1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright(c) 2021-2022 Intel Corporation
//
// Author: Cezary Rojewski <cezary.rojewski@intel.com>
//
#include <linux/pci.h>
#include <sound/hda_register.h>
#include <sound/hdaudio_ext.h>
#include "cldma.h"
#include "registers.h"
/* Stream Registers */
#define AZX_CL_SD_BASE 0x80
#define AZX_SD_CTL_STRM_MASK GENMASK(23, 20)
#define AZX_SD_CTL_STRM(s) (((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK)
#define AZX_SD_BDLPL_BDLPLBA_MASK GENMASK(31, 7)
#define AZX_SD_BDLPL_BDLPLBA(lb) ((lb) & AZX_SD_BDLPL_BDLPLBA_MASK)
/* Software Position Based FIFO Capability Registers */
#define AZX_CL_SPBFCS 0x20
#define AZX_REG_CL_SPBFCTL (AZX_CL_SPBFCS + 0x4)
#define AZX_REG_CL_SD_SPIB (AZX_CL_SPBFCS + 0x8)
#define AVS_CL_OP_INTERVAL_US 3
#define AVS_CL_OP_TIMEOUT_US 300
#define AVS_CL_IOC_TIMEOUT_MS 300
#define AVS_CL_STREAM_INDEX 0
struct hda_cldma {
struct device *dev;
struct hdac_bus *bus;
void __iomem *dsp_ba;
unsigned int buffer_size;
unsigned int num_periods;
unsigned char stream_tag;
void __iomem *sd_addr;
struct snd_dma_buffer dmab_data;
struct snd_dma_buffer dmab_bdl;
struct delayed_work memcpy_work;
struct completion completion;
/* runtime */
void *position;
unsigned int remaining;
unsigned int sd_status;
};
static void cldma_memcpy_work(struct work_struct *work);
struct hda_cldma code_loader = {
.stream_tag = AVS_CL_STREAM_INDEX + 1,
.memcpy_work = __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0),
.completion = COMPLETION_INITIALIZER(code_loader.completion),
};
void hda_cldma_fill(struct hda_cldma *cl)
{
unsigned int size, offset;
if (cl->remaining > cl->buffer_size)
size = cl->buffer_size;
else
size = cl->remaining;
offset = snd_hdac_stream_readl(cl, CL_SD_SPIB);
if (offset + size > cl->buffer_size) {
unsigned int ss;
ss = cl->buffer_size - offset;
memcpy(cl->dmab_data.area + offset, cl->position, ss);
offset = 0;
size -= ss;
cl->position += ss;
cl->remaining -= ss;
}
memcpy(cl->dmab_data.area + offset, cl->position, size);
cl->position += size;
cl->remaining -= size;
snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size);
}
static void cldma_memcpy_work(struct work_struct *work)
{
struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work);
int ret;
ret = hda_cldma_start(cl);
if (ret < 0) {
dev_err(cl->dev, "cldma set RUN failed: %d\n", ret);
return;
}
while (true) {
ret = wait_for_completion_timeout(&cl->completion,
msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS));
if (!ret) {
dev_err(cl->dev, "cldma IOC timeout\n");
break;
}
if (!(cl->sd_status & SD_INT_COMPLETE)) {
dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n",
cl->sd_status);
break;
}
if (!cl->remaining)
break;
reinit_completion(&cl->completion);
hda_cldma_fill(cl);
/* enable CLDMA interrupt */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
AVS_ADSP_ADSPIC_CLDMA);
}
}
void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay)
{
if (!cl->remaining)
return;
reinit_completion(&cl->completion);
/* fill buffer with the first chunk before scheduling run */
hda_cldma_fill(cl);
schedule_delayed_work(&cl->memcpy_work, start_delay);
}
int hda_cldma_start(struct hda_cldma *cl)
{
unsigned int reg;
/* enable interrupts */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
AVS_ADSP_ADSPIC_CLDMA);
snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START,
SD_INT_MASK | SD_CTL_DMA_START);
/* await DMA engine start */
return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START,
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
}
int hda_cldma_stop(struct hda_cldma *cl)
{
unsigned int reg;
int ret;
/* disable interrupts */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0);
/* await DMA engine stop */
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
cancel_delayed_work_sync(&cl->memcpy_work);
return ret;
}
int hda_cldma_reset(struct hda_cldma *cl)
{
unsigned int reg;
int ret;
ret = hda_cldma_stop(cl);
if (ret < 0) {
dev_err(cl->dev, "cldma stop failed: %d\n", ret);
return ret;
}
snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET);
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
if (ret < 0) {
dev_err(cl->dev, "cldma set SRST failed: %d\n", ret);
return ret;
}
snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0);
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
if (ret < 0) {
dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret);
return ret;
}
return 0;
}
void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size)
{
/* setup runtime */
cl->position = data;
cl->remaining = size;
}
static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size)
{
struct snd_dma_buffer *dmab = &cl->dmab_data;
__le32 *bdl = (__le32 *)cl->dmab_bdl.area;
int remaining = cl->buffer_size;
int offset = 0;
cl->num_periods = 0;
while (remaining > 0) {
phys_addr_t addr;
int chunk;
addr = snd_sgbuf_get_addr(dmab, offset);
bdl[0] = cpu_to_le32(lower_32_bits(addr));
bdl[1] = cpu_to_le32(upper_32_bits(addr));
chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size);
bdl[2] = cpu_to_le32(chunk);
remaining -= chunk;
/* set IOC only for the last entry */
bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01);
bdl += 4;
offset += chunk;
cl->num_periods++;
}
}
void hda_cldma_setup(struct hda_cldma *cl)
{
dma_addr_t bdl_addr = cl->dmab_bdl.addr;
cldma_setup_bdle(cl, cl->buffer_size / 2);
snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr)));
snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr));
snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size);
snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1);
snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl));
/* enable spib */
snd_hdac_stream_writel(cl, CL_SPBFCTL, 1);
}
void hda_cldma_interrupt(struct hda_cldma *cl)
{
/* disable CLDMA interrupt */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
cl->sd_status = snd_hdac_stream_readb(cl, SD_STS);
dev_dbg(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status);
complete(&cl->completion);
}
int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba,
unsigned int buffer_size)
{
int ret;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data);
if (ret < 0)
return ret;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl);
if (ret < 0) {
snd_dma_free_pages(&cl->dmab_data);
return ret;
}
cl->dev = bus->dev;
cl->bus = bus;
cl->dsp_ba = dsp_ba;
cl->buffer_size = buffer_size;
cl->sd_addr = dsp_ba + AZX_CL_SD_BASE;
return 0;
}
void hda_cldma_free(struct hda_cldma *cl)
{
snd_dma_free_pages(&cl->dmab_data);
snd_dma_free_pages(&cl->dmab_bdl);
}
|