summaryrefslogtreecommitdiffstats
path: root/sound/firewire/fireface/ff-protocol-former.c
blob: d2cc9961b973da71c6f2d5bec865505be88b61c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
// SPDX-License-Identifier: GPL-2.0
// ff-protocol-former.c - a part of driver for RME Fireface series
//
// Copyright (c) 2019 Takashi Sakamoto

#include <linux/delay.h>

#include "ff.h"

#define FORMER_REG_SYNC_STATUS		0x0000801c0000ull
/* For block write request. */
#define FORMER_REG_FETCH_PCM_FRAMES	0x0000801c0000ull
#define FORMER_REG_CLOCK_CONFIG		0x0000801c0004ull

static int parse_clock_bits(u32 data, unsigned int *rate,
			    enum snd_ff_clock_src *src)
{
	static const struct {
		unsigned int rate;
		u32 mask;
	} *rate_entry, rate_entries[] = {
		{  32000, 0x00000002, },
		{  44100, 0x00000000, },
		{  48000, 0x00000006, },
		{  64000, 0x0000000a, },
		{  88200, 0x00000008, },
		{  96000, 0x0000000e, },
		{ 128000, 0x00000012, },
		{ 176400, 0x00000010, },
		{ 192000, 0x00000016, },
	};
	static const struct {
		enum snd_ff_clock_src src;
		u32 mask;
	} *clk_entry, clk_entries[] = {
		{ SND_FF_CLOCK_SRC_ADAT1,	0x00000000, },
		{ SND_FF_CLOCK_SRC_ADAT2,	0x00000400, },
		{ SND_FF_CLOCK_SRC_SPDIF,	0x00000c00, },
		{ SND_FF_CLOCK_SRC_WORD,	0x00001000, },
		{ SND_FF_CLOCK_SRC_LTC,		0x00001800, },
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
		rate_entry = rate_entries + i;
		if ((data & 0x0000001e) == rate_entry->mask) {
			*rate = rate_entry->rate;
			break;
		}
	}
	if (i == ARRAY_SIZE(rate_entries))
		return -EIO;

	if (data & 0x00000001) {
		*src = SND_FF_CLOCK_SRC_INTERNAL;
	} else {
		for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
			clk_entry = clk_entries + i;
			if ((data & 0x00001c00) == clk_entry->mask) {
				*src = clk_entry->src;
				break;
			}
		}
		if (i == ARRAY_SIZE(clk_entries))
			return -EIO;
	}

	return 0;
}

static int former_get_clock(struct snd_ff *ff, unsigned int *rate,
			    enum snd_ff_clock_src *src)
{
	__le32 reg;
	u32 data;
	int err;

	err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
				 FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;
	data = le32_to_cpu(reg);

	return parse_clock_bits(data, rate, src);
}

static int former_switch_fetching_mode(struct snd_ff *ff, bool enable)
{
	unsigned int count;
	__le32 *reg;
	int i;
	int err;

	count = 0;
	for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i)
		count = max(count, ff->spec->pcm_playback_channels[i]);

	reg = kcalloc(count, sizeof(__le32), GFP_KERNEL);
	if (!reg)
		return -ENOMEM;

	if (!enable) {
		/*
		 * Each quadlet is corresponding to data channels in a data
		 * blocks in reverse order. Precisely, quadlets for available
		 * data channels should be enabled. Here, I take second best
		 * to fetch PCM frames from all of data channels regardless of
		 * stf.
		 */
		for (i = 0; i < count; ++i)
			reg[i] = cpu_to_le32(0x00000001);
	}

	err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST,
				 FORMER_REG_FETCH_PCM_FRAMES, reg,
				 sizeof(__le32) * count, 0);
	kfree(reg);
	return err;
}

static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer)
{
	__le32 reg;
	u32 data;
	unsigned int rate;
	enum snd_ff_clock_src src;
	const char *label;
	int err;

	err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
				 FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
	if (err < 0)
		return;
	data = le32_to_cpu(reg);

	snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n",
		    (data & 0x00000020) ? "Professional" : "Consumer",
		    (data & 0x00000040) ? "on" : "off");

	snd_iprintf(buffer, "Optical output interface format: %s\n",
		    (data & 0x00000100) ? "S/PDIF" : "ADAT");

	snd_iprintf(buffer, "Word output single speed: %s\n",
		    (data & 0x00002000) ? "on" : "off");

	snd_iprintf(buffer, "S/PDIF input interface: %s\n",
		    (data & 0x00000200) ? "Optical" : "Coaxial");

	err = parse_clock_bits(data, &rate, &src);
	if (err < 0)
		return;
	label = snd_ff_proc_get_clk_label(src);
	if (!label)
		return;

	snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label);
}

static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
{
	static const struct {
		char *const label;
		u32 locked_mask;
		u32 synced_mask;
	} *clk_entry, clk_entries[] = {
		{ "WDClk",	0x40000000, 0x20000000, },
		{ "S/PDIF",	0x00080000, 0x00040000, },
		{ "ADAT1",	0x00000400, 0x00001000, },
		{ "ADAT2",	0x00000800, 0x00002000, },
	};
	static const struct {
		char *const label;
		u32 mask;
	} *referred_entry, referred_entries[] = {
		{ "ADAT1",	0x00000000, },
		{ "ADAT2",	0x00400000, },
		{ "S/PDIF",	0x00c00000, },
		{ "WDclk",	0x01000000, },
		{ "TCO",	0x01400000, },
	};
	static const struct {
		unsigned int rate;
		u32 mask;
	} *rate_entry, rate_entries[] = {
		{ 32000,	0x02000000, },
		{ 44100,	0x04000000, },
		{ 48000,	0x06000000, },
		{ 64000,	0x08000000, },
		{ 88200,	0x0a000000, },
		{ 96000,	0x0c000000, },
		{ 128000,	0x0e000000, },
		{ 176400,	0x10000000, },
		{ 192000,	0x12000000, },
	};
	__le32 reg[2];
	u32 data[2];
	int i;
	int err;

	err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
				 FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0);
	if (err < 0)
		return;
	data[0] = le32_to_cpu(reg[0]);
	data[1] = le32_to_cpu(reg[1]);

	snd_iprintf(buffer, "External source detection:\n");

	for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
		const char *state;

		clk_entry = clk_entries + i;
		if (data[0] & clk_entry->locked_mask) {
			if (data[0] & clk_entry->synced_mask)
				state = "sync";
			else
				state = "lock";
		} else {
			state = "none";
		}

		snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state);
	}

	snd_iprintf(buffer, "Referred clock:\n");

	if (data[1] & 0x00000001) {
		snd_iprintf(buffer, "Internal\n");
	} else {
		unsigned int rate;
		const char *label;

		for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) {
			referred_entry = referred_entries + i;
			if ((data[0] & 0x1e0000) == referred_entry->mask) {
				label = referred_entry->label;
				break;
			}
		}
		if (i == ARRAY_SIZE(referred_entries))
			label = "none";

		for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
			rate_entry = rate_entries + i;
			if ((data[0] & 0x1e000000) == rate_entry->mask) {
				rate = rate_entry->rate;
				break;
			}
		}
		if (i == ARRAY_SIZE(rate_entries))
			rate = 0;

		snd_iprintf(buffer, "%s %d\n", label, rate);
	}
}

static void former_dump_status(struct snd_ff *ff,
			       struct snd_info_buffer *buffer)
{
	dump_clock_config(ff, buffer);
	dump_sync_status(ff, buffer);
}

static int former_fill_midi_msg(struct snd_ff *ff,
				struct snd_rawmidi_substream *substream,
				unsigned int port)
{
	u8 *buf = (u8 *)ff->msg_buf[port];
	int len;
	int i;

	len = snd_rawmidi_transmit_peek(substream, buf,
					SND_FF_MAXIMIM_MIDI_QUADS);
	if (len <= 0)
		return len;

	// One quadlet includes one byte.
	for (i = len - 1; i >= 0; --i)
		ff->msg_buf[port][i] = cpu_to_le32(buf[i]);
	ff->rx_bytes[port] = len;

	return len;
}

#define FF800_STF		0x0000fc88f000
#define FF800_RX_PACKET_FORMAT	0x0000fc88f004
#define FF800_ALLOC_TX_STREAM	0x0000fc88f008
#define FF800_ISOC_COMM_START	0x0000fc88f00c
#define   FF800_TX_S800_FLAG	0x00000800
#define FF800_ISOC_COMM_STOP	0x0000fc88f010

#define FF800_TX_PACKET_ISOC_CH	0x0000801c0008

static int allocate_tx_resources(struct snd_ff *ff)
{
	__le32 reg;
	unsigned int count;
	unsigned int tx_isoc_channel;
	int err;

	reg = cpu_to_le32(ff->tx_stream.data_block_quadlets);
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF800_ALLOC_TX_STREAM, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	// Wait till the format of tx packet is available.
	count = 0;
	while (count++ < 10) {
		u32 data;
		err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
				FF800_TX_PACKET_ISOC_CH, &reg, sizeof(reg), 0);
		if (err < 0)
			return err;

		data = le32_to_cpu(reg);
		if (data != 0xffffffff) {
			tx_isoc_channel = data;
			break;
		}

		msleep(50);
	}
	if (count >= 10)
		return -ETIMEDOUT;

	// NOTE: this is a makeshift to start OHCI 1394 IR context in the
	// channel. On the other hand, 'struct fw_iso_resources.allocated' is
	// not true and it's not deallocated at stop.
	ff->tx_resources.channel = tx_isoc_channel;

	return 0;
}

static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate)
{
	u32 data;
	__le32 reg;
	int err;

	reg = cpu_to_le32(rate);
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF800_STF, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	// If starting isochronous communication immediately, change of STF has
	// no effect. In this case, the communication runs based on former STF.
	// Let's sleep for a bit.
	msleep(100);

	// Controllers should allocate isochronous resources for rx stream.
	err = fw_iso_resources_allocate(&ff->rx_resources,
				amdtp_stream_get_max_payload(&ff->rx_stream),
				fw_parent_device(ff->unit)->max_speed);
	if (err < 0)
		return err;

	// Set isochronous channel and the number of quadlets of rx packets.
	// This should be done before the allocation of tx resources to avoid
	// periodical noise.
	data = ff->rx_stream.data_block_quadlets << 3;
	data = (data << 8) | ff->rx_resources.channel;
	reg = cpu_to_le32(data);
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF800_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	return allocate_tx_resources(ff);
}

static int ff800_begin_session(struct snd_ff *ff, unsigned int rate)
{
	unsigned int generation = ff->rx_resources.generation;
	__le32 reg;

	if (generation != fw_parent_device(ff->unit)->card->generation) {
		int err = fw_iso_resources_update(&ff->rx_resources);
		if (err < 0)
			return err;
	}

	reg = cpu_to_le32(0x80000000);
	reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets);
	if (fw_parent_device(ff->unit)->max_speed == SCODE_800)
		reg |= cpu_to_le32(FF800_TX_S800_FLAG);
	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF800_ISOC_COMM_START, &reg, sizeof(reg), 0);
}

static void ff800_finish_session(struct snd_ff *ff)
{
	__le32 reg;

	reg = cpu_to_le32(0x80000000);
	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
			   FF800_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
}

// Fireface 800 doesn't allow drivers to register lower 4 bytes of destination
// address.
// A write transaction to clear registered higher 4 bytes of destination address
// has an effect to suppress asynchronous transaction from device.
static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
				  size_t length, u32 tstamp)
{
	int i;

	for (i = 0; i < length / 4; i++) {
		u8 byte = le32_to_cpu(buf[i]) & 0xff;
		struct snd_rawmidi_substream *substream;

		substream = READ_ONCE(ff->tx_midi_substreams[0]);
		if (substream)
			snd_rawmidi_receive(substream, &byte, 1);
	}
}

const struct snd_ff_protocol snd_ff_protocol_ff800 = {
	.handle_msg		= ff800_handle_midi_msg,
	.fill_midi_msg		= former_fill_midi_msg,
	.get_clock		= former_get_clock,
	.switch_fetching_mode	= former_switch_fetching_mode,
	.allocate_resources	= ff800_allocate_resources,
	.begin_session		= ff800_begin_session,
	.finish_session		= ff800_finish_session,
	.dump_status		= former_dump_status,
};

#define FF400_STF		0x000080100500ull
#define FF400_RX_PACKET_FORMAT	0x000080100504ull
#define FF400_ISOC_COMM_START	0x000080100508ull
#define FF400_TX_PACKET_FORMAT	0x00008010050cull
#define FF400_ISOC_COMM_STOP	0x000080100510ull

// Fireface 400 manages isochronous channel number in 3 bit field. Therefore,
// we can allocate between 0 and 7 channel.
static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate)
{
	__le32 reg;
	enum snd_ff_stream_mode mode;
	int i;
	int err;

	// Check whether the given value is supported or not.
	for (i = 0; i < CIP_SFC_COUNT; i++) {
		if (amdtp_rate_table[i] == rate)
			break;
	}
	if (i >= CIP_SFC_COUNT)
		return -EINVAL;

	// Set the number of data blocks transferred in a second.
	reg = cpu_to_le32(rate);
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF400_STF, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	msleep(100);

	err = snd_ff_stream_get_multiplier_mode(i, &mode);
	if (err < 0)
		return err;

	// Keep resources for in-stream.
	ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
	err = fw_iso_resources_allocate(&ff->tx_resources,
			amdtp_stream_get_max_payload(&ff->tx_stream),
			fw_parent_device(ff->unit)->max_speed);
	if (err < 0)
		return err;

	// Keep resources for out-stream.
	ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
	err = fw_iso_resources_allocate(&ff->rx_resources,
			amdtp_stream_get_max_payload(&ff->rx_stream),
			fw_parent_device(ff->unit)->max_speed);
	if (err < 0)
		fw_iso_resources_free(&ff->tx_resources);

	return err;
}

static int ff400_begin_session(struct snd_ff *ff, unsigned int rate)
{
	unsigned int generation = ff->rx_resources.generation;
	__le32 reg;
	int err;

	if (generation != fw_parent_device(ff->unit)->card->generation) {
		err = fw_iso_resources_update(&ff->tx_resources);
		if (err < 0)
			return err;

		err = fw_iso_resources_update(&ff->rx_resources);
		if (err < 0)
			return err;
	}

	// Set isochronous channel and the number of quadlets of received
	// packets.
	reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) |
			  ff->rx_resources.channel);
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF400_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	// Set isochronous channel and the number of quadlets of transmitted
	// packet.
	// TODO: investigate the purpose of this 0x80.
	reg = cpu_to_le32((0x80 << 24) |
			  (ff->tx_resources.channel << 5) |
			  (ff->tx_stream.data_block_quadlets));
	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF400_TX_PACKET_FORMAT, &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	// Allow to transmit packets.
	reg = cpu_to_le32(0x00000001);
	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
				 FF400_ISOC_COMM_START, &reg, sizeof(reg), 0);
}

static void ff400_finish_session(struct snd_ff *ff)
{
	__le32 reg;

	reg = cpu_to_le32(0x80000000);
	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
			   FF400_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
}

static void parse_midi_msg(struct snd_ff *ff, u32 quad, unsigned int port)
{
	struct snd_rawmidi_substream *substream = READ_ONCE(ff->tx_midi_substreams[port]);

	if (substream != NULL) {
		u8 byte = (quad >> (16 * port)) & 0x000000ff;

		snd_rawmidi_receive(substream, &byte, 1);
	}
}

#define FF400_MSG_FLAG_IS_MIDI_PORT_0		0x00000100
#define  FF400_MSG_MASK_MIDI_PORT_0		0x000000ff
#define FF400_MSG_FLAG_IS_MIDI_PORT_1		0x01000000
#define  FF400_MSG_MASK_MIDI_PORT_1		0x00ff0000

// For Fireface 400, lower 4 bytes of destination address is configured by bit
// flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can
// select one of 4 options:
//
// bit flags: offset of destination address
//  - 0x04000000: 0x'....'....'0000'0000
//  - 0x08000000: 0x'....'....'0000'0080
//  - 0x10000000: 0x'....'....'0000'0100
//  - 0x20000000: 0x'....'....'0000'0180
//
// Drivers can suppress the device to transfer asynchronous transactions by
// using below 2 bits.
//  - 0x01000000: suppress transmission
//  - 0x02000000: suppress transmission
//
// Actually, the register is write-only and includes the other options such as
// input attenuation. This driver allocates destination address with '0000'0000
// in its lower offset and expects userspace application to configure the
// register for it.
static void ff400_handle_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
			     size_t length, u32 tstamp)
{
	int i;

	for (i = 0; i < length / 4; i++) {
		u32 quad = le32_to_cpu(buf[i]);

		if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_0)
			parse_midi_msg(ff, quad, 0);
		else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_1)
			parse_midi_msg(ff, quad, 1);
	}
}

const struct snd_ff_protocol snd_ff_protocol_ff400 = {
	.handle_msg		= ff400_handle_msg,
	.fill_midi_msg		= former_fill_midi_msg,
	.get_clock		= former_get_clock,
	.switch_fetching_mode	= former_switch_fetching_mode,
	.allocate_resources	= ff400_allocate_resources,
	.begin_session		= ff400_begin_session,
	.finish_session		= ff400_finish_session,
	.dump_status		= former_dump_status,
};