summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/mm/compaction_test.c
blob: 2c3a0eb6b22d31d5cdd1251a85ee82c401b95c15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// SPDX-License-Identifier: GPL-2.0
/*
 *
 * A test for the patch "Allow compaction of unevictable pages".
 * With this patch we should be able to allocate at least 1/4
 * of RAM in huge pages. Without the patch much less is
 * allocated.
 */

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

#include "../kselftest.h"

#define MAP_SIZE_MB	100
#define MAP_SIZE	(MAP_SIZE_MB * 1024 * 1024)

struct map_list {
	void *map;
	struct map_list *next;
};

int read_memory_info(unsigned long *memfree, unsigned long *hugepagesize)
{
	char  buffer[256] = {0};
	char *cmd = "cat /proc/meminfo | grep -i memfree | grep -o '[0-9]*'";
	FILE *cmdfile = popen(cmd, "r");

	if (!(fgets(buffer, sizeof(buffer), cmdfile))) {
		ksft_print_msg("Failed to read meminfo: %s\n", strerror(errno));
		return -1;
	}

	pclose(cmdfile);

	*memfree = atoll(buffer);
	cmd = "cat /proc/meminfo | grep -i hugepagesize | grep -o '[0-9]*'";
	cmdfile = popen(cmd, "r");

	if (!(fgets(buffer, sizeof(buffer), cmdfile))) {
		ksft_print_msg("Failed to read meminfo: %s\n", strerror(errno));
		return -1;
	}

	pclose(cmdfile);
	*hugepagesize = atoll(buffer);

	return 0;
}

int prereq(void)
{
	char allowed;
	int fd;

	fd = open("/proc/sys/vm/compact_unevictable_allowed",
		  O_RDONLY | O_NONBLOCK);
	if (fd < 0) {
		ksft_print_msg("Failed to open /proc/sys/vm/compact_unevictable_allowed: %s\n",
			       strerror(errno));
		return -1;
	}

	if (read(fd, &allowed, sizeof(char)) != sizeof(char)) {
		ksft_print_msg("Failed to read from /proc/sys/vm/compact_unevictable_allowed: %s\n",
			       strerror(errno));
		close(fd);
		return -1;
	}

	close(fd);
	if (allowed == '1')
		return 0;

	ksft_print_msg("Compaction isn't allowed\n");
	return -1;
}

int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
		     unsigned long initial_nr_hugepages)
{
	unsigned long nr_hugepages_ul;
	int fd, ret = -1;
	int compaction_index = 0;
	char nr_hugepages[20] = {0};
	char init_nr_hugepages[24] = {0};

	snprintf(init_nr_hugepages, sizeof(init_nr_hugepages),
		 "%lu", initial_nr_hugepages);

	/* We want to test with 80% of available memory. Else, OOM killer comes
	   in to play */
	mem_free = mem_free * 0.8;

	fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
	if (fd < 0) {
		ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		ret = -1;
		goto out;
	}

	/* Request a large number of huge pages. The Kernel will allocate
	   as much as it can */
	if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
		ksft_print_msg("Failed to write 100000 to /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto close_fd;
	}

	lseek(fd, 0, SEEK_SET);

	if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
		ksft_print_msg("Failed to re-read from /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto close_fd;
	}

	/* We should have been able to request at least 1/3 rd of the memory in
	   huge pages */
	nr_hugepages_ul = strtoul(nr_hugepages, NULL, 10);
	if (!nr_hugepages_ul) {
		ksft_print_msg("ERROR: No memory is available as huge pages\n");
		goto close_fd;
	}
	compaction_index = mem_free/(nr_hugepages_ul * hugepage_size);

	lseek(fd, 0, SEEK_SET);

	if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
	    != strlen(init_nr_hugepages)) {
		ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto close_fd;
	}

	ksft_print_msg("Number of huge pages allocated = %lu\n",
		       nr_hugepages_ul);

	if (compaction_index > 3) {
		ksft_print_msg("ERROR: Less than 1/%d of memory is available\n"
			       "as huge pages\n", compaction_index);
		goto close_fd;
	}

	ret = 0;

 close_fd:
	close(fd);
 out:
	ksft_test_result(ret == 0, "check_compaction\n");
	return ret;
}

int set_zero_hugepages(unsigned long *initial_nr_hugepages)
{
	int fd, ret = -1;
	char nr_hugepages[20] = {0};

	fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
	if (fd < 0) {
		ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto out;
	}
	if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
		ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto close_fd;
	}

	lseek(fd, 0, SEEK_SET);

	/* Start with the initial condition of 0 huge pages */
	if (write(fd, "0", sizeof(char)) != sizeof(char)) {
		ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
			       strerror(errno));
		goto close_fd;
	}

	*initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
	ret = 0;

 close_fd:
	close(fd);

 out:
	return ret;
}

int main(int argc, char **argv)
{
	struct rlimit lim;
	struct map_list *list = NULL, *entry;
	size_t page_size, i;
	void *map = NULL;
	unsigned long mem_free = 0;
	unsigned long hugepage_size = 0;
	long mem_fragmentable_MB = 0;
	unsigned long initial_nr_hugepages;

	ksft_print_header();

	if (prereq() || geteuid())
		ksft_exit_skip("Prerequisites unsatisfied\n");

	ksft_set_plan(1);

	/* Start the test without hugepages reducing mem_free */
	if (set_zero_hugepages(&initial_nr_hugepages))
		ksft_exit_fail();

	lim.rlim_cur = RLIM_INFINITY;
	lim.rlim_max = RLIM_INFINITY;
	if (setrlimit(RLIMIT_MEMLOCK, &lim))
		ksft_exit_fail_msg("Failed to set rlimit: %s\n", strerror(errno));

	page_size = getpagesize();

	if (read_memory_info(&mem_free, &hugepage_size) != 0)
		ksft_exit_fail_msg("Failed to get meminfo\n");

	mem_fragmentable_MB = mem_free * 0.8 / 1024;

	while (mem_fragmentable_MB > 0) {
		map = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
			   MAP_ANONYMOUS | MAP_PRIVATE | MAP_LOCKED, -1, 0);
		if (map == MAP_FAILED)
			break;

		entry = malloc(sizeof(struct map_list));
		if (!entry) {
			munmap(map, MAP_SIZE);
			break;
		}
		entry->map = map;
		entry->next = list;
		list = entry;

		/* Write something (in this case the address of the map) to
		 * ensure that KSM can't merge the mapped pages
		 */
		for (i = 0; i < MAP_SIZE; i += page_size)
			*(unsigned long *)(map + i) = (unsigned long)map + i;

		mem_fragmentable_MB -= MAP_SIZE_MB;
	}

	for (entry = list; entry != NULL; entry = entry->next) {
		munmap(entry->map, MAP_SIZE);
		if (!entry->next)
			break;
		entry = entry->next;
	}

	if (check_compaction(mem_free, hugepage_size,
			     initial_nr_hugepages) == 0)
		ksft_exit_pass();

	ksft_exit_fail();
}