summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/bpf/progs/iters.c
blob: be16143ae292f4a9de9f9b9f5e34f98c1720d984 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */

#include <stdbool.h>
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

static volatile int zero = 0;

int my_pid;
int arr[256];
int small_arr[16] SEC(".data.small_arr");

#ifdef REAL_TEST
#define MY_PID_GUARD() if (my_pid != (bpf_get_current_pid_tgid() >> 32)) return 0
#else
#define MY_PID_GUARD() ({ })
#endif

SEC("?raw_tp")
__failure __msg("math between map_value pointer and register with unbounded min value is not allowed")
int iter_err_unsafe_c_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, i = zero; /* obscure initial value of i */

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 1000);
	while ((v = bpf_iter_num_next(&it))) {
		i++;
	}
	bpf_iter_num_destroy(&it);

	small_arr[i] = 123; /* invalid */

	return 0;
}

SEC("?raw_tp")
__failure __msg("unbounded memory access")
int iter_err_unsafe_asm_loop(const void *ctx)
{
	struct bpf_iter_num it;

	MY_PID_GUARD();

	asm volatile (
		"r6 = %[zero];" /* iteration counter */
		"r1 = %[it];" /* iterator state */
		"r2 = 0;"
		"r3 = 1000;"
		"r4 = 1;"
		"call %[bpf_iter_num_new];"
	"loop:"
		"r1 = %[it];"
		"call %[bpf_iter_num_next];"
		"if r0 == 0 goto out;"
		"r6 += 1;"
		"goto loop;"
	"out:"
		"r1 = %[it];"
		"call %[bpf_iter_num_destroy];"
		"r1 = %[small_arr];"
		"r2 = r6;"
		"r2 <<= 2;"
		"r1 += r2;"
		"*(u32 *)(r1 + 0) = r6;" /* invalid */
		:
		: [it]"r"(&it),
		  [small_arr]"p"(small_arr),
		  [zero]"p"(zero),
		  __imm(bpf_iter_num_new),
		  __imm(bpf_iter_num_next),
		  __imm(bpf_iter_num_destroy)
		: __clobber_common, "r6"
	);

	return 0;
}

SEC("raw_tp")
__success
int iter_while_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 3);
	while ((v = bpf_iter_num_next(&it))) {
		bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
	}
	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_while_loop_auto_cleanup(const void *ctx)
{
	__attribute__((cleanup(bpf_iter_num_destroy))) struct bpf_iter_num it;
	int *v;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 3);
	while ((v = bpf_iter_num_next(&it))) {
		bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
	}
	/* (!) no explicit bpf_iter_num_destroy() */

	return 0;
}

SEC("raw_tp")
__success
int iter_for_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 5, 10);
	for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
		bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
	}
	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_bpf_for_each_macro(const void *ctx)
{
	int *v;

	MY_PID_GUARD();

	bpf_for_each(num, v, 5, 10) {
		bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
	}

	return 0;
}

SEC("raw_tp")
__success
int iter_bpf_for_macro(const void *ctx)
{
	int i;

	MY_PID_GUARD();

	bpf_for(i, 5, 10) {
		bpf_printk("ITER_BASIC: E2 VAL: v=%d", i);
	}

	return 0;
}

SEC("raw_tp")
__success
int iter_pragma_unroll_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, i;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 2);
#pragma nounroll
	for (i = 0; i < 3; i++) {
		v = bpf_iter_num_next(&it);
		bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
	}
	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_manual_unroll_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 100, 200);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_multiple_sequential_loops(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, i;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 3);
	while ((v = bpf_iter_num_next(&it))) {
		bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
	}
	bpf_iter_num_destroy(&it);

	bpf_iter_num_new(&it, 5, 10);
	for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
		bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
	}
	bpf_iter_num_destroy(&it);

	bpf_iter_num_new(&it, 0, 2);
#pragma nounroll
	for (i = 0; i < 3; i++) {
		v = bpf_iter_num_next(&it);
		bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
	}
	bpf_iter_num_destroy(&it);

	bpf_iter_num_new(&it, 100, 200);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
	v = bpf_iter_num_next(&it);
	bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_limit_cond_break_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, i = 0, sum = 0;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 10);
	while ((v = bpf_iter_num_next(&it))) {
		bpf_printk("ITER_SIMPLE: i=%d v=%d", i, *v);
		sum += *v;

		i++;
		if (i > 3)
			break;
	}
	bpf_iter_num_destroy(&it);

	bpf_printk("ITER_SIMPLE: sum=%d\n", sum);

	return 0;
}

SEC("raw_tp")
__success
int iter_obfuscate_counter(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, sum = 0;
	/* Make i's initial value unknowable for verifier to prevent it from
	 * pruning if/else branch inside the loop body and marking i as precise.
	 */
	int i = zero;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 10);
	while ((v = bpf_iter_num_next(&it))) {
		int x;

		i += 1;

		/* If we initialized i as `int i = 0;` above, verifier would
		 * track that i becomes 1 on first iteration after increment
		 * above, and here verifier would eagerly prune else branch
		 * and mark i as precise, ruining open-coded iterator logic
		 * completely, as each next iteration would have a different
		 * *precise* value of i, and thus there would be no
		 * convergence of state. This would result in reaching maximum
		 * instruction limit, no matter what the limit is.
		 */
		if (i == 1)
			x = 123;
		else
			x = i * 3 + 1;

		bpf_printk("ITER_OBFUSCATE_COUNTER: i=%d v=%d x=%d", i, *v, x);

		sum += x;
	}
	bpf_iter_num_destroy(&it);

	bpf_printk("ITER_OBFUSCATE_COUNTER: sum=%d\n", sum);

	return 0;
}

SEC("raw_tp")
__success
int iter_search_loop(const void *ctx)
{
	struct bpf_iter_num it;
	int *v, *elem = NULL;
	bool found = false;

	MY_PID_GUARD();

	bpf_iter_num_new(&it, 0, 10);

	while ((v = bpf_iter_num_next(&it))) {
		bpf_printk("ITER_SEARCH_LOOP: v=%d", *v);

		if (*v == 2) {
			found = true;
			elem = v;
			barrier_var(elem);
		}
	}

	/* should fail to verify if bpf_iter_num_destroy() is here */

	if (found)
		/* here found element will be wrong, we should have copied
		 * value to a variable, but here we want to make sure we can
		 * access memory after the loop anyways
		 */
		bpf_printk("ITER_SEARCH_LOOP: FOUND IT = %d!\n", *elem);
	else
		bpf_printk("ITER_SEARCH_LOOP: NOT FOUND IT!\n");

	bpf_iter_num_destroy(&it);

	return 0;
}

SEC("raw_tp")
__success
int iter_array_fill(const void *ctx)
{
	int sum, i;

	MY_PID_GUARD();

	bpf_for(i, 0, ARRAY_SIZE(arr)) {
		arr[i] = i * 2;
	}

	sum = 0;
	bpf_for(i, 0, ARRAY_SIZE(arr)) {
		sum += arr[i];
	}

	bpf_printk("ITER_ARRAY_FILL: sum=%d (should be %d)\n", sum, 255 * 256);

	return 0;
}

static int arr2d[4][5];
static int arr2d_row_sums[4];
static int arr2d_col_sums[5];

SEC("raw_tp")
__success
int iter_nested_iters(const void *ctx)
{
	int sum, row, col;

	MY_PID_GUARD();

	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		bpf_for( col, 0, ARRAY_SIZE(arr2d[0])) {
			arr2d[row][col] = row * col;
		}
	}

	/* zero-initialize sums */
	sum = 0;
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		arr2d_row_sums[row] = 0;
	}
	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		arr2d_col_sums[col] = 0;
	}

	/* calculate sums */
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
			sum += arr2d[row][col];
			arr2d_row_sums[row] += arr2d[row][col];
			arr2d_col_sums[col] += arr2d[row][col];
		}
	}

	bpf_printk("ITER_NESTED_ITERS: total sum=%d", sum);
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		bpf_printk("ITER_NESTED_ITERS: row #%d sum=%d", row, arr2d_row_sums[row]);
	}
	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		bpf_printk("ITER_NESTED_ITERS: col #%d sum=%d%s",
			   col, arr2d_col_sums[col],
			   col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
	}

	return 0;
}

SEC("raw_tp")
__success
int iter_nested_deeply_iters(const void *ctx)
{
	int sum = 0;

	MY_PID_GUARD();

	bpf_repeat(10) {
		bpf_repeat(10) {
			bpf_repeat(10) {
				bpf_repeat(10) {
					bpf_repeat(10) {
						sum += 1;
					}
				}
			}
		}
		/* validate that we can break from inside bpf_repeat() */
		break;
	}

	return sum;
}

static __noinline void fill_inner_dimension(int row)
{
	int col;

	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		arr2d[row][col] = row * col;
	}
}

static __noinline int sum_inner_dimension(int row)
{
	int sum = 0, col;

	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		sum += arr2d[row][col];
		arr2d_row_sums[row] += arr2d[row][col];
		arr2d_col_sums[col] += arr2d[row][col];
	}

	return sum;
}

SEC("raw_tp")
__success
int iter_subprog_iters(const void *ctx)
{
	int sum, row, col;

	MY_PID_GUARD();

	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		fill_inner_dimension(row);
	}

	/* zero-initialize sums */
	sum = 0;
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		arr2d_row_sums[row] = 0;
	}
	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		arr2d_col_sums[col] = 0;
	}

	/* calculate sums */
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		sum += sum_inner_dimension(row);
	}

	bpf_printk("ITER_SUBPROG_ITERS: total sum=%d", sum);
	bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
		bpf_printk("ITER_SUBPROG_ITERS: row #%d sum=%d",
			   row, arr2d_row_sums[row]);
	}
	bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
		bpf_printk("ITER_SUBPROG_ITERS: col #%d sum=%d%s",
			   col, arr2d_col_sums[col],
			   col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
	}

	return 0;
}

struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__type(key, int);
	__type(value, int);
	__uint(max_entries, 1000);
} arr_map SEC(".maps");

SEC("?raw_tp")
__failure __msg("invalid mem access 'scalar'")
int iter_err_too_permissive1(const void *ctx)
{
	int *map_val = NULL;
	int key = 0;

	MY_PID_GUARD();

	map_val = bpf_map_lookup_elem(&arr_map, &key);
	if (!map_val)
		return 0;

	bpf_repeat(1000000) {
		map_val = NULL;
	}

	*map_val = 123;

	return 0;
}

SEC("?raw_tp")
__failure __msg("invalid mem access 'map_value_or_null'")
int iter_err_too_permissive2(const void *ctx)
{
	int *map_val = NULL;
	int key = 0;

	MY_PID_GUARD();

	map_val = bpf_map_lookup_elem(&arr_map, &key);
	if (!map_val)
		return 0;

	bpf_repeat(1000000) {
		map_val = bpf_map_lookup_elem(&arr_map, &key);
	}

	*map_val = 123;

	return 0;
}

SEC("?raw_tp")
__failure __msg("invalid mem access 'map_value_or_null'")
int iter_err_too_permissive3(const void *ctx)
{
	int *map_val = NULL;
	int key = 0;
	bool found = false;

	MY_PID_GUARD();

	bpf_repeat(1000000) {
		map_val = bpf_map_lookup_elem(&arr_map, &key);
		found = true;
	}

	if (found)
		*map_val = 123;

	return 0;
}

SEC("raw_tp")
__success
int iter_tricky_but_fine(const void *ctx)
{
	int *map_val = NULL;
	int key = 0;
	bool found = false;

	MY_PID_GUARD();

	bpf_repeat(1000000) {
		map_val = bpf_map_lookup_elem(&arr_map, &key);
		if (map_val) {
			found = true;
			break;
		}
	}

	if (found)
		*map_val = 123;

	return 0;
}

#define __bpf_memzero(p, sz) bpf_probe_read_kernel((p), (sz), 0)

SEC("raw_tp")
__success
int iter_stack_array_loop(const void *ctx)
{
	long arr1[16], arr2[16], sum = 0;
	int i;

	MY_PID_GUARD();

	/* zero-init arr1 and arr2 in such a way that verifier doesn't know
	 * it's all zeros; if we don't do that, we'll make BPF verifier track
	 * all combination of zero/non-zero stack slots for arr1/arr2, which
	 * will lead to O(2^(ARRAY_SIZE(arr1)+ARRAY_SIZE(arr2))) different
	 * states
	 */
	__bpf_memzero(arr1, sizeof(arr1));
	__bpf_memzero(arr2, sizeof(arr1));

	/* validate that we can break and continue when using bpf_for() */
	bpf_for(i, 0, ARRAY_SIZE(arr1)) {
		if (i & 1) {
			arr1[i] = i;
			continue;
		} else {
			arr2[i] = i;
			break;
		}
	}

	bpf_for(i, 0, ARRAY_SIZE(arr1)) {
		sum += arr1[i] + arr2[i];
	}

	return sum;
}

#define ARR_SZ 16

static __noinline void fill(struct bpf_iter_num *it, int *arr, int mul)
{
	int *t;
	__u64 i;

	while ((t = bpf_iter_num_next(it))) {
		i = *t;
		if (i >= ARR_SZ)
			break;
		arr[i] =  i * mul;
	}
}

static __noinline int sum(struct bpf_iter_num *it, int *arr)
{
	int *t, sum = 0;;
	__u64 i;

	while ((t = bpf_iter_num_next(it))) {
		i = *t;
		if (i >= ARR_SZ)
			break;
		sum += arr[i];
	}

	return sum;
}

SEC("raw_tp")
__success
int iter_pass_iter_ptr_to_subprog(const void *ctx)
{
	int arr1[ARR_SZ], arr2[ARR_SZ];
	struct bpf_iter_num it;
	int n, sum1, sum2;

	MY_PID_GUARD();

	/* fill arr1 */
	n = ARRAY_SIZE(arr1);
	bpf_iter_num_new(&it, 0, n);
	fill(&it, arr1, 2);
	bpf_iter_num_destroy(&it);

	/* fill arr2 */
	n = ARRAY_SIZE(arr2);
	bpf_iter_num_new(&it, 0, n);
	fill(&it, arr2, 10);
	bpf_iter_num_destroy(&it);

	/* sum arr1 */
	n = ARRAY_SIZE(arr1);
	bpf_iter_num_new(&it, 0, n);
	sum1 = sum(&it, arr1);
	bpf_iter_num_destroy(&it);

	/* sum arr2 */
	n = ARRAY_SIZE(arr2);
	bpf_iter_num_new(&it, 0, n);
	sum2 = sum(&it, arr2);
	bpf_iter_num_destroy(&it);

	bpf_printk("sum1=%d, sum2=%d", sum1, sum2);

	return 0;
}

char _license[] SEC("license") = "GPL";