1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
// SPDX-License-Identifier: GPL-2.0
//! Tasks (threads and processes).
//!
//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
use crate::{
bindings,
ffi::{c_int, c_long, c_uint},
pid_namespace::PidNamespace,
types::{ARef, NotThreadSafe, Opaque},
};
use core::{
cmp::{Eq, PartialEq},
ops::Deref,
ptr,
};
/// A sentinel value used for infinite timeouts.
pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
/// Bitmask for tasks that are sleeping in an interruptible state.
pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
/// Bitmask for tasks that are sleeping in an uninterruptible state.
pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
/// uninterruptible sleep.
pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
/// Returns the currently running task.
#[macro_export]
macro_rules! current {
() => {
// SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
// caller.
unsafe { &*$crate::task::Task::current() }
};
}
/// Returns the currently running task's pid namespace.
#[macro_export]
macro_rules! current_pid_ns {
() => {
// SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
// the caller.
unsafe { &*$crate::task::Task::current_pid_ns() }
};
}
/// Wraps the kernel's `struct task_struct`.
///
/// # Invariants
///
/// All instances are valid tasks created by the C portion of the kernel.
///
/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
/// that the allocation remains valid at least until the matching call to `put_task_struct`.
///
/// # Examples
///
/// The following is an example of getting the PID of the current thread with zero additional cost
/// when compared to the C version:
///
/// ```
/// let pid = current!().pid();
/// ```
///
/// Getting the PID of the current process, also zero additional cost:
///
/// ```
/// let pid = current!().group_leader().pid();
/// ```
///
/// Getting the current task and storing it in some struct. The reference count is automatically
/// incremented when creating `State` and decremented when it is dropped:
///
/// ```
/// use kernel::{task::Task, types::ARef};
///
/// struct State {
/// creator: ARef<Task>,
/// index: u32,
/// }
///
/// impl State {
/// fn new() -> Self {
/// Self {
/// creator: current!().into(),
/// index: 0,
/// }
/// }
/// }
/// ```
#[repr(transparent)]
pub struct Task(pub(crate) Opaque<bindings::task_struct>);
// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
unsafe impl Send for Task {}
// SAFETY: It's OK to access `Task` through shared references from other threads because we're
// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
// synchronised by C code (e.g., `signal_pending`).
unsafe impl Sync for Task {}
/// The type of process identifiers (PIDs).
type Pid = bindings::pid_t;
/// The type of user identifiers (UIDs).
#[derive(Copy, Clone)]
pub struct Kuid {
kuid: bindings::kuid_t,
}
impl Task {
/// Returns a raw pointer to the current task.
///
/// It is up to the user to use the pointer correctly.
#[inline]
pub fn current_raw() -> *mut bindings::task_struct {
// SAFETY: Getting the current pointer is always safe.
unsafe { bindings::get_current() }
}
/// Returns a task reference for the currently executing task/thread.
///
/// The recommended way to get the current task/thread is to use the
/// [`current`] macro because it is safe.
///
/// # Safety
///
/// Callers must ensure that the returned object doesn't outlive the current task/thread.
pub unsafe fn current() -> impl Deref<Target = Task> {
struct TaskRef<'a> {
task: &'a Task,
_not_send: NotThreadSafe,
}
impl Deref for TaskRef<'_> {
type Target = Task;
fn deref(&self) -> &Self::Target {
self.task
}
}
let current = Task::current_raw();
TaskRef {
// SAFETY: If the current thread is still running, the current task is valid. Given
// that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
// (where it could potentially outlive the caller).
task: unsafe { &*current.cast() },
_not_send: NotThreadSafe,
}
}
/// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
///
/// This function can be used to create an unbounded lifetime by e.g., storing the returned
/// PidNamespace in a global variable which would be a bug. So the recommended way to get the
/// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
/// safe.
///
/// # Safety
///
/// Callers must ensure that the returned object doesn't outlive the current task/thread.
pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
struct PidNamespaceRef<'a> {
task: &'a PidNamespace,
_not_send: NotThreadSafe,
}
impl Deref for PidNamespaceRef<'_> {
type Target = PidNamespace;
fn deref(&self) -> &Self::Target {
self.task
}
}
// The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
//
// The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
// `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
// on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
// created by the calling `Task`. This invariant guarantees that after having acquired a
// reference to a `Task`'s pid namespace it will remain unchanged.
//
// When a task has exited and been reaped `release_task()` will be called. This will set
// the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
// that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
// referencing count to
// the `Task` will prevent `release_task()` being called.
//
// In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
// can be used. There are two cases to consider:
//
// (1) retrieving the `PidNamespace` of the `current` task
// (2) retrieving the `PidNamespace` of a non-`current` task
//
// From system call context retrieving the `PidNamespace` for case (1) is always safe and
// requires neither RCU locking nor a reference count to be held. Retrieving the
// `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
// like that is exposed to Rust.
//
// Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
// Accessing `PidNamespace` outside of RCU protection requires a reference count that
// must've been acquired while holding the RCU lock. Note that accessing a non-`current`
// task means `NULL` can be returned as the non-`current` task could have already passed
// through `release_task()`.
//
// To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
// returned `PidNamespace` cannot outlive the calling scope. The associated
// `current_pid_ns()` function should not be called directly as it could be abused to
// created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
// Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
// protection and without having to acquire a reference count.
//
// For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
// reference on `PidNamespace` and will return an `Option` to force the caller to
// explicitly handle the case where `PidNamespace` is `None`, something that tends to be
// forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
// difficult to perform operations that are otherwise safe without holding a reference
// count as long as RCU protection is guaranteed. But it is not important currently. But we
// do want it in the future.
//
// Note for (2) the required RCU protection around calling `task_active_pid_ns()`
// synchronizes against putting the last reference of the associated `struct pid` of
// `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
// `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
// `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
// `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
// from `task->thread_pid` to finish.
//
// SAFETY: The current task's pid namespace is valid as long as the current task is running.
let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
PidNamespaceRef {
// SAFETY: If the current thread is still running, the current task and its associated
// pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
// transferred to another thread (where it could potentially outlive the current
// `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
// current task/thread.
task: unsafe { PidNamespace::from_ptr(pidns) },
_not_send: NotThreadSafe,
}
}
/// Returns a raw pointer to the task.
#[inline]
pub fn as_ptr(&self) -> *mut bindings::task_struct {
self.0.get()
}
/// Returns the group leader of the given task.
pub fn group_leader(&self) -> &Task {
// SAFETY: The group leader of a task never changes after initialization, so reading this
// field is not a data race.
let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
// SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
// and given that a task has a reference to its group leader, we know it must be valid for
// the lifetime of the returned task reference.
unsafe { &*ptr.cast() }
}
/// Returns the PID of the given task.
pub fn pid(&self) -> Pid {
// SAFETY: The pid of a task never changes after initialization, so reading this field is
// not a data race.
unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
}
/// Returns the UID of the given task.
pub fn uid(&self) -> Kuid {
// SAFETY: It's always safe to call `task_uid` on a valid task.
Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
}
/// Returns the effective UID of the given task.
pub fn euid(&self) -> Kuid {
// SAFETY: It's always safe to call `task_euid` on a valid task.
Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
}
/// Determines whether the given task has pending signals.
pub fn signal_pending(&self) -> bool {
// SAFETY: It's always safe to call `signal_pending` on a valid task.
unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
}
/// Returns task's pid namespace with elevated reference count
pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
// SAFETY: By the type invariant, we know that `self.0` is valid.
let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
if ptr.is_null() {
None
} else {
// SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
// reference count via `task_get_pid_ns()`.
// CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
}
}
/// Returns the given task's pid in the provided pid namespace.
#[doc(alias = "task_tgid_nr_ns")]
pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
let pidns = match pidns {
Some(pidns) => pidns.as_ptr(),
None => core::ptr::null_mut(),
};
// SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
// PidNamespace that we can use as a pointer or we received an empty PidNamespace and
// thus pass a null pointer. The underlying C function is safe to be used with NULL
// pointers.
unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
}
/// Wakes up the task.
pub fn wake_up(&self) {
// SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task
// running.
unsafe { bindings::wake_up_process(self.as_ptr()) };
}
}
// SAFETY: The type invariants guarantee that `Task` is always refcounted.
unsafe impl crate::types::AlwaysRefCounted for Task {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::get_task_struct(self.as_ptr()) };
}
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
}
}
impl Kuid {
/// Get the current euid.
#[inline]
pub fn current_euid() -> Kuid {
// SAFETY: Just an FFI call.
Self::from_raw(unsafe { bindings::current_euid() })
}
/// Create a `Kuid` given the raw C type.
#[inline]
pub fn from_raw(kuid: bindings::kuid_t) -> Self {
Self { kuid }
}
/// Turn this kuid into the raw C type.
#[inline]
pub fn into_raw(self) -> bindings::kuid_t {
self.kuid
}
/// Converts this kernel UID into a userspace UID.
///
/// Uses the namespace of the current task.
#[inline]
pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
// SAFETY: Just an FFI call.
unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
}
}
impl PartialEq for Kuid {
#[inline]
fn eq(&self, other: &Kuid) -> bool {
// SAFETY: Just an FFI call.
unsafe { bindings::uid_eq(self.kuid, other.kuid) }
}
}
impl Eq for Kuid {}
|