/* * mdmon - monitor external metadata arrays * * Copyright (C) 2007-2009 Neil Brown * Copyright (C) 2007-2009 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include "mdadm.h" #include "mdmon.h" #include #include #include static char *array_states[] = { "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", "write-pending", "active-idle", NULL }; static char *sync_actions[] = { "idle", "reshape", "resync", "recover", "check", "repair", NULL }; static int write_attr(char *attr, int fd) { return write(fd, attr, strlen(attr)); } static void add_fd(fd_set *fds, int *maxfd, int fd) { if (fd < 0) return; if (fd > *maxfd) *maxfd = fd; FD_SET(fd, fds); } static int read_attr(char *buf, int len, int fd) { int n; if (fd < 0) { buf[0] = 0; return 0; } lseek(fd, 0, 0); n = read(fd, buf, len - 1); if (n <= 0) { buf[0] = 0; return 0; } buf[n] = 0; if (buf[n-1] == '\n') buf[n-1] = 0; return n; } static unsigned long long read_resync_start(int fd) { char buf[30]; int n; n = read_attr(buf, 30, fd); if (n <= 0) return 0; if (strncmp(buf, "none", 4) == 0) return MaxSector; else return strtoull(buf, NULL, 10); } static unsigned long long read_sync_completed(int fd) { unsigned long long val; char buf[50]; int n; char *ep; n = read_attr(buf, 50, fd); if (n <= 0) return 0; buf[n] = 0; val = strtoull(buf, &ep, 0); if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' ')) return 0; return val; } static enum array_state read_state(int fd) { char buf[20]; int n = read_attr(buf, 20, fd); if (n <= 0) return bad_word; return (enum array_state) sysfs_match_word(buf, array_states); } static enum sync_action read_action( int fd) { char buf[20]; int n = read_attr(buf, 20, fd); if (n <= 0) return bad_action; return (enum sync_action) sysfs_match_word(buf, sync_actions); } int read_dev_state(int fd) { char buf[60]; int n = read_attr(buf, 60, fd); char *cp; int rv = 0; if (n <= 0) return 0; cp = buf; while (cp) { if (sysfs_attr_match(cp, "faulty")) rv |= DS_FAULTY; if (sysfs_attr_match(cp, "in_sync")) rv |= DS_INSYNC; if (sysfs_attr_match(cp, "write_mostly")) rv |= DS_WRITE_MOSTLY; if (sysfs_attr_match(cp, "spare")) rv |= DS_SPARE; if (sysfs_attr_match(cp, "blocked")) rv |= DS_BLOCKED; cp = strchr(cp, ','); if (cp) cp++; } return rv; } static void signal_manager(void) { /* tgkill(getpid(), mon_tid, SIGUSR1); */ int pid = getpid(); syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1); } /* Monitor a set of active md arrays - all of which share the * same metadata - and respond to events that require * metadata update. * * New arrays are detected by another thread which allocates * required memory and attaches the data structure to our list. * * Events: * Array stops. * This is detected by array_state going to 'clear' or 'inactive'. * while we thought it was active. * Response is to mark metadata as clean and 'clear' the array(??) * write-pending * array_state if 'write-pending' * We mark metadata as 'dirty' then set array to 'active'. * active_idle * Either ignore, or mark clean, then mark metadata as clean. * * device fails * detected by rd-N/state reporting "faulty" * mark device as 'failed' in metadata, let the kernel release the * device by writing '-blocked' to rd/state, and finally write 'remove' to * rd/state. Before a disk can be replaced it must be failed and removed * from all container members, this will be preemptive for the other * arrays... safe? * * sync completes * sync_action was 'resync' and becomes 'idle' and resync_start becomes * MaxSector * Notify metadata that sync is complete. * * recovery completes * sync_action changes from 'recover' to 'idle' * Check each device state and mark metadata if 'faulty' or 'in_sync'. * * deal with resync * This only happens on finding a new array... mdadm will have set * 'resync_start' to the correct value. If 'resync_start' indicates that an * resync needs to occur set the array to the 'active' state rather than the * initial read-auto state. * * * * We wait for a change (poll/select) on array_state, sync_action, and * each rd-X/state file. * When we get any change, we check everything. So read each state file, * then decide what to do. * * The core action is to write new metadata to all devices in the array. * This is done at most once on any wakeup. * After that we might: * - update the array_state * - set the role of some devices. * - request a sync_action * */ static int read_and_act(struct active_array *a) { unsigned long long sync_completed; int check_degraded = 0; int deactivate = 0; struct mdinfo *mdi; int dirty = 0; a->next_state = bad_word; a->next_action = bad_action; a->curr_state = read_state(a->info.state_fd); a->curr_action = read_action(a->action_fd); a->info.resync_start = read_resync_start(a->resync_start_fd); sync_completed = read_sync_completed(a->sync_completed_fd); for (mdi = a->info.devs; mdi ; mdi = mdi->next) { mdi->next_state = 0; if (mdi->state_fd >= 0) { mdi->recovery_start = read_resync_start(mdi->recovery_fd); mdi->curr_state = read_dev_state(mdi->state_fd); } } if (a->curr_state <= inactive && a->prev_state > inactive) { /* array has been stopped */ a->container->ss->set_array_state(a, 1); a->next_state = clear; deactivate = 1; } if (a->curr_state == write_pending) { a->container->ss->set_array_state(a, 0); a->next_state = active; dirty = 1; } if (a->curr_state == active_idle) { /* Set array to 'clean' FIRST, then mark clean * in the metadata */ a->next_state = clean; dirty = 1; } if (a->curr_state == clean) { a->container->ss->set_array_state(a, 1); } if (a->curr_state == active || a->curr_state == suspended || a->curr_state == bad_word) dirty = 1; if (a->curr_state == readonly) { /* Well, I'm ready to handle things. If readonly * wasn't requested, transition to read-auto. */ char buf[64]; read_attr(buf, sizeof(buf), a->metadata_fd); if (strncmp(buf, "external:-", 10) == 0) { /* explicit request for readonly array. Leave it alone */ ; } else { if (a->container->ss->set_array_state(a, 2)) a->next_state = read_auto; /* array is clean */ else { a->next_state = active; /* Now active for recovery etc */ dirty = 1; } } } if (!deactivate && a->curr_action == idle && a->prev_action == resync) { /* A resync has finished. The endpoint is recorded in * 'sync_start'. We don't update the metadata * until the array goes inactive or readonly though. * Just check if we need to fiddle spares. */ a->container->ss->set_array_state(a, a->curr_state <= clean); check_degraded = 1; } if (!deactivate && a->curr_action == idle && a->prev_action == recover) { /* A recovery has finished. Some disks may be in sync now, * and the array may no longer be degraded */ for (mdi = a->info.devs ; mdi ; mdi = mdi->next) { a->container->ss->set_disk(a, mdi->disk.raid_disk, mdi->curr_state); if (! (mdi->curr_state & DS_INSYNC)) check_degraded = 1; } } /* Check for failures and if found: * 1/ Record the failure in the metadata and unblock the device. * FIXME update the kernel to stop notifying on failed drives when * the array is readonly and we have cleared 'blocked' * 2/ Try to remove the device if the array is writable, or can be * made writable. */ for (mdi = a->info.devs ; mdi ; mdi = mdi->next) { if (mdi->curr_state & DS_FAULTY) { a->container->ss->set_disk(a, mdi->disk.raid_disk, mdi->curr_state); check_degraded = 1; mdi->next_state |= DS_UNBLOCK; if (a->curr_state == read_auto) { a->container->ss->set_array_state(a, 0); a->next_state = active; } if (a->curr_state > readonly) mdi->next_state |= DS_REMOVE; } } /* Check for recovery checkpoint notifications. We need to be a * minimum distance away from the last checkpoint to prevent * over checkpointing. Note reshape checkpointing is not * handled here. */ if (sync_completed > a->last_checkpoint && sync_completed - a->last_checkpoint > a->info.component_size >> 4 && a->curr_action > reshape) { /* A (non-reshape) sync_action has reached a checkpoint. * Record the updated position in the metadata */ a->last_checkpoint = sync_completed; a->container->ss->set_array_state(a, a->curr_state <= clean); } else if (sync_completed > a->last_checkpoint) a->last_checkpoint = sync_completed; a->container->ss->sync_metadata(a->container); dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member, array_states[a->curr_state], sync_actions[a->curr_action]); /* Effect state changes in the array */ if (a->next_state != bad_word) { dprintf(" state:%s", array_states[a->next_state]); write_attr(array_states[a->next_state], a->info.state_fd); } if (a->next_action != bad_action) { write_attr(sync_actions[a->next_action], a->action_fd); dprintf(" action:%s", sync_actions[a->next_action]); } for (mdi = a->info.devs; mdi ; mdi = mdi->next) { if (mdi->next_state & DS_UNBLOCK) { dprintf(" %d:-blocked", mdi->disk.raid_disk); write_attr("-blocked", mdi->state_fd); } if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) { int remove_result; /* the kernel may not be able to immediately remove the * disk, we can simply wait until the next event to try * again. */ remove_result = write_attr("remove", mdi->state_fd); if (remove_result > 0) { dprintf(" %d:removed", mdi->disk.raid_disk); close(mdi->state_fd); mdi->state_fd = -1; } } if (mdi->next_state & DS_INSYNC) { write_attr("+in_sync", mdi->state_fd); dprintf(" %d:+in_sync", mdi->disk.raid_disk); } } dprintf(" )\n"); /* move curr_ to prev_ */ a->prev_state = a->curr_state; a->prev_action = a->curr_action; for (mdi = a->info.devs; mdi ; mdi = mdi->next) { mdi->prev_state = mdi->curr_state; mdi->next_state = 0; } if (check_degraded) { /* manager will do the actual check */ a->check_degraded = 1; signal_manager(); } if (deactivate) a->container = NULL; return dirty; } static struct mdinfo * find_device(struct active_array *a, int major, int minor) { struct mdinfo *mdi; for (mdi = a->info.devs ; mdi ; mdi = mdi->next) if (mdi->disk.major == major && mdi->disk.minor == minor) return mdi; return NULL; } static void reconcile_failed(struct active_array *aa, struct mdinfo *failed) { struct active_array *a; struct mdinfo *victim; for (a = aa; a; a = a->next) { if (!a->container) continue; victim = find_device(a, failed->disk.major, failed->disk.minor); if (!victim) continue; if (!(victim->curr_state & DS_FAULTY)) write_attr("faulty", victim->state_fd); } } #ifdef DEBUG static void dprint_wake_reasons(fd_set *fds) { int i; char proc_path[256]; char link[256]; char *basename; int rv; fprintf(stderr, "monitor: wake ( "); for (i = 0; i < FD_SETSIZE; i++) { if (FD_ISSET(i, fds)) { sprintf(proc_path, "/proc/%d/fd/%d", (int) getpid(), i); rv = readlink(proc_path, link, sizeof(link) - 1); if (rv < 0) { fprintf(stderr, "%d:unknown ", i); continue; } link[rv] = '\0'; basename = strrchr(link, '/'); fprintf(stderr, "%d:%s ", i, basename ? ++basename : link); } } fprintf(stderr, ")\n"); } #endif int monitor_loop_cnt; static int wait_and_act(struct supertype *container, int nowait) { fd_set rfds; int maxfd = 0; struct active_array **aap = &container->arrays; struct active_array *a, **ap; int rv; struct mdinfo *mdi; static unsigned int dirty_arrays = ~0; /* start at some non-zero value */ FD_ZERO(&rfds); for (ap = aap ; *ap ;) { a = *ap; /* once an array has been deactivated we want to * ask the manager to discard it. */ if (!a->container) { if (discard_this) { ap = &(*ap)->next; continue; } *ap = a->next; a->next = NULL; discard_this = a; signal_manager(); continue; } add_fd(&rfds, &maxfd, a->info.state_fd); add_fd(&rfds, &maxfd, a->action_fd); add_fd(&rfds, &maxfd, a->sync_completed_fd); for (mdi = a->info.devs ; mdi ; mdi = mdi->next) add_fd(&rfds, &maxfd, mdi->state_fd); ap = &(*ap)->next; } if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) { /* No interesting arrays, or we have been told to * terminate and everything is clean. Lets see about * exiting. Note that blocking at this point is not a * problem as there are no active arrays, there is * nothing that we need to be ready to do. */ int fd = open_dev_excl(container->devnum); if (fd >= 0 || errno != EBUSY) { /* OK, we are safe to leave */ if (sigterm && !dirty_arrays) dprintf("caught sigterm, all clean... exiting\n"); else dprintf("no arrays to monitor... exiting\n"); if (!sigterm) /* On SIGTERM, someone (the take-over mdmon) will * clean up */ remove_pidfile(container->devname); exit_now = 1; signal_manager(); close(fd); exit(0); } } if (!nowait) { sigset_t set; sigprocmask(SIG_UNBLOCK, NULL, &set); sigdelset(&set, SIGUSR1); monitor_loop_cnt |= 1; rv = pselect(maxfd+1, NULL, NULL, &rfds, NULL, &set); monitor_loop_cnt += 1; if (rv == -1 && errno == EINTR) rv = 0; #ifdef DEBUG dprint_wake_reasons(&rfds); #endif } if (update_queue) { struct metadata_update *this; for (this = update_queue; this ; this = this->next) container->ss->process_update(container, this); update_queue_handled = update_queue; update_queue = NULL; signal_manager(); container->ss->sync_metadata(container); } rv = 0; dirty_arrays = 0; for (a = *aap; a ; a = a->next) { int is_dirty; if (a->replaces && !discard_this) { struct active_array **ap; for (ap = &a->next; *ap && *ap != a->replaces; ap = & (*ap)->next) ; if (*ap) *ap = (*ap)->next; discard_this = a->replaces; a->replaces = NULL; /* FIXME check if device->state_fd need to be cleared?*/ signal_manager(); } if (a->container) { is_dirty = read_and_act(a); rv |= 1; dirty_arrays += is_dirty; /* when terminating stop manipulating the array after it * is clean, but make sure read_and_act() is given a * chance to handle 'active_idle' */ if (sigterm && !is_dirty) a->container = NULL; /* stop touching this array */ } } /* propagate failures across container members */ for (a = *aap; a ; a = a->next) { if (!a->container) continue; for (mdi = a->info.devs ; mdi ; mdi = mdi->next) if (mdi->curr_state & DS_FAULTY) reconcile_failed(*aap, mdi); } return rv; } void do_monitor(struct supertype *container) { int rv; int first = 1; do { rv = wait_and_act(container, first); first = 0; } while (rv >= 0); }