
}
}
mod private {
use core::ops;
// Marker trait for index types that can be forward to `BStr`.
pub trait CStrIndex {}
impl CStrIndex for usize {}
impl CStrIndex for ops::Range<usize> {}
impl CStrIndex for ops::RangeInclusive<usize> {}
impl CStrIndex for ops::RangeToInclusive<usize> {}
}
impl<Idx> Index<Idx> for CStr
where
Idx: private::CStrIndex,
BStr: Index<Idx>,
{
type Output = <BStr as Index<Idx>>::Output;
#[inline]
fn index(&self, index: Idx) -> &Self::Output {
&self.as_bytes()[index]
}
}
/// Creates a new [`CStr`] from a string literal.
///
/// The string literal should not contain any `NUL` bytes.
///
/// # Examples
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
/// ```
#[macro_export]
macro_rules! c_str {
($str:expr) => {{
const S: &str = concat!($str, "\0");
const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
Ok(v) => v,
Err(_) => panic!("string contains interior NUL"),
};
C
}};
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cstr_to_str() {
let good_bytes = b"\xf0\x9f\xa6\x80\0";
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
let checked_str = checked_cstr.to_str().unwrap();
assert_eq!(checked_str, "🦀");
}
#[test]
#[should_panic]
fn test_cstr_to_str_panic() {
let bad_bytes = b"\xc3\x28\0";
let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
checked_cstr.to_str().unwrap();
}
#[test]
fn test_cstr_as_str_unchecked() {
let good_bytes = b"\xf0\x9f\x90\xA7\0";
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
assert_eq!(unchecked_str, "🐧");
}
}
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// It does not fail if callers write past the end of the buffer so that they can calculate the
/// size required to fit everything.
///
/// # Invariants
///
/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
/// is less than `end`.
pub(crate) struct RawFormatter {
// Use `usize` to use `saturating_*` functions.
#[allow(dead_code)]
beg: usize,
pos: usize,
end: usize,
}
impl RawFormatter {
/// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
///
/// # Safety
///
/// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
/// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
// INVARIANT: The safety requierments guarantee the type invariants.
Self {
beg: pos as _,
pos: pos as _,
end: end as _,
}
}
/// Returns the current insert position.
///
/// N.B. It may point to invalid memory.
pub(crate) fn pos(&self) -> *mut u8 {
self.pos as _
}
}
impl fmt::Write for RawFormatter {
fn write_str(&mut self, s: &str) -> fmt::Result {
// `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
// don't want it to wrap around to 0.
let pos_new = self.pos.saturating_add(s.len());
// Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
if len_to_copy > 0 {
// SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
// yet, so it is valid for write per the type invariants.
unsafe {
core::ptr::copy_nonoverlapping(
s.as_bytes().as_ptr(),
self.pos as *mut u8,
len_to_copy,
)
};
}
self.pos = pos_new;
Ok(())
}
}
|