summaryrefslogtreecommitdiffstats
path: root/rust/kernel/workqueue.rs
blob: 553a5cba2adcb58cab56751c32398a0408e87bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// SPDX-License-Identifier: GPL-2.0

//! Work queues.
//!
//! This file has two components: The raw work item API, and the safe work item API.
//!
//! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
//! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
//! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
//! long as you use different values for different fields of the same struct.) Since these IDs are
//! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
//!
//! # The raw API
//!
//! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
//! arbitrary function that knows how to enqueue the work item. It should usually not be used
//! directly, but if you want to, you can use it without using the pieces from the safe API.
//!
//! # The safe API
//!
//! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
//! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
//!
//!  * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
//!  * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
//!  * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
//!    that implements [`WorkItem`].
//!
//! ## Example
//!
//! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
//! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
//! we do not need to specify ids for the fields.
//!
//! ```
//! use kernel::sync::Arc;
//! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
//!
//! #[pin_data]
//! struct MyStruct {
//!     value: i32,
//!     #[pin]
//!     work: Work<MyStruct>,
//! }
//!
//! impl_has_work! {
//!     impl HasWork<Self> for MyStruct { self.work }
//! }
//!
//! impl MyStruct {
//!     fn new(value: i32) -> Result<Arc<Self>> {
//!         Arc::pin_init(pin_init!(MyStruct {
//!             value,
//!             work <- new_work!("MyStruct::work"),
//!         }), GFP_KERNEL)
//!     }
//! }
//!
//! impl WorkItem for MyStruct {
//!     type Pointer = Arc<MyStruct>;
//!
//!     fn run(this: Arc<MyStruct>) {
//!         pr_info!("The value is: {}", this.value);
//!     }
//! }
//!
//! /// This method will enqueue the struct for execution on the system workqueue, where its value
//! /// will be printed.
//! fn print_later(val: Arc<MyStruct>) {
//!     let _ = workqueue::system().enqueue(val);
//! }
//! ```
//!
//! The following example shows how multiple `work_struct` fields can be used:
//!
//! ```
//! use kernel::sync::Arc;
//! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
//!
//! #[pin_data]
//! struct MyStruct {
//!     value_1: i32,
//!     value_2: i32,
//!     #[pin]
//!     work_1: Work<MyStruct, 1>,
//!     #[pin]
//!     work_2: Work<MyStruct, 2>,
//! }
//!
//! impl_has_work! {
//!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
//!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
//! }
//!
//! impl MyStruct {
//!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
//!         Arc::pin_init(pin_init!(MyStruct {
//!             value_1,
//!             value_2,
//!             work_1 <- new_work!("MyStruct::work_1"),
//!             work_2 <- new_work!("MyStruct::work_2"),
//!         }), GFP_KERNEL)
//!     }
//! }
//!
//! impl WorkItem<1> for MyStruct {
//!     type Pointer = Arc<MyStruct>;
//!
//!     fn run(this: Arc<MyStruct>) {
//!         pr_info!("The value is: {}", this.value_1);
//!     }
//! }
//!
//! impl WorkItem<2> for MyStruct {
//!     type Pointer = Arc<MyStruct>;
//!
//!     fn run(this: Arc<MyStruct>) {
//!         pr_info!("The second value is: {}", this.value_2);
//!     }
//! }
//!
//! fn print_1_later(val: Arc<MyStruct>) {
//!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
//! }
//!
//! fn print_2_later(val: Arc<MyStruct>) {
//!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
//! }
//! ```
//!
//! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)

use crate::alloc::{AllocError, Flags};
use crate::{prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
use core::marker::PhantomData;

/// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
#[macro_export]
macro_rules! new_work {
    ($($name:literal)?) => {
        $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
    };
}
pub use new_work;

/// A kernel work queue.
///
/// Wraps the kernel's C `struct workqueue_struct`.
///
/// It allows work items to be queued to run on thread pools managed by the kernel. Several are
/// always available, for example, `system`, `system_highpri`, `system_long`, etc.
#[repr(transparent)]
pub struct Queue(Opaque<bindings::workqueue_struct>);

// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
unsafe impl Send for Queue {}
// SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
unsafe impl Sync for Queue {}

impl Queue {
    /// Use the provided `struct workqueue_struct` with Rust.
    ///
    /// # Safety
    ///
    /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
    /// valid workqueue, and that it remains valid until the end of `'a`.
    pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
        // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
        // caller promises that the pointer is not dangling.
        unsafe { &*(ptr as *const Queue) }
    }

    /// Enqueues a work item.
    ///
    /// This may fail if the work item is already enqueued in a workqueue.
    ///
    /// The work item will be submitted using `WORK_CPU_UNBOUND`.
    pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
    where
        W: RawWorkItem<ID> + Send + 'static,
    {
        let queue_ptr = self.0.get();

        // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
        // `__enqueue` requirements are not relevant since `W` is `Send` and static.
        //
        // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
        // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
        // closure.
        //
        // Furthermore, if the C workqueue code accesses the pointer after this call to
        // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
        // will have returned true. In this case, `__enqueue` promises that the raw pointer will
        // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
        unsafe {
            w.__enqueue(move |work_ptr| {
                bindings::queue_work_on(
                    bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
                    queue_ptr,
                    work_ptr,
                )
            })
        }
    }

    /// Tries to spawn the given function or closure as a work item.
    ///
    /// This method can fail because it allocates memory to store the work item.
    pub fn try_spawn<T: 'static + Send + FnOnce()>(
        &self,
        flags: Flags,
        func: T,
    ) -> Result<(), AllocError> {
        let init = pin_init!(ClosureWork {
            work <- new_work!("Queue::try_spawn"),
            func: Some(func),
        });

        self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?);
        Ok(())
    }
}

/// A helper type used in [`try_spawn`].
///
/// [`try_spawn`]: Queue::try_spawn
#[pin_data]
struct ClosureWork<T> {
    #[pin]
    work: Work<ClosureWork<T>>,
    func: Option<T>,
}

impl<T> ClosureWork<T> {
    fn project(self: Pin<&mut Self>) -> &mut Option<T> {
        // SAFETY: The `func` field is not structurally pinned.
        unsafe { &mut self.get_unchecked_mut().func }
    }
}

impl<T: FnOnce()> WorkItem for ClosureWork<T> {
    type Pointer = Pin<Box<Self>>;

    fn run(mut this: Pin<Box<Self>>) {
        if let Some(func) = this.as_mut().project().take() {
            (func)()
        }
    }
}

/// A raw work item.
///
/// This is the low-level trait that is designed for being as general as possible.
///
/// The `ID` parameter to this trait exists so that a single type can provide multiple
/// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
/// you will implement this trait once for each field, using a different id for each field. The
/// actual value of the id is not important as long as you use different ids for different fields
/// of the same struct. (Fields of different structs need not use different ids.)
///
/// Note that the id is used only to select the right method to call during compilation. It won't be
/// part of the final executable.
///
/// # Safety
///
/// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
/// remain valid for the duration specified in the guarantees section of the documentation for
/// [`__enqueue`].
///
/// [`__enqueue`]: RawWorkItem::__enqueue
pub unsafe trait RawWorkItem<const ID: u64> {
    /// The return type of [`Queue::enqueue`].
    type EnqueueOutput;

    /// Enqueues this work item on a queue using the provided `queue_work_on` method.
    ///
    /// # Guarantees
    ///
    /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
    /// valid `work_struct` for the duration of the call to the closure. If the closure returns
    /// true, then it is further guaranteed that the pointer remains valid until someone calls the
    /// function pointer stored in the `work_struct`.
    ///
    /// # Safety
    ///
    /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
    ///
    /// If the work item type is annotated with any lifetimes, then you must not call the function
    /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
    ///
    /// If the work item type is not [`Send`], then the function pointer must be called on the same
    /// thread as the call to `__enqueue`.
    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
    where
        F: FnOnce(*mut bindings::work_struct) -> bool;
}

/// Defines the method that should be called directly when a work item is executed.
///
/// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be
/// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
/// instead. The [`run`] method on this trait will usually just perform the appropriate
/// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
/// [`WorkItem`] trait.
///
/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
///
/// # Safety
///
/// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
/// method of this trait as the function pointer.
///
/// [`__enqueue`]: RawWorkItem::__enqueue
/// [`run`]: WorkItemPointer::run
pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
    /// Run this work item.
    ///
    /// # Safety
    ///
    /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
    /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
    ///
    /// [`__enqueue`]: RawWorkItem::__enqueue
    unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
}

/// Defines the method that should be called when this work item is executed.
///
/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
pub trait WorkItem<const ID: u64 = 0> {
    /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
    /// `Pin<Box<Self>>`.
    type Pointer: WorkItemPointer<ID>;

    /// The method that should be called when this work item is executed.
    fn run(this: Self::Pointer);
}

/// Links for a work item.
///
/// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
/// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
///
/// Wraps the kernel's C `struct work_struct`.
///
/// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
///
/// [`run`]: WorkItemPointer::run
#[pin_data]
#[repr(transparent)]
pub struct Work<T: ?Sized, const ID: u64 = 0> {
    #[pin]
    work: Opaque<bindings::work_struct>,
    _inner: PhantomData<T>,
}

// SAFETY: Kernel work items are usable from any thread.
//
// We do not need to constrain `T` since the work item does not actually contain a `T`.
unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
// SAFETY: Kernel work items are usable from any thread.
//
// We do not need to constrain `T` since the work item does not actually contain a `T`.
unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}

impl<T: ?Sized, const ID: u64> Work<T, ID> {
    /// Creates a new instance of [`Work`].
    #[inline]
    #[allow(clippy::new_ret_no_self)]
    pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
    where
        T: WorkItem<ID>,
    {
        pin_init!(Self {
            work <- Opaque::ffi_init(|slot| {
                // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
                // the work item function.
                unsafe {
                    bindings::init_work_with_key(
                        slot,
                        Some(T::Pointer::run),
                        false,
                        name.as_char_ptr(),
                        key.as_ptr(),
                    )
                }
            }),
            _inner: PhantomData,
        })
    }

    /// Get a pointer to the inner `work_struct`.
    ///
    /// # Safety
    ///
    /// The provided pointer must not be dangling and must be properly aligned. (But the memory
    /// need not be initialized.)
    #[inline]
    pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
        // SAFETY: The caller promises that the pointer is aligned and not dangling.
        //
        // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
        // the compiler does not complain that the `work` field is unused.
        unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
    }
}

/// Declares that a type has a [`Work<T, ID>`] field.
///
/// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
/// like this:
///
/// ```no_run
/// use kernel::workqueue::{impl_has_work, Work};
///
/// struct MyWorkItem {
///     work_field: Work<MyWorkItem, 1>,
/// }
///
/// impl_has_work! {
///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
/// }
/// ```
///
/// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
/// fields by using a different id for each one.
///
/// # Safety
///
/// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
/// methods on this trait must have exactly the behavior that the definitions given below have.
///
/// [`impl_has_work!`]: crate::impl_has_work
/// [`OFFSET`]: HasWork::OFFSET
pub unsafe trait HasWork<T, const ID: u64 = 0> {
    /// The offset of the [`Work<T, ID>`] field.
    const OFFSET: usize;

    /// Returns the offset of the [`Work<T, ID>`] field.
    ///
    /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
    /// [`Sized`].
    ///
    /// [`OFFSET`]: HasWork::OFFSET
    #[inline]
    fn get_work_offset(&self) -> usize {
        Self::OFFSET
    }

    /// Returns a pointer to the [`Work<T, ID>`] field.
    ///
    /// # Safety
    ///
    /// The provided pointer must point at a valid struct of type `Self`.
    #[inline]
    unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
        // SAFETY: The caller promises that the pointer is valid.
        unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
    }

    /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
    ///
    /// # Safety
    ///
    /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
    #[inline]
    unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
    where
        Self: Sized,
    {
        // SAFETY: The caller promises that the pointer points at a field of the right type in the
        // right kind of struct.
        unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
    }
}

/// Used to safely implement the [`HasWork<T, ID>`] trait.
///
/// # Examples
///
/// ```
/// use kernel::sync::Arc;
/// use kernel::workqueue::{self, impl_has_work, Work};
///
/// struct MyStruct<'a, T, const N: usize> {
///     work_field: Work<MyStruct<'a, T, N>, 17>,
///     f: fn(&'a [T; N]),
/// }
///
/// impl_has_work! {
///     impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17>
///     for MyStruct<'a, T, N> { self.work_field }
/// }
/// ```
#[macro_export]
macro_rules! impl_has_work {
    ($(impl$({$($generics:tt)*})?
       HasWork<$work_type:ty $(, $id:tt)?>
       for $self:ty
       { self.$field:ident }
    )*) => {$(
        // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
        // type.
        unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self {
            const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;

            #[inline]
            unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
                // SAFETY: The caller promises that the pointer is not dangling.
                unsafe {
                    ::core::ptr::addr_of_mut!((*ptr).$field)
                }
            }
        }
    )*};
}
pub use impl_has_work;

impl_has_work! {
    impl{T} HasWork<Self> for ClosureWork<T> { self.work }
}

unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
where
    T: WorkItem<ID, Pointer = Self>,
    T: HasWork<T, ID>,
{
    unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
        // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
        let ptr = ptr as *mut Work<T, ID>;
        // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
        let ptr = unsafe { T::work_container_of(ptr) };
        // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
        let arc = unsafe { Arc::from_raw(ptr) };

        T::run(arc)
    }
}

unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
where
    T: WorkItem<ID, Pointer = Self>,
    T: HasWork<T, ID>,
{
    type EnqueueOutput = Result<(), Self>;

    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
    where
        F: FnOnce(*mut bindings::work_struct) -> bool,
    {
        // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
        let ptr = Arc::into_raw(self).cast_mut();

        // SAFETY: Pointers into an `Arc` point at a valid value.
        let work_ptr = unsafe { T::raw_get_work(ptr) };
        // SAFETY: `raw_get_work` returns a pointer to a valid value.
        let work_ptr = unsafe { Work::raw_get(work_ptr) };

        if queue_work_on(work_ptr) {
            Ok(())
        } else {
            // SAFETY: The work queue has not taken ownership of the pointer.
            Err(unsafe { Arc::from_raw(ptr) })
        }
    }
}

unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
where
    T: WorkItem<ID, Pointer = Self>,
    T: HasWork<T, ID>,
{
    unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
        // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
        let ptr = ptr as *mut Work<T, ID>;
        // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
        let ptr = unsafe { T::work_container_of(ptr) };
        // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
        let boxed = unsafe { Box::from_raw(ptr) };
        // SAFETY: The box was already pinned when it was enqueued.
        let pinned = unsafe { Pin::new_unchecked(boxed) };

        T::run(pinned)
    }
}

unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
where
    T: WorkItem<ID, Pointer = Self>,
    T: HasWork<T, ID>,
{
    type EnqueueOutput = ();

    unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
    where
        F: FnOnce(*mut bindings::work_struct) -> bool,
    {
        // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
        // remove the `Pin` wrapper.
        let boxed = unsafe { Pin::into_inner_unchecked(self) };
        let ptr = Box::into_raw(boxed);

        // SAFETY: Pointers into a `Box` point at a valid value.
        let work_ptr = unsafe { T::raw_get_work(ptr) };
        // SAFETY: `raw_get_work` returns a pointer to a valid value.
        let work_ptr = unsafe { Work::raw_get(work_ptr) };

        if !queue_work_on(work_ptr) {
            // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
            // workqueue.
            unsafe { ::core::hint::unreachable_unchecked() }
        }
    }
}

/// Returns the system work queue (`system_wq`).
///
/// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
/// users which expect relatively short queue flush time.
///
/// Callers shouldn't queue work items which can run for too long.
pub fn system() -> &'static Queue {
    // SAFETY: `system_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_wq) }
}

/// Returns the system high-priority work queue (`system_highpri_wq`).
///
/// It is similar to the one returned by [`system`] but for work items which require higher
/// scheduling priority.
pub fn system_highpri() -> &'static Queue {
    // SAFETY: `system_highpri_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_highpri_wq) }
}

/// Returns the system work queue for potentially long-running work items (`system_long_wq`).
///
/// It is similar to the one returned by [`system`] but may host long running work items. Queue
/// flushing might take relatively long.
pub fn system_long() -> &'static Queue {
    // SAFETY: `system_long_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_long_wq) }
}

/// Returns the system unbound work queue (`system_unbound_wq`).
///
/// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
/// are executed immediately as long as `max_active` limit is not reached and resources are
/// available.
pub fn system_unbound() -> &'static Queue {
    // SAFETY: `system_unbound_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_unbound_wq) }
}

/// Returns the system freezable work queue (`system_freezable_wq`).
///
/// It is equivalent to the one returned by [`system`] except that it's freezable.
///
/// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
/// items on the workqueue are drained and no new work item starts execution until thawed.
pub fn system_freezable() -> &'static Queue {
    // SAFETY: `system_freezable_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_freezable_wq) }
}

/// Returns the system power-efficient work queue (`system_power_efficient_wq`).
///
/// It is inclined towards saving power and is converted to "unbound" variants if the
/// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
/// returned by [`system`].
pub fn system_power_efficient() -> &'static Queue {
    // SAFETY: `system_power_efficient_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
}

/// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
///
/// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
///
/// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
/// items on the workqueue are drained and no new work item starts execution until thawed.
pub fn system_freezable_power_efficient() -> &'static Queue {
    // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
    unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
}