summaryrefslogtreecommitdiffstats
path: root/security/selinux/avc.c
blob: ad451cf9375e44f66769a9659293416f18a84a50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Implementation of the kernel access vector cache (AVC).
 *
 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
 *	     James Morris <jmorris@redhat.com>
 *
 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
 *	Replaced the avc_lock spinlock by RCU.
 *
 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 */
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/percpu.h>
#include <linux/list.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/ip.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include "avc.h"
#include "avc_ss.h"
#include "classmap.h"

#define CREATE_TRACE_POINTS
#include <trace/events/avc.h>

#define AVC_CACHE_SLOTS			512
#define AVC_DEF_CACHE_THRESHOLD		512
#define AVC_CACHE_RECLAIM		16

#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
#else
#define avc_cache_stats_incr(field)	do {} while (0)
#endif

struct avc_entry {
	u32			ssid;
	u32			tsid;
	u16			tclass;
	struct av_decision	avd;
	struct avc_xperms_node	*xp_node;
};

struct avc_node {
	struct avc_entry	ae;
	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
	struct rcu_head		rhead;
};

struct avc_xperms_decision_node {
	struct extended_perms_decision xpd;
	struct list_head xpd_list; /* list of extended_perms_decision */
};

struct avc_xperms_node {
	struct extended_perms xp;
	struct list_head xpd_head; /* list head of extended_perms_decision */
};

struct avc_cache {
	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
	atomic_t		active_nodes;
	u32			latest_notif;	/* latest revocation notification */
};

struct avc_callback_node {
	int (*callback) (u32 event);
	u32 events;
	struct avc_callback_node *next;
};

#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
#endif

struct selinux_avc {
	unsigned int avc_cache_threshold;
	struct avc_cache avc_cache;
};

static struct selinux_avc selinux_avc;

void selinux_avc_init(struct selinux_avc **avc)
{
	int i;

	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
	}
	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
	*avc = &selinux_avc;
}

unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
{
	return avc->avc_cache_threshold;
}

void avc_set_cache_threshold(struct selinux_avc *avc,
			     unsigned int cache_threshold)
{
	avc->avc_cache_threshold = cache_threshold;
}

static struct avc_callback_node *avc_callbacks __ro_after_init;
static struct kmem_cache *avc_node_cachep __ro_after_init;
static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
static struct kmem_cache *avc_xperms_cachep __ro_after_init;

static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
{
	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
}

/**
 * avc_init - Initialize the AVC.
 *
 * Initialize the access vector cache.
 */
void __init avc_init(void)
{
	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
					0, SLAB_PANIC, NULL);
	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
					sizeof(struct avc_xperms_node),
					0, SLAB_PANIC, NULL);
	avc_xperms_decision_cachep = kmem_cache_create(
					"avc_xperms_decision_node",
					sizeof(struct avc_xperms_decision_node),
					0, SLAB_PANIC, NULL);
	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
					sizeof(struct extended_perms_data),
					0, SLAB_PANIC, NULL);
}

int avc_get_hash_stats(struct selinux_avc *avc, char *page)
{
	int i, chain_len, max_chain_len, slots_used;
	struct avc_node *node;
	struct hlist_head *head;

	rcu_read_lock();

	slots_used = 0;
	max_chain_len = 0;
	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
		head = &avc->avc_cache.slots[i];
		if (!hlist_empty(head)) {
			slots_used++;
			chain_len = 0;
			hlist_for_each_entry_rcu(node, head, list)
				chain_len++;
			if (chain_len > max_chain_len)
				max_chain_len = chain_len;
		}
	}

	rcu_read_unlock();

	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
			 "longest chain: %d\n",
			 atomic_read(&avc->avc_cache.active_nodes),
			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
}

/*
 * using a linked list for extended_perms_decision lookup because the list is
 * always small. i.e. less than 5, typically 1
 */
static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
					struct avc_xperms_node *xp_node)
{
	struct avc_xperms_decision_node *xpd_node;

	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
		if (xpd_node->xpd.driver == driver)
			return &xpd_node->xpd;
	}
	return NULL;
}

static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision *xpd,
					u8 perm, u8 which)
{
	unsigned int rc = 0;

	if ((which == XPERMS_ALLOWED) &&
			(xpd->used & XPERMS_ALLOWED))
		rc = security_xperm_test(xpd->allowed->p, perm);
	else if ((which == XPERMS_AUDITALLOW) &&
			(xpd->used & XPERMS_AUDITALLOW))
		rc = security_xperm_test(xpd->auditallow->p, perm);
	else if ((which == XPERMS_DONTAUDIT) &&
			(xpd->used & XPERMS_DONTAUDIT))
		rc = security_xperm_test(xpd->dontaudit->p, perm);
	return rc;
}

static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
				u8 driver, u8 perm)
{
	struct extended_perms_decision *xpd;
	security_xperm_set(xp_node->xp.drivers.p, driver);
	xpd = avc_xperms_decision_lookup(driver, xp_node);
	if (xpd && xpd->allowed)
		security_xperm_set(xpd->allowed->p, perm);
}

static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
{
	struct extended_perms_decision *xpd;

	xpd = &xpd_node->xpd;
	if (xpd->allowed)
		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
	if (xpd->auditallow)
		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
	if (xpd->dontaudit)
		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
}

static void avc_xperms_free(struct avc_xperms_node *xp_node)
{
	struct avc_xperms_decision_node *xpd_node, *tmp;

	if (!xp_node)
		return;

	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
		list_del(&xpd_node->xpd_list);
		avc_xperms_decision_free(xpd_node);
	}
	kmem_cache_free(avc_xperms_cachep, xp_node);
}

static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
					struct extended_perms_decision *src)
{
	dest->driver = src->driver;
	dest->used = src->used;
	if (dest->used & XPERMS_ALLOWED)
		memcpy(dest->allowed->p, src->allowed->p,
				sizeof(src->allowed->p));
	if (dest->used & XPERMS_AUDITALLOW)
		memcpy(dest->auditallow->p, src->auditallow->p,
				sizeof(src->auditallow->p));
	if (dest->used & XPERMS_DONTAUDIT)
		memcpy(dest->dontaudit->p, src->dontaudit->p,
				sizeof(src->dontaudit->p));
}

/*
 * similar to avc_copy_xperms_decision, but only copy decision
 * information relevant to this perm
 */
static inline void avc_quick_copy_xperms_decision(u8 perm,
			struct extended_perms_decision *dest,
			struct extended_perms_decision *src)
{
	/*
	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
	 * command permission
	 */
	u8 i = perm >> 5;

	dest->used = src->used;
	if (dest->used & XPERMS_ALLOWED)
		dest->allowed->p[i] = src->allowed->p[i];
	if (dest->used & XPERMS_AUDITALLOW)
		dest->auditallow->p[i] = src->auditallow->p[i];
	if (dest->used & XPERMS_DONTAUDIT)
		dest->dontaudit->p[i] = src->dontaudit->p[i];
}

static struct avc_xperms_decision_node
		*avc_xperms_decision_alloc(u8 which)
{
	struct avc_xperms_decision_node *xpd_node;
	struct extended_perms_decision *xpd;

	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
	if (!xpd_node)
		return NULL;

	xpd = &xpd_node->xpd;
	if (which & XPERMS_ALLOWED) {
		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
						GFP_NOWAIT);
		if (!xpd->allowed)
			goto error;
	}
	if (which & XPERMS_AUDITALLOW) {
		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
						GFP_NOWAIT);
		if (!xpd->auditallow)
			goto error;
	}
	if (which & XPERMS_DONTAUDIT) {
		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
						GFP_NOWAIT);
		if (!xpd->dontaudit)
			goto error;
	}
	return xpd_node;
error:
	avc_xperms_decision_free(xpd_node);
	return NULL;
}

static int avc_add_xperms_decision(struct avc_node *node,
			struct extended_perms_decision *src)
{
	struct avc_xperms_decision_node *dest_xpd;

	node->ae.xp_node->xp.len++;
	dest_xpd = avc_xperms_decision_alloc(src->used);
	if (!dest_xpd)
		return -ENOMEM;
	avc_copy_xperms_decision(&dest_xpd->xpd, src);
	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
	return 0;
}

static struct avc_xperms_node *avc_xperms_alloc(void)
{
	struct avc_xperms_node *xp_node;

	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
	if (!xp_node)
		return xp_node;
	INIT_LIST_HEAD(&xp_node->xpd_head);
	return xp_node;
}

static int avc_xperms_populate(struct avc_node *node,
				struct avc_xperms_node *src)
{
	struct avc_xperms_node *dest;
	struct avc_xperms_decision_node *dest_xpd;
	struct avc_xperms_decision_node *src_xpd;

	if (src->xp.len == 0)
		return 0;
	dest = avc_xperms_alloc();
	if (!dest)
		return -ENOMEM;

	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
	dest->xp.len = src->xp.len;

	/* for each source xpd allocate a destination xpd and copy */
	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
		if (!dest_xpd)
			goto error;
		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
	}
	node->ae.xp_node = dest;
	return 0;
error:
	avc_xperms_free(dest);
	return -ENOMEM;

}

static inline u32 avc_xperms_audit_required(u32 requested,
					struct av_decision *avd,
					struct extended_perms_decision *xpd,
					u8 perm,
					int result,
					u32 *deniedp)
{
	u32 denied, audited;

	denied = requested & ~avd->allowed;
	if (unlikely(denied)) {
		audited = denied & avd->auditdeny;
		if (audited && xpd) {
			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
				audited &= ~requested;
		}
	} else if (result) {
		audited = denied = requested;
	} else {
		audited = requested & avd->auditallow;
		if (audited && xpd) {
			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
				audited &= ~requested;
		}
	}

	*deniedp = denied;
	return audited;
}

static inline int avc_xperms_audit(struct selinux_state *state,
				   u32 ssid, u32 tsid, u16 tclass,
				   u32 requested, struct av_decision *avd,
				   struct extended_perms_decision *xpd,
				   u8 perm, int result,
				   struct common_audit_data *ad)
{
	u32 audited, denied;

	audited = avc_xperms_audit_required(
			requested, avd, xpd, perm, result, &denied);
	if (likely(!audited))
		return 0;
	return slow_avc_audit(state, ssid, tsid, tclass, requested,
			audited, denied, result, ad);
}

static void avc_node_free(struct rcu_head *rhead)
{
	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
	avc_xperms_free(node->ae.xp_node);
	kmem_cache_free(avc_node_cachep, node);
	avc_cache_stats_incr(frees);
}

static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
{
	hlist_del_rcu(&node->list);
	call_rcu(&node->rhead, avc_node_free);
	atomic_dec(&avc->avc_cache.active_nodes);
}

static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
{
	avc_xperms_free(node->ae.xp_node);
	kmem_cache_free(avc_node_cachep, node);
	avc_cache_stats_incr(frees);
	atomic_dec(&avc->avc_cache.active_nodes);
}

static void avc_node_replace(struct selinux_avc *avc,
			     struct avc_node *new, struct avc_node *old)
{
	hlist_replace_rcu(&old->list, &new->list);
	call_rcu(&old->rhead, avc_node_free);
	atomic_dec(&avc->avc_cache.active_nodes);
}

static inline int avc_reclaim_node(struct selinux_avc *avc)
{
	struct avc_node *node;
	int hvalue, try, ecx;
	unsigned long flags;
	struct hlist_head *head;
	spinlock_t *lock;

	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
			(AVC_CACHE_SLOTS - 1);
		head = &avc->avc_cache.slots[hvalue];
		lock = &avc->avc_cache.slots_lock[hvalue];

		if (!spin_trylock_irqsave(lock, flags))
			continue;

		rcu_read_lock();
		hlist_for_each_entry(node, head, list) {
			avc_node_delete(avc, node);
			avc_cache_stats_incr(reclaims);
			ecx++;
			if (ecx >= AVC_CACHE_RECLAIM) {
				rcu_read_unlock();
				spin_unlock_irqrestore(lock, flags);
				goto out;
			}
		}
		rcu_read_unlock();
		spin_unlock_irqrestore(lock, flags);
	}
out:
	return ecx;
}

static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
{
	struct avc_node *node;

	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
	if (!node)
		goto out;

	INIT_HLIST_NODE(&node->list);
	avc_cache_stats_incr(allocations);

	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
	    avc->avc_cache_threshold)
		avc_reclaim_node(avc);

out:
	return node;
}

static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
{
	node->ae.ssid = ssid;
	node->ae.tsid = tsid;
	node->ae.tclass = tclass;
	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
}

static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
					       u32 ssid, u32 tsid, u16 tclass)
{
	struct avc_node *node, *ret = NULL;
	int hvalue;
	struct hlist_head *head;

	hvalue = avc_hash(ssid, tsid, tclass);
	head = &avc->avc_cache.slots[hvalue];
	hlist_for_each_entry_rcu(node, head, list) {
		if (ssid == node->ae.ssid &&
		    tclass == node->ae.tclass &&
		    tsid == node->ae.tsid) {
			ret = node;
			break;
		}
	}

	return ret;
}

/**
 * avc_lookup - Look up an AVC entry.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 *
 * Look up an AVC entry that is valid for the
 * (@ssid, @tsid), interpreting the permissions
 * based on @tclass.  If a valid AVC entry exists,
 * then this function returns the avc_node.
 * Otherwise, this function returns NULL.
 */
static struct avc_node *avc_lookup(struct selinux_avc *avc,
				   u32 ssid, u32 tsid, u16 tclass)
{
	struct avc_node *node;

	avc_cache_stats_incr(lookups);
	node = avc_search_node(avc, ssid, tsid, tclass);

	if (node)
		return node;

	avc_cache_stats_incr(misses);
	return NULL;
}

static int avc_latest_notif_update(struct selinux_avc *avc,
				   int seqno, int is_insert)
{
	int ret = 0;
	static DEFINE_SPINLOCK(notif_lock);
	unsigned long flag;

	spin_lock_irqsave(&notif_lock, flag);
	if (is_insert) {
		if (seqno < avc->avc_cache.latest_notif) {
			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
			       seqno, avc->avc_cache.latest_notif);
			ret = -EAGAIN;
		}
	} else {
		if (seqno > avc->avc_cache.latest_notif)
			avc->avc_cache.latest_notif = seqno;
	}
	spin_unlock_irqrestore(&notif_lock, flag);

	return ret;
}

/**
 * avc_insert - Insert an AVC entry.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @avd: resulting av decision
 * @xp_node: resulting extended permissions
 *
 * Insert an AVC entry for the SID pair
 * (@ssid, @tsid) and class @tclass.
 * The access vectors and the sequence number are
 * normally provided by the security server in
 * response to a security_compute_av() call.  If the
 * sequence number @avd->seqno is not less than the latest
 * revocation notification, then the function copies
 * the access vectors into a cache entry, returns
 * avc_node inserted. Otherwise, this function returns NULL.
 */
static struct avc_node *avc_insert(struct selinux_avc *avc,
				   u32 ssid, u32 tsid, u16 tclass,
				   struct av_decision *avd,
				   struct avc_xperms_node *xp_node)
{
	struct avc_node *pos, *node = NULL;
	int hvalue;
	unsigned long flag;
	spinlock_t *lock;
	struct hlist_head *head;

	if (avc_latest_notif_update(avc, avd->seqno, 1))
		return NULL;

	node = avc_alloc_node(avc);
	if (!node)
		return NULL;

	avc_node_populate(node, ssid, tsid, tclass, avd);
	if (avc_xperms_populate(node, xp_node)) {
		avc_node_kill(avc, node);
		return NULL;
	}

	hvalue = avc_hash(ssid, tsid, tclass);
	head = &avc->avc_cache.slots[hvalue];
	lock = &avc->avc_cache.slots_lock[hvalue];
	spin_lock_irqsave(lock, flag);
	hlist_for_each_entry(pos, head, list) {
		if (pos->ae.ssid == ssid &&
			pos->ae.tsid == tsid &&
			pos->ae.tclass == tclass) {
			avc_node_replace(avc, node, pos);
			goto found;
		}
	}
	hlist_add_head_rcu(&node->list, head);
found:
	spin_unlock_irqrestore(lock, flag);
	return node;
}

/**
 * avc_audit_pre_callback - SELinux specific information
 * will be called by generic audit code
 * @ab: the audit buffer
 * @a: audit_data
 */
static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
{
	struct common_audit_data *ad = a;
	struct selinux_audit_data *sad = ad->selinux_audit_data;
	u32 av = sad->audited;
	const char **perms;
	int i, perm;

	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");

	if (av == 0) {
		audit_log_format(ab, " null");
		return;
	}

	perms = secclass_map[sad->tclass-1].perms;

	audit_log_format(ab, " {");
	i = 0;
	perm = 1;
	while (i < (sizeof(av) * 8)) {
		if ((perm & av) && perms[i]) {
			audit_log_format(ab, " %s", perms[i]);
			av &= ~perm;
		}
		i++;
		perm <<= 1;
	}

	if (av)
		audit_log_format(ab, " 0x%x", av);

	audit_log_format(ab, " } for ");
}

/**
 * avc_audit_post_callback - SELinux specific information
 * will be called by generic audit code
 * @ab: the audit buffer
 * @a: audit_data
 */
static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
{
	struct common_audit_data *ad = a;
	struct selinux_audit_data *sad = ad->selinux_audit_data;
	char *scontext = NULL;
	char *tcontext = NULL;
	const char *tclass = NULL;
	u32 scontext_len;
	u32 tcontext_len;
	int rc;

	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
				     &scontext_len);
	if (rc)
		audit_log_format(ab, " ssid=%d", sad->ssid);
	else
		audit_log_format(ab, " scontext=%s", scontext);

	rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
				     &tcontext_len);
	if (rc)
		audit_log_format(ab, " tsid=%d", sad->tsid);
	else
		audit_log_format(ab, " tcontext=%s", tcontext);

	tclass = secclass_map[sad->tclass-1].name;
	audit_log_format(ab, " tclass=%s", tclass);

	if (sad->denied)
		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);

	trace_selinux_audited(sad, scontext, tcontext, tclass);
	kfree(tcontext);
	kfree(scontext);

	/* in case of invalid context report also the actual context string */
	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
					   &scontext_len);
	if (!rc && scontext) {
		if (scontext_len && scontext[scontext_len - 1] == '\0')
			scontext_len--;
		audit_log_format(ab, " srawcon=");
		audit_log_n_untrustedstring(ab, scontext, scontext_len);
		kfree(scontext);
	}

	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
					   &scontext_len);
	if (!rc && scontext) {
		if (scontext_len && scontext[scontext_len - 1] == '\0')
			scontext_len--;
		audit_log_format(ab, " trawcon=");
		audit_log_n_untrustedstring(ab, scontext, scontext_len);
		kfree(scontext);
	}
}

/* This is the slow part of avc audit with big stack footprint */
noinline int slow_avc_audit(struct selinux_state *state,
			    u32 ssid, u32 tsid, u16 tclass,
			    u32 requested, u32 audited, u32 denied, int result,
			    struct common_audit_data *a)
{
	struct common_audit_data stack_data;
	struct selinux_audit_data sad;

	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
		return -EINVAL;

	if (!a) {
		a = &stack_data;
		a->type = LSM_AUDIT_DATA_NONE;
	}

	sad.tclass = tclass;
	sad.requested = requested;
	sad.ssid = ssid;
	sad.tsid = tsid;
	sad.audited = audited;
	sad.denied = denied;
	sad.result = result;
	sad.state = state;

	a->selinux_audit_data = &sad;

	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
	return 0;
}

/**
 * avc_add_callback - Register a callback for security events.
 * @callback: callback function
 * @events: security events
 *
 * Register a callback function for events in the set @events.
 * Returns %0 on success or -%ENOMEM if insufficient memory
 * exists to add the callback.
 */
int __init avc_add_callback(int (*callback)(u32 event), u32 events)
{
	struct avc_callback_node *c;
	int rc = 0;

	c = kmalloc(sizeof(*c), GFP_KERNEL);
	if (!c) {
		rc = -ENOMEM;
		goto out;
	}

	c->callback = callback;
	c->events = events;
	c->next = avc_callbacks;
	avc_callbacks = c;
out:
	return rc;
}

/**
 * avc_update_node Update an AVC entry
 * @event : Updating event
 * @perms : Permission mask bits
 * @ssid,@tsid,@tclass : identifier of an AVC entry
 * @seqno : sequence number when decision was made
 * @xpd: extended_perms_decision to be added to the node
 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
 *
 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 * otherwise, this function updates the AVC entry. The original AVC-entry object
 * will release later by RCU.
 */
static int avc_update_node(struct selinux_avc *avc,
			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
			   u32 tsid, u16 tclass, u32 seqno,
			   struct extended_perms_decision *xpd,
			   u32 flags)
{
	int hvalue, rc = 0;
	unsigned long flag;
	struct avc_node *pos, *node, *orig = NULL;
	struct hlist_head *head;
	spinlock_t *lock;

	/*
	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
	 * then we must not add permissions to a cache entry
	 * because we will not audit the denial.  Otherwise,
	 * during the subsequent blocking retry (e.g. VFS ref walk), we
	 * will find the permissions already granted in the cache entry
	 * and won't audit anything at all, leading to silent denials in
	 * permissive mode that only appear when in enforcing mode.
	 *
	 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
	 * and selinux_inode_permission().
	 */
	if (flags & AVC_NONBLOCKING)
		return 0;

	node = avc_alloc_node(avc);
	if (!node) {
		rc = -ENOMEM;
		goto out;
	}

	/* Lock the target slot */
	hvalue = avc_hash(ssid, tsid, tclass);

	head = &avc->avc_cache.slots[hvalue];
	lock = &avc->avc_cache.slots_lock[hvalue];

	spin_lock_irqsave(lock, flag);

	hlist_for_each_entry(pos, head, list) {
		if (ssid == pos->ae.ssid &&
		    tsid == pos->ae.tsid &&
		    tclass == pos->ae.tclass &&
		    seqno == pos->ae.avd.seqno){
			orig = pos;
			break;
		}
	}

	if (!orig) {
		rc = -ENOENT;
		avc_node_kill(avc, node);
		goto out_unlock;
	}

	/*
	 * Copy and replace original node.
	 */

	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);

	if (orig->ae.xp_node) {
		rc = avc_xperms_populate(node, orig->ae.xp_node);
		if (rc) {
			avc_node_kill(avc, node);
			goto out_unlock;
		}
	}

	switch (event) {
	case AVC_CALLBACK_GRANT:
		node->ae.avd.allowed |= perms;
		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
		break;
	case AVC_CALLBACK_TRY_REVOKE:
	case AVC_CALLBACK_REVOKE:
		node->ae.avd.allowed &= ~perms;
		break;
	case AVC_CALLBACK_AUDITALLOW_ENABLE:
		node->ae.avd.auditallow |= perms;
		break;
	case AVC_CALLBACK_AUDITALLOW_DISABLE:
		node->ae.avd.auditallow &= ~perms;
		break;
	case AVC_CALLBACK_AUDITDENY_ENABLE:
		node->ae.avd.auditdeny |= perms;
		break;
	case AVC_CALLBACK_AUDITDENY_DISABLE:
		node->ae.avd.auditdeny &= ~perms;
		break;
	case AVC_CALLBACK_ADD_XPERMS:
		avc_add_xperms_decision(node, xpd);
		break;
	}
	avc_node_replace(avc, node, orig);
out_unlock:
	spin_unlock_irqrestore(lock, flag);
out:
	return rc;
}

/**
 * avc_flush - Flush the cache
 */
static void avc_flush(struct selinux_avc *avc)
{
	struct hlist_head *head;
	struct avc_node *node;
	spinlock_t *lock;
	unsigned long flag;
	int i;

	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
		head = &avc->avc_cache.slots[i];
		lock = &avc->avc_cache.slots_lock[i];

		spin_lock_irqsave(lock, flag);
		/*
		 * With preemptable RCU, the outer spinlock does not
		 * prevent RCU grace periods from ending.
		 */
		rcu_read_lock();
		hlist_for_each_entry(node, head, list)
			avc_node_delete(avc, node);
		rcu_read_unlock();
		spin_unlock_irqrestore(lock, flag);
	}
}

/**
 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 * @seqno: policy sequence number
 */
int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
{
	struct avc_callback_node *c;
	int rc = 0, tmprc;

	avc_flush(avc);

	for (c = avc_callbacks; c; c = c->next) {
		if (c->events & AVC_CALLBACK_RESET) {
			tmprc = c->callback(AVC_CALLBACK_RESET);
			/* save the first error encountered for the return
			   value and continue processing the callbacks */
			if (!rc)
				rc = tmprc;
		}
	}

	avc_latest_notif_update(avc, seqno, 0);
	return rc;
}

/*
 * Slow-path helper function for avc_has_perm_noaudit,
 * when the avc_node lookup fails. We get called with
 * the RCU read lock held, and need to return with it
 * still held, but drop if for the security compute.
 *
 * Don't inline this, since it's the slow-path and just
 * results in a bigger stack frame.
 */
static noinline
struct avc_node *avc_compute_av(struct selinux_state *state,
				u32 ssid, u32 tsid,
				u16 tclass, struct av_decision *avd,
				struct avc_xperms_node *xp_node)
{
	rcu_read_unlock();
	INIT_LIST_HEAD(&xp_node->xpd_head);
	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
	rcu_read_lock();
	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
}

static noinline int avc_denied(struct selinux_state *state,
			       u32 ssid, u32 tsid,
			       u16 tclass, u32 requested,
			       u8 driver, u8 xperm, unsigned int flags,
			       struct av_decision *avd)
{
	if (flags & AVC_STRICT)
		return -EACCES;

	if (enforcing_enabled(state) &&
	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
		return -EACCES;

	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
	return 0;
}

/*
 * The avc extended permissions logic adds an additional 256 bits of
 * permissions to an avc node when extended permissions for that node are
 * specified in the avtab. If the additional 256 permissions is not adequate,
 * as-is the case with ioctls, then multiple may be chained together and the
 * driver field is used to specify which set contains the permission.
 */
int avc_has_extended_perms(struct selinux_state *state,
			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
			   u8 driver, u8 xperm, struct common_audit_data *ad)
{
	struct avc_node *node;
	struct av_decision avd;
	u32 denied;
	struct extended_perms_decision local_xpd;
	struct extended_perms_decision *xpd = NULL;
	struct extended_perms_data allowed;
	struct extended_perms_data auditallow;
	struct extended_perms_data dontaudit;
	struct avc_xperms_node local_xp_node;
	struct avc_xperms_node *xp_node;
	int rc = 0, rc2;

	xp_node = &local_xp_node;
	if (WARN_ON(!requested))
		return -EACCES;

	rcu_read_lock();

	node = avc_lookup(state->avc, ssid, tsid, tclass);
	if (unlikely(!node)) {
		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
	} else {
		memcpy(&avd, &node->ae.avd, sizeof(avd));
		xp_node = node->ae.xp_node;
	}
	/* if extended permissions are not defined, only consider av_decision */
	if (!xp_node || !xp_node->xp.len)
		goto decision;

	local_xpd.allowed = &allowed;
	local_xpd.auditallow = &auditallow;
	local_xpd.dontaudit = &dontaudit;

	xpd = avc_xperms_decision_lookup(driver, xp_node);
	if (unlikely(!xpd)) {
		/*
		 * Compute the extended_perms_decision only if the driver
		 * is flagged
		 */
		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
			avd.allowed &= ~requested;
			goto decision;
		}
		rcu_read_unlock();
		security_compute_xperms_decision(state, ssid, tsid, tclass,
						 driver, &local_xpd);
		rcu_read_lock();
		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
				driver, xperm, ssid, tsid, tclass, avd.seqno,
				&local_xpd, 0);
	} else {
		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
	}
	xpd = &local_xpd;

	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
		avd.allowed &= ~requested;

decision:
	denied = requested & ~(avd.allowed);
	if (unlikely(denied))
		rc = avc_denied(state, ssid, tsid, tclass, requested,
				driver, xperm, AVC_EXTENDED_PERMS, &avd);

	rcu_read_unlock();

	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
			&avd, xpd, xperm, rc, ad);
	if (rc2)
		return rc2;
	return rc;
}

/**
 * avc_has_perm_noaudit - Check permissions but perform no auditing.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @requested: requested permissions, interpreted based on @tclass
 * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
 * @avd: access vector decisions
 *
 * Check the AVC to determine whether the @requested permissions are granted
 * for the SID pair (@ssid, @tsid), interpreting the permissions
 * based on @tclass, and call the security server on a cache miss to obtain
 * a new decision and add it to the cache.  Return a copy of the decisions
 * in @avd.  Return %0 if all @requested permissions are granted,
 * -%EACCES if any permissions are denied, or another -errno upon
 * other errors.  This function is typically called by avc_has_perm(),
 * but may also be called directly to separate permission checking from
 * auditing, e.g. in cases where a lock must be held for the check but
 * should be released for the auditing.
 */
inline int avc_has_perm_noaudit(struct selinux_state *state,
				u32 ssid, u32 tsid,
				u16 tclass, u32 requested,
				unsigned int flags,
				struct av_decision *avd)
{
	struct avc_node *node;
	struct avc_xperms_node xp_node;
	int rc = 0;
	u32 denied;

	if (WARN_ON(!requested))
		return -EACCES;

	rcu_read_lock();

	node = avc_lookup(state->avc, ssid, tsid, tclass);
	if (unlikely(!node))
		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
	else
		memcpy(avd, &node->ae.avd, sizeof(*avd));

	denied = requested & ~(avd->allowed);
	if (unlikely(denied))
		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
				flags, avd);

	rcu_read_unlock();
	return rc;
}

/**
 * avc_has_perm - Check permissions and perform any appropriate auditing.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @requested: requested permissions, interpreted based on @tclass
 * @auditdata: auxiliary audit data
 *
 * Check the AVC to determine whether the @requested permissions are granted
 * for the SID pair (@ssid, @tsid), interpreting the permissions
 * based on @tclass, and call the security server on a cache miss to obtain
 * a new decision and add it to the cache.  Audit the granting or denial of
 * permissions in accordance with the policy.  Return %0 if all @requested
 * permissions are granted, -%EACCES if any permissions are denied, or
 * another -errno upon other errors.
 */
int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
		 u32 requested, struct common_audit_data *auditdata)
{
	struct av_decision avd;
	int rc, rc2;

	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
				  &avd);

	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
			auditdata, 0);
	if (rc2)
		return rc2;
	return rc;
}

int avc_has_perm_flags(struct selinux_state *state,
		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
		       struct common_audit_data *auditdata,
		       int flags)
{
	struct av_decision avd;
	int rc, rc2;

	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
				  &avd);

	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
			auditdata, flags);
	if (rc2)
		return rc2;
	return rc;
}

u32 avc_policy_seqno(struct selinux_state *state)
{
	return state->avc->avc_cache.latest_notif;
}

void avc_disable(void)
{
	/*
	 * If you are looking at this because you have realized that we are
	 * not destroying the avc_node_cachep it might be easy to fix, but
	 * I don't know the memory barrier semantics well enough to know.  It's
	 * possible that some other task dereferenced security_ops when
	 * it still pointed to selinux operations.  If that is the case it's
	 * possible that it is about to use the avc and is about to need the
	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
	 * the cache and get that memory back.
	 */
	if (avc_node_cachep) {
		avc_flush(selinux_state.avc);
		/* kmem_cache_destroy(avc_node_cachep); */
	}
}