/* * mdadm - manage Linux "md" devices aka RAID arrays. * * Copyright (C) 2001-2016 Neil Brown * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Neil Brown * Email: */ #include #include "mdadm.h" #include "xmalloc.h" /* * The version-1 superblock : * All numeric fields are little-endian. * * total size: 256 bytes plus 2 per device. * 1K allows 384 devices. */ struct mdp_superblock_1 { /* constant array information - 128 bytes */ __u32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */ __u32 major_version; /* 1 */ __u32 feature_map; /* 0 for now */ __u32 pad0; /* always set to 0 when writing */ __u8 set_uuid[16]; /* user-space generated. */ char set_name[32]; /* set and interpreted by user-space */ __u64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/ __u32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */ __u32 layout; /* used for raid5, raid6, raid10, and raid0 */ __u64 size; /* used size of component devices, in 512byte sectors */ __u32 chunksize; /* in 512byte sectors */ __u32 raid_disks; union { __u32 bitmap_offset; /* sectors after start of superblock that bitmap starts * NOTE: signed, so bitmap can be before superblock * only meaningful of feature_map[0] is set. */ /* only meaningful when feature_map[MD_FEATURE_PPL] is set */ struct { __s16 offset; /* sectors from start of superblock that ppl starts */ __u16 size; /* ppl size in sectors */ } ppl; }; /* These are only valid with feature bit '4' */ __u32 new_level; /* new level we are reshaping to */ __u64 reshape_position; /* next address in array-space for reshape */ __u32 delta_disks; /* change in number of raid_disks */ __u32 new_layout; /* new layout */ __u32 new_chunk; /* new chunk size (sectors) */ __u32 new_offset; /* signed number to add to data_offset in new * layout. 0 == no-change. This can be * different on each device in the array. */ /* constant this-device information - 64 bytes */ __u64 data_offset; /* sector start of data, often 0 */ __u64 data_size; /* sectors in this device that can be used for data */ __u64 super_offset; /* sector start of this superblock */ union { __u64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */ __u64 journal_tail;/* journal tail of journal device (from data_offset) */ }; __u32 dev_number; /* permanent identifier of this device - not role in raid */ __u32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */ __u8 device_uuid[16]; /* user-space setable, ignored by kernel */ __u8 devflags; /* per-device flags. Only one defined...*/ #define WriteMostly1 1 /* mask for writemostly flag in above */ #define FailFast1 2 /* Device should get FailFast requests */ /* bad block log. If there are any bad blocks the feature flag is set. * if offset and size are non-zero, that space is reserved and available. */ __u8 bblog_shift; /* shift from sectors to block size for badblock list */ __u16 bblog_size; /* number of sectors reserved for badblock list */ __u32 bblog_offset; /* sector offset from superblock to bblog, signed */ /* array state information - 64 bytes */ __u64 utime; /* 40 bits second, 24 bits microseconds */ __u64 events; /* incremented when superblock updated */ __u64 resync_offset; /* data before this offset (from data_offset) known to be in sync */ __u32 sb_csum; /* checksum upto dev_roles[max_dev] */ __u32 max_dev; /* size of dev_roles[] array to consider */ __u8 pad3[64-32]; /* set to 0 when writing */ /* device state information. Indexed by dev_number. * 2 bytes per device * Note there are no per-device state flags. State information is rolled * into the 'roles' value. If a device is spare or faulty, then it doesn't * have a meaningful role. */ __u16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */ }; #define MAX_SB_SIZE 4096 /* bitmap super size is 256, but we round up to a sector for alignment */ #define BM_SUPER_SIZE 512 #define MAX_DEVS ((int)(MAX_SB_SIZE - sizeof(struct mdp_superblock_1)) / 2) #define SUPER1_SIZE (MAX_SB_SIZE + BM_SUPER_SIZE \ + sizeof(struct misc_dev_info)) struct misc_dev_info { __u64 device_size; }; #define MULTIPLE_PPL_AREA_SIZE_SUPER1 (1024 * 1024) /* Size of the whole * mutliple PPL area */ /* feature_map bits */ #define MD_FEATURE_BITMAP_OFFSET 1 #define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and * must be honoured */ #define MD_FEATURE_RESHAPE_ACTIVE 4 #define MD_FEATURE_BAD_BLOCKS 8 /* badblock list is not empty */ #define MD_FEATURE_REPLACEMENT 16 /* This device is replacing an * active device with same 'role'. * 'recovery_offset' is also set. */ #define MD_FEATURE_RESHAPE_BACKWARDS 32 /* Reshape doesn't change number * of devices, but is going * backwards anyway. */ #define MD_FEATURE_NEW_OFFSET 64 /* new_offset must be honoured */ #define MD_FEATURE_BITMAP_VERSIONED 256 /* bitmap version number checked properly */ #define MD_FEATURE_JOURNAL 512 /* support write journal */ #define MD_FEATURE_PPL 1024 /* support PPL */ #define MD_FEATURE_MUTLIPLE_PPLS 2048 /* support for multiple PPLs */ #define MD_FEATURE_RAID0_LAYOUT 4096 /* layout is meaningful in RAID0 */ #define MD_FEATURE_ALL (MD_FEATURE_BITMAP_OFFSET \ |MD_FEATURE_RECOVERY_OFFSET \ |MD_FEATURE_RESHAPE_ACTIVE \ |MD_FEATURE_BAD_BLOCKS \ |MD_FEATURE_REPLACEMENT \ |MD_FEATURE_RESHAPE_BACKWARDS \ |MD_FEATURE_NEW_OFFSET \ |MD_FEATURE_BITMAP_VERSIONED \ |MD_FEATURE_JOURNAL \ |MD_FEATURE_PPL \ |MD_FEATURE_MULTIPLE_PPLS \ |MD_FEATURE_RAID0_LAYOUT \ ) static int role_from_sb(struct mdp_superblock_1 *sb) { unsigned int d; int role; d = __le32_to_cpu(sb->dev_number); if (d < __le32_to_cpu(sb->max_dev)) role = __le16_to_cpu(sb->dev_roles[d]); else role = MD_DISK_ROLE_SPARE; return role; } /* return how many bytes are needed for bitmap, for cluster-md each node * should have it's own bitmap */ static unsigned int calc_bitmap_size(bitmap_super_t *bms, unsigned int boundary) { unsigned long long bits, bytes; bits = bitmap_bits(__le64_to_cpu(bms->sync_size), __le32_to_cpu(bms->chunksize)); bytes = (bits+7) >> 3; bytes += sizeof(bitmap_super_t); bytes = ROUND_UP(bytes, boundary); return bytes; } static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb) { unsigned int disk_csum, csum; unsigned long long newcsum; int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2; unsigned int *isuper = (unsigned int *)sb; /* make sure I can count... */ if (offsetof(struct mdp_superblock_1,data_offset) != 128 || offsetof(struct mdp_superblock_1, utime) != 192 || sizeof(struct mdp_superblock_1) != 256) { fprintf(stderr, "WARNING - superblock isn't sized correctly\n"); } disk_csum = sb->sb_csum; sb->sb_csum = 0; newcsum = 0; for (; size >= 4; size -= 4) { newcsum += __le32_to_cpu(*isuper); isuper++; } if (size == 2) newcsum += __le16_to_cpu(*(unsigned short*) isuper); csum = (newcsum & 0xffffffff) + (newcsum >> 32); sb->sb_csum = disk_csum; return __cpu_to_le32(csum); } /* * Information related to file descriptor used for aligned reads/writes. * Cache the block size. */ struct align_fd { int fd; int blk_sz; }; static void init_afd(struct align_fd *afd, int fd) { afd->fd = fd; if (!get_dev_sector_size(afd->fd, NULL, (unsigned int *)&afd->blk_sz)) afd->blk_sz = 512; } static char abuf[4096+4096]; static int aread(struct align_fd *afd, void *buf, int len) { /* aligned read. * On devices with a 4K sector size, we need to read * the full sector and copy relevant bits into * the buffer */ int bsize, iosize; char *b; int n; bsize = afd->blk_sz; if (!bsize || bsize > 4096 || len > 4096) { if (!bsize) fprintf(stderr, "WARNING - aread() called with invalid block size\n"); return -1; } b = ROUND_UP_PTR((char *)abuf, 4096); for (iosize = 0; iosize < len; iosize += bsize) ; n = read(afd->fd, b, iosize); if (n <= 0) return n; if (lseek(afd->fd, len - n, 1) < 0) { pr_err("lseek fails\n"); return -1; } if (n > len) n = len; memcpy(buf, b, n); return n; } static int awrite(struct align_fd *afd, void *buf, int len) { /* aligned write. * On devices with a 4K sector size, we need to write * the full sector. We pre-read if the sector is larger * than the write. * The address must be sector-aligned. */ int bsize, iosize; char *b; int n; bsize = afd->blk_sz; if (!bsize || bsize > 4096 || len > 4096) { if (!bsize) fprintf(stderr, "WARNING - awrite() called with invalid block size\n"); return -1; } b = ROUND_UP_PTR((char *)abuf, 4096); for (iosize = 0; iosize < len ; iosize += bsize) ; if (len != iosize) { n = read(afd->fd, b, iosize); if (n <= 0) return n; if (lseek(afd->fd, -n, 1) < 0) { pr_err("lseek fails\n"); return -1; } } memcpy(b, buf, len); n = write(afd->fd, b, iosize); if (n <= 0) return n; if (lseek(afd->fd, len - n, 1) < 0) { pr_err("lseek fails\n"); return -1; } return len; } static inline unsigned int md_feature_any_ppl_on(__u32 feature_map) { return ((__cpu_to_le32(feature_map) & (MD_FEATURE_PPL | MD_FEATURE_MUTLIPLE_PPLS))); } static inline unsigned int choose_ppl_space(int chunk) { return (PPL_HEADER_SIZE >> 9) + (chunk > 128*2 ? chunk : 128*2); } static void examine_super1(struct supertype *st, char *homehost) { struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); time_t atime; unsigned int d; int role; int delta_extra = 0; int i; char *c; int l = homehost ? strlen(homehost) : 0; int layout; unsigned long long sb_offset; struct mdinfo info; int inconsistent = 0; unsigned int expected_csum = 0; expected_csum = calc_sb_1_csum(sb); printf(" Magic : %08x\n", __le32_to_cpu(sb->magic)); printf(" Version : 1"); sb_offset = __le64_to_cpu(sb->super_offset); if (sb_offset <= 4) printf(".1\n"); else if (sb_offset <= 8) printf(".2\n"); else printf(".0\n"); printf(" Feature Map : 0x%x\n", __le32_to_cpu(sb->feature_map)); printf(" Array UUID : "); for (i = 0; i < 16; i++) { if ((i & 3) == 0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n"); printf(" Name : %.32s", sb->set_name); if (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0) printf(" (local to host %s)", homehost); printf("\n"); if (bms->nodes > 0 && (__le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) printf(" Cluster Name : %-64s\n", bms->cluster_name); atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL; printf(" Creation Time : %.24s\n", ctime(&atime)); c=map_num(pers, __le32_to_cpu(sb->level)); printf(" Raid Level : %s\n", c?c:"-unknown-"); printf(" Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks)); printf("\n"); printf(" Avail Dev Size : %llu sectors%s\n", (unsigned long long)__le64_to_cpu(sb->data_size), human_size(__le64_to_cpu(sb->data_size)<<9)); if (__le32_to_cpu(sb->level) > 0) { int ddsks = 0, ddsks_denom = 1; switch(__le32_to_cpu(sb->level)) { case 1: ddsks=1;break; case 4: case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break; case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break; case 10: layout = __le32_to_cpu(sb->layout); ddsks = __le32_to_cpu(sb->raid_disks); ddsks_denom = (layout&255) * ((layout>>8)&255); } if (ddsks) { long long asize = __le64_to_cpu(sb->size); asize = (asize << 9) * ddsks / ddsks_denom; printf(" Array Size : %llu KiB%s\n", asize >> 10, human_size(asize)); } if (sb->size != sb->data_size) printf(" Used Dev Size : %llu sectors%s\n", (unsigned long long)__le64_to_cpu(sb->size), human_size(__le64_to_cpu(sb->size)<<9)); } if (sb->data_offset) printf(" Data Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->data_offset)); if (sb->new_offset && (__le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) { unsigned long long offset = __le64_to_cpu(sb->data_offset); offset += (signed)(int32_t)__le32_to_cpu(sb->new_offset); printf(" New Offset : %llu sectors\n", offset); } printf(" Super Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->super_offset)); if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET) printf("Recovery Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->recovery_offset)); st->ss->getinfo_super(st, &info, NULL); if (info.space_after != 1 && !(__le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) { printf(" Unused Space : before=%llu sectors, ", info.space_before); if (info.space_after < INT64_MAX) printf("after=%llu sectors\n", info.space_after); else printf("after=-%llu sectors DEVICE TOO SMALL\n", UINT64_MAX - info.space_after); } printf(" State : %s%s\n", (__le64_to_cpu(sb->resync_offset) + 1) ? "active":"clean", (info.space_after > INT64_MAX) ? " TRUNCATED DEVICE" : ""); printf(" Device UUID : "); for (i = 0; i < 16; i++) { if ((i & 3)==0 && i != 0) printf(":"); printf("%02x", sb->device_uuid[i]); } printf("\n"); printf("\n"); if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { printf("Internal Bitmap : %ld sectors from superblock\n", (long)(int32_t)__le32_to_cpu(sb->bitmap_offset)); } else if (md_feature_any_ppl_on(sb->feature_map)) { printf(" PPL : %u sectors at offset %d sectors from superblock\n", __le16_to_cpu(sb->ppl.size), __le16_to_cpu(sb->ppl.offset)); } if (sb->feature_map & __cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE)) { printf(" Reshape pos'n : %llu%s\n", (unsigned long long) __le64_to_cpu(sb->reshape_position)/2, human_size(__le64_to_cpu(sb->reshape_position)<<9)); if (__le32_to_cpu(sb->delta_disks)) { printf(" Delta Devices : %d", __le32_to_cpu(sb->delta_disks)); printf(" (%d->%d)\n", __le32_to_cpu(sb->raid_disks) - __le32_to_cpu(sb->delta_disks), __le32_to_cpu(sb->raid_disks)); if ((int)__le32_to_cpu(sb->delta_disks) < 0) delta_extra = -__le32_to_cpu(sb->delta_disks); } if (__le32_to_cpu(sb->new_level) != __le32_to_cpu(sb->level)) { c = map_num(pers, __le32_to_cpu(sb->new_level)); printf(" New Level : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->new_layout) != __le32_to_cpu(sb->layout)) { if (__le32_to_cpu(sb->level) == 5) { c = map_num(r5layout, __le32_to_cpu(sb->new_layout)); printf(" New Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 6) { c = map_num(r6layout, __le32_to_cpu(sb->new_layout)); printf(" New Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 10) { printf(" New Layout :"); print_r10_layout(__le32_to_cpu(sb->new_layout)); printf("\n"); } } if (__le32_to_cpu(sb->new_chunk) != __le32_to_cpu(sb->chunksize)) printf(" New Chunksize : %dK\n", __le32_to_cpu(sb->new_chunk)/2); printf("\n"); } if (sb->devflags) { printf(" Flags :"); if (sb->devflags & WriteMostly1) printf(" write-mostly"); if (sb->devflags & FailFast1) printf(" failfast"); printf("\n"); } atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL; printf(" Update Time : %.24s\n", ctime(&atime)); if (sb->bblog_size && sb->bblog_offset) { printf(" Bad Block Log : %d entries available at offset %ld sectors", __le16_to_cpu(sb->bblog_size)*512/8, (long)(int32_t)__le32_to_cpu(sb->bblog_offset)); if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BAD_BLOCKS)) printf(" - bad blocks present."); printf("\n"); } if (expected_csum == sb->sb_csum) printf(" Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum)); else printf(" Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum), __le32_to_cpu(expected_csum)); printf(" Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events)); printf("\n"); if (__le32_to_cpu(sb->level) == 0 && (sb->feature_map & __cpu_to_le32(MD_FEATURE_RAID0_LAYOUT))) { c = map_num(r0layout, __le32_to_cpu(sb->layout)); printf(" Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 5) { c = map_num(r5layout, __le32_to_cpu(sb->layout)); printf(" Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 6) { c = map_num(r6layout, __le32_to_cpu(sb->layout)); printf(" Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 10) { int lo = __le32_to_cpu(sb->layout); printf(" Layout :"); print_r10_layout(lo); printf("\n"); } switch(__le32_to_cpu(sb->level)) { case 0: case 4: case 5: case 6: case 10: printf(" Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize)/2); break; case -1: printf(" Rounding : %dK\n", __le32_to_cpu(sb->chunksize)/2); break; default: break; } printf("\n"); printf(" Device Role : "); role = role_from_sb(sb); if (role >= MD_DISK_ROLE_FAULTY) printf("spare\n"); else if (role == MD_DISK_ROLE_JOURNAL) printf("Journal\n"); else if (sb->feature_map & __cpu_to_le32(MD_FEATURE_REPLACEMENT)) printf("Replacement device %d\n", role); else printf("Active device %d\n", role); printf(" Array State : "); for (d = 0; d < __le32_to_cpu(sb->raid_disks) + delta_extra; d++) { int cnt = 0; unsigned int i; for (i = 0; i < __le32_to_cpu(sb->max_dev); i++) { unsigned int role = __le16_to_cpu(sb->dev_roles[i]); if (role == d) cnt++; } if (cnt == 2 && __le32_to_cpu(sb->level) > 0) printf("R"); else if (cnt == 1) printf("A"); else if (cnt == 0) printf("."); else { printf("?"); inconsistent = 1; } } printf(" ('A' == active, '.' == missing, 'R' == replacing)"); printf("\n"); for (d = 0; d < __le32_to_cpu(sb->max_dev); d++) { unsigned int r = __le16_to_cpu(sb->dev_roles[d]); if (r <= MD_DISK_ROLE_MAX && r > __le32_to_cpu(sb->raid_disks) + delta_extra) inconsistent = 1; } if (inconsistent) { printf("WARNING Array state is inconsistent - each number should appear only once\n"); for (d = 0; d < __le32_to_cpu(sb->max_dev); d++) if (__le16_to_cpu(sb->dev_roles[d]) >= MD_DISK_ROLE_FAULTY) printf(" %d:-", d); else printf(" %d:%d", d, __le16_to_cpu(sb->dev_roles[d])); printf("\n"); } } static void brief_examine_super1(struct supertype *st, int verbose) { struct mdp_superblock_1 *sb = st->sb; int i; unsigned long long sb_offset; char *nm; char *c = map_num(pers, __le32_to_cpu(sb->level)); nm = strchr(sb->set_name, ':'); if (nm) nm++; else if (sb->set_name[0]) nm = sb->set_name; else nm = NULL; printf("ARRAY "); if (nm) { printf(DEV_MD_DIR "%s", nm); putchar(' '); } if (verbose && c) printf(" level=%s", c); sb_offset = __le64_to_cpu(sb->super_offset); if (sb_offset <= 4) printf(" metadata=1.1 "); else if (sb_offset <= 8) printf(" metadata=1.2 "); else printf(" metadata=1.0 "); if (verbose) printf("num-devices=%d ", __le32_to_cpu(sb->raid_disks)); printf("UUID="); for (i = 0; i < 16; i++) { if ((i & 3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n"); } static void export_examine_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; int i; int len = 32; int layout; printf("MD_LEVEL=%s\n", map_num_s(pers, __le32_to_cpu(sb->level))); printf("MD_DEVICES=%d\n", __le32_to_cpu(sb->raid_disks)); for (i = 0; i < 32; i++) if (sb->set_name[i] == '\n' || sb->set_name[i] == '\0') { len = i; break; } if (len) printf("MD_NAME=%.*s\n", len, sb->set_name); if (__le32_to_cpu(sb->level) > 0) { int ddsks = 0, ddsks_denom = 1; switch(__le32_to_cpu(sb->level)) { case 1: ddsks = 1; break; case 4: case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break; case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break; case 10: layout = __le32_to_cpu(sb->layout); ddsks = __le32_to_cpu(sb->raid_disks); ddsks_denom = (layout&255) * ((layout>>8)&255); } if (ddsks) { long long asize = __le64_to_cpu(sb->size); asize = (asize << 9) * ddsks / ddsks_denom; printf("MD_ARRAY_SIZE=%s\n", human_size_brief(asize, JEDEC)); } } printf("MD_UUID="); for (i = 0; i < 16; i++) { if ((i & 3) == 0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n"); printf("MD_UPDATE_TIME=%llu\n", __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL); printf("MD_DEV_UUID="); for (i = 0; i < 16; i++) { if ((i & 3) == 0 && i != 0) printf(":"); printf("%02x", sb->device_uuid[i]); } printf("\n"); printf("MD_EVENTS=%llu\n", (unsigned long long)__le64_to_cpu(sb->events)); } static int copy_metadata1(struct supertype *st, int from, int to) { /* Read superblock. If it looks good, write it out. * Then if a bitmap is present, copy that. * And if a bad-block-list is present, copy that too. */ void *buf; unsigned long long dsize, sb_offset; const int bufsize = 4*1024; struct mdp_superblock_1 super, *sb; if (posix_memalign(&buf, 4096, bufsize) != 0) return 1; if (!get_dev_size(from, NULL, &dsize)) goto err; dsize >>= 9; if (dsize < 24) goto err; switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); break; case 1: sb_offset = 0; break; case 2: sb_offset = 4*2; break; default: goto err; } if (lseek64(from, sb_offset << 9, 0) < 0LL) goto err; if (read(from, buf, bufsize) != bufsize) goto err; sb = buf; super = *sb; // save most of sb for when we reuse buf if (__le32_to_cpu(super.magic) != MD_SB_MAGIC || __le32_to_cpu(super.major_version) != 1 || __le64_to_cpu(super.super_offset) != sb_offset || calc_sb_1_csum(sb) != super.sb_csum) goto err; if (lseek64(to, sb_offset << 9, 0) < 0LL) goto err; if (write(to, buf, bufsize) != bufsize) goto err; if (super.feature_map & __le32_to_cpu(MD_FEATURE_BITMAP_OFFSET)) { unsigned long long bitmap_offset = sb_offset; int bytes = 4096; // just an estimate. int written = 0; struct align_fd afrom, ato; init_afd(&afrom, from); init_afd(&ato, to); bitmap_offset += (int32_t)__le32_to_cpu(super.bitmap_offset); if (lseek64(from, bitmap_offset<<9, 0) < 0) goto err; if (lseek64(to, bitmap_offset<<9, 0) < 0) goto err; for (written = 0; written < bytes ; ) { int n = bytes - written; if (n > 4096) n = 4096; if (aread(&afrom, buf, n) != n) goto err; if (written == 0) { /* have the header, can calculate * correct bitmap bytes */ bitmap_super_t *bms; bms = (void *)buf; bytes = calc_bitmap_size(bms, 512); if (n > bytes) n = bytes; } if (awrite(&ato, buf, n) != n) goto err; written += n; } } if (super.bblog_size != 0 && __le16_to_cpu(super.bblog_size) <= 100 && super.bblog_offset != 0 && (super.feature_map & __le32_to_cpu(MD_FEATURE_BAD_BLOCKS))) { /* There is a bad block log */ unsigned long long bb_offset = sb_offset; int bytes = __le16_to_cpu(super.bblog_size) * 512; int written = 0; struct align_fd afrom, ato; init_afd(&afrom, from); init_afd(&ato, to); bb_offset += (int32_t)__le32_to_cpu(super.bblog_offset); if (lseek64(from, bb_offset<<9, 0) < 0) goto err; if (lseek64(to, bb_offset<<9, 0) < 0) goto err; for (written = 0; written < bytes ; ) { int n = bytes - written; if (n > 4096) n = 4096; if (aread(&afrom, buf, n) != n) goto err; if (awrite(&ato, buf, n) != n) goto err; written += n; } } free(buf); return 0; err: free(buf); return 1; } static void detail_super1(struct supertype *st, char *homehost, char *subarray) { struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); int i; int l = homehost ? strlen(homehost) : 0; printf(" Name : %.32s", sb->set_name); if (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0) printf(" (local to host %s)", homehost); if (bms->nodes > 0 && (__le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) printf("\n Cluster Name : %-64s", bms->cluster_name); printf("\n UUID : "); for (i = 0; i < 16; i++) { if ((i & 3) == 0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events)); } static void brief_detail_super1(struct supertype *st, char *subarray) { struct mdp_superblock_1 *sb = st->sb; int i; printf(" UUID="); for (i = 0; i < 16; i++) { if ((i & 3) == 0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } } static void export_detail_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; int i; int len = 32; for (i = 0; i < 32; i++) if (sb->set_name[i] == '\n' || sb->set_name[i] == '\0') { len = i; break; } if (len) printf("MD_NAME=%.*s\n", len, sb->set_name); } static int examine_badblocks_super1(struct supertype *st, int fd, char *devname) { struct mdp_superblock_1 *sb = st->sb; unsigned long long offset; int size; __u64 *bbl, *bbp; int i; if (!sb->bblog_size || __le16_to_cpu(sb->bblog_size) > 100 || !sb->bblog_offset){ printf("No bad-blocks list configured on %s\n", devname); return 0; } if ((sb->feature_map & __cpu_to_le32(MD_FEATURE_BAD_BLOCKS)) == 0) { printf("Bad-blocks list is empty in %s\n", devname); return 0; } size = __le16_to_cpu(sb->bblog_size)* 512; if (posix_memalign((void **)&bbl, 4096, size) != 0) { pr_err("could not allocate badblocks list\n"); return 0; } offset = __le64_to_cpu(sb->super_offset) + (int)__le32_to_cpu(sb->bblog_offset); offset <<= 9; if (lseek64(fd, offset, 0) < 0) { pr_err("Cannot seek to bad-blocks list\n"); free(bbl); return 1; } if (read(fd, bbl, size) != size) { pr_err("Cannot read bad-blocks list\n"); free(bbl); return 1; } /* 64bits per entry. 10 bits is block-count, 54 bits is block * offset. Blocks are sectors unless bblog->shift makes them bigger */ bbp = (__u64*)bbl; printf("Bad-blocks on %s:\n", devname); for (i = 0; i < size/8; i++, bbp++) { __u64 bb = __le64_to_cpu(*bbp); int count = bb & 0x3ff; unsigned long long sector = bb >> 10; if (bb + 1 == 0) break; sector <<= sb->bblog_shift; count <<= sb->bblog_shift; printf("%20llu for %d sectors\n", sector, count); } free(bbl); return 0; } static int match_home1(struct supertype *st, char *homehost) { struct mdp_superblock_1 *sb = st->sb; int l = homehost ? strlen(homehost) : 0; return (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0); } static void uuid_from_super1(struct supertype *st, int uuid[4]) { struct mdp_superblock_1 *super = st->sb; char *cuuid = (char *)uuid; int i; for (i = 0; i < 16; i++) cuuid[i] = super->set_uuid[i]; } static void getinfo_super1(struct supertype *st, struct mdinfo *info, char *map) { struct mdp_superblock_1 *sb = st->sb; struct bitmap_super_s *bsb = (void *)(((char *)sb) + MAX_SB_SIZE); struct misc_dev_info *misc = (void *)(((char *)sb) + MAX_SB_SIZE+BM_SUPER_SIZE); int working = 0; unsigned int i; unsigned int role; unsigned int map_disks = info->array.raid_disks; unsigned long long super_offset; unsigned long long data_size; memset(info, 0, sizeof(*info)); info->array.major_version = 1; info->array.minor_version = st->minor_version; info->array.patch_version = 0; info->array.raid_disks = __le32_to_cpu(sb->raid_disks); info->array.level = __le32_to_cpu(sb->level); info->array.layout = __le32_to_cpu(sb->layout); info->array.md_minor = -1; info->array.ctime = __le64_to_cpu(sb->ctime); info->array.utime = __le64_to_cpu(sb->utime); info->array.chunk_size = __le32_to_cpu(sb->chunksize)*512; info->array.state = (__le64_to_cpu(sb->resync_offset) == MaxSector) ? 1 : 0; super_offset = __le64_to_cpu(sb->super_offset); info->data_offset = __le64_to_cpu(sb->data_offset); info->component_size = __le64_to_cpu(sb->size); if (sb->feature_map & __le32_to_cpu(MD_FEATURE_BITMAP_OFFSET)) { info->bitmap_offset = (int32_t)__le32_to_cpu(sb->bitmap_offset); if (__le32_to_cpu(bsb->nodes) > 1) info->array.state |= (1 << MD_SB_CLUSTERED); } else if (md_feature_any_ppl_on(sb->feature_map)) { info->ppl_offset = __le16_to_cpu(sb->ppl.offset); info->ppl_size = __le16_to_cpu(sb->ppl.size); info->ppl_sector = super_offset + info->ppl_offset; } info->disk.major = 0; info->disk.minor = 0; info->disk.number = __le32_to_cpu(sb->dev_number); if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) || __le32_to_cpu(sb->dev_number) >= MAX_DEVS) role = MD_DISK_ROLE_FAULTY; else role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]); if (info->array.level <= 0) data_size = __le64_to_cpu(sb->data_size); else data_size = __le64_to_cpu(sb->size); if (info->data_offset < super_offset) { unsigned long long end; info->space_before = info->data_offset; end = super_offset; if (sb->bblog_offset && sb->bblog_size) { unsigned long long bboffset = super_offset; bboffset += (int32_t)__le32_to_cpu(sb->bblog_offset); if (bboffset < end) end = bboffset; } if (super_offset + info->bitmap_offset + info->ppl_offset < end) end = super_offset + info->bitmap_offset + info->ppl_offset; if (info->data_offset + data_size < end) info->space_after = end - data_size - info->data_offset; else info->space_after = 0; } else { unsigned long long earliest; earliest = super_offset + (32+4)*2; /* match kernel */ if (info->bitmap_offset > 0) { unsigned long long bmend = info->bitmap_offset; unsigned long long size = calc_bitmap_size(bsb, 4096); size /= 512; bmend += size; if (bmend > earliest) earliest = bmend; } else if (info->ppl_offset > 0) { unsigned long long pplend; pplend = info->ppl_offset + info->ppl_size; if (pplend > earliest) earliest = pplend; } if (sb->bblog_offset && sb->bblog_size) { unsigned long long bbend = super_offset; bbend += (int32_t)__le32_to_cpu(sb->bblog_offset); bbend += __le16_to_cpu(sb->bblog_size); if (bbend > earliest) earliest = bbend; } if (earliest < info->data_offset) info->space_before = info->data_offset - earliest; else info->space_before = 0; info->space_after = misc->device_size - data_size - info->data_offset; } if (info->space_before == 0 && info->space_after == 0) { /* It will look like we don't support data_offset changes, * be we do - it's just that there is no room. * A change that reduced the number of devices should * still be allowed, so set the otherwise useless value of '1' */ info->space_after = 1; } info->disk.raid_disk = -1; switch(role) { case MD_DISK_ROLE_SPARE: /* spare: not active, not sync, not faulty */ info->disk.state = 0; break; case MD_DISK_ROLE_FAULTY: info->disk.state = (1 << MD_DISK_FAULTY); /* faulty */ break; case MD_DISK_ROLE_JOURNAL: info->disk.state = (1 << MD_DISK_JOURNAL); info->disk.raid_disk = role; /* journal uses all 4kB blocks*/ info->space_after = (misc->device_size - info->data_offset) % 8; break; default: info->disk.state = 6; /* active and in sync */ info->disk.raid_disk = role; } if (sb->devflags & WriteMostly1) info->disk.state |= (1 << MD_DISK_WRITEMOSTLY); if (sb->devflags & FailFast1) info->disk.state |= (1 << MD_DISK_FAILFAST); info->events = __le64_to_cpu(sb->events); sprintf(info->text_version, "1.%d", st->minor_version); info->safe_mode_delay = 200; memcpy(info->uuid, sb->set_uuid, 16); strncpy(info->name, sb->set_name, 32); info->name[32] = 0; if ((__le32_to_cpu(sb->feature_map)&MD_FEATURE_REPLACEMENT)) { info->disk.state &= ~(1 << MD_DISK_SYNC); info->disk.state |= 1 << MD_DISK_REPLACEMENT; } if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RECOVERY_OFFSET)) info->recovery_start = __le32_to_cpu(sb->recovery_offset); else info->recovery_start = MaxSector; if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) { info->reshape_active = 1; if ((sb->feature_map & __le32_to_cpu(MD_FEATURE_NEW_OFFSET)) && sb->new_offset != 0) info->reshape_active |= RESHAPE_NO_BACKUP; info->reshape_progress = __le64_to_cpu(sb->reshape_position); info->new_level = __le32_to_cpu(sb->new_level); info->delta_disks = __le32_to_cpu(sb->delta_disks); info->new_layout = __le32_to_cpu(sb->new_layout); info->new_chunk = __le32_to_cpu(sb->new_chunk)<<9; if (info->delta_disks < 0) info->array.raid_disks -= info->delta_disks; } else info->reshape_active = 0; info->recovery_blocked = info->reshape_active; if (map) for (i = 0; i < map_disks; i++) map[i] = 0; for (i = 0; i < __le32_to_cpu(sb->max_dev); i++) { role = __le16_to_cpu(sb->dev_roles[i]); if (/*role == MD_DISK_ROLE_SPARE || */role < (unsigned) info->array.raid_disks) { working++; if (map && role < map_disks) map[role] = 1; } } info->array.working_disks = working; if (sb->feature_map & __le32_to_cpu(MD_FEATURE_JOURNAL)) { info->journal_device_required = 1; info->consistency_policy = CONSISTENCY_POLICY_JOURNAL; } else if (md_feature_any_ppl_on(sb->feature_map)) { info->consistency_policy = CONSISTENCY_POLICY_PPL; } else if (sb->feature_map & __le32_to_cpu(MD_FEATURE_BITMAP_OFFSET)) { info->consistency_policy = CONSISTENCY_POLICY_BITMAP; } else if (info->array.level <= 0) { info->consistency_policy = CONSISTENCY_POLICY_NONE; } else { info->consistency_policy = CONSISTENCY_POLICY_RESYNC; } info->journal_clean = 0; } static struct mdinfo *container_content1(struct supertype *st, char *subarray) { struct mdinfo *info; if (subarray) return NULL; info = xmalloc(sizeof(*info)); getinfo_super1(st, info, NULL); return info; } static int update_super1(struct supertype *st, struct mdinfo *info, enum update_opt update, char *devname, int verbose, int uuid_set, char *homehost) { /* NOTE: for 'assemble' and 'force' we need to return non-zero * if any change was made. For others, the return value is * ignored. */ int rv = 0; struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); if (update == UOPT_HOMEHOST && homehost) { /* * Note that 'homehost' is special as it is really * a "name" update. */ char *c; update = UOPT_NAME; c = strchr(sb->set_name, ':'); if (c) snprintf(info->name, sizeof(info->name), "%s", c + 1); else snprintf(info->name, sizeof(info->name), "%s", sb->set_name); } switch (update) { case UOPT_NAME: { int namelen; if (!info->name[0]) snprintf(info->name, sizeof(info->name), "%d", info->array.md_minor); memset(sb->set_name, 0, sizeof(sb->set_name)); namelen = strnlen(homehost, MD_NAME_MAX) + 1 + strnlen(info->name, MD_NAME_MAX); if (homehost && strchr(info->name, ':') == NULL && namelen < MD_NAME_MAX) { strcpy(sb->set_name, homehost); strcat(sb->set_name, ":"); strcat(sb->set_name, info->name); } else { namelen = min((int)strnlen(info->name, MD_NAME_MAX), (int)sizeof(sb->set_name) - 1); memcpy(sb->set_name, info->name, namelen); memset(&sb->set_name[namelen], '\0', sizeof(sb->set_name) - namelen); } break; } case UOPT_SPEC_FORCE_ONE: /* Not enough devices for a working array, * so bring this one up-to-date */ if (sb->events != __cpu_to_le64(info->events)) rv = 1; sb->events = __cpu_to_le64(info->events); break; case UOPT_SPEC_FORCE_ARRAY: /* Degraded array and 'force' requests to * maybe need to mark it 'clean'. */ switch(__le32_to_cpu(sb->level)) { case 4: case 5: case 6: /* need to force clean */ if (sb->resync_offset != MaxSector) rv = 1; sb->resync_offset = MaxSector; } break; case UOPT_SPEC_ASSEMBLE: { int d = info->disk.number; int want; if (info->disk.state & (1<disk.raid_disk; else if (info->disk.state & (1<dev_roles[d] != __cpu_to_le16(want)) { sb->dev_roles[d] = __cpu_to_le16(want); rv = 1; } if (info->reshape_active && sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) && info->delta_disks >= 0 && info->reshape_progress < __le64_to_cpu(sb->reshape_position)) { sb->reshape_position = __cpu_to_le64(info->reshape_progress); rv = 1; } if (info->reshape_active && sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) && info->delta_disks < 0 && info->reshape_progress > __le64_to_cpu(sb->reshape_position)) { sb->reshape_position = __cpu_to_le64(info->reshape_progress); rv = 1; } break; } case UOPT_SPEC_LINEAR_GROW_NEW: { int i; int fd; int max = __le32_to_cpu(sb->max_dev); if (max > MAX_DEVS) return -2; for (i = 0; i < max; i++) if (__le16_to_cpu(sb->dev_roles[i]) >= MD_DISK_ROLE_FAULTY) break; if (i != info->disk.number) return -2; sb->dev_number = __cpu_to_le32(i); if (i == max) sb->max_dev = __cpu_to_le32(max + 1); if (i > max) return -2; random_uuid(sb->device_uuid); sb->dev_roles[i] = __cpu_to_le16(info->disk.raid_disk); fd = open(devname, O_RDONLY); if (fd >= 0) { unsigned long long ds; get_dev_size(fd, devname, &ds); close(fd); ds >>= 9; if (__le64_to_cpu(sb->super_offset) < __le64_to_cpu(sb->data_offset)) { sb->data_size = __cpu_to_le64( ds - __le64_to_cpu(sb->data_offset)); } else { ds -= 8 * 2; ds &= ~(unsigned long long)(4 * 2 - 1); sb->super_offset = __cpu_to_le64(ds); sb->data_size = __cpu_to_le64( ds - __le64_to_cpu(sb->data_offset)); } } break; } case UOPT_SPEC_LINEAR_GROW_UPDATE: { int max = __le32_to_cpu(sb->max_dev); int i = info->disk.number; if (max > MAX_DEVS || i > MAX_DEVS) return -2; if (i > max) return -2; if (i == max) sb->max_dev = __cpu_to_le32(max + 1); sb->raid_disks = __cpu_to_le32(info->array.raid_disks); sb->dev_roles[info->disk.number] = __cpu_to_le16(info->disk.raid_disk); break; } case UOPT_RESYNC: /* make sure resync happens */ sb->resync_offset = 0; break; case UOPT_UUID: copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid); if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) memcpy(bms->uuid, sb->set_uuid, 16); break; case UOPT_NO_BITMAP: sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); if (bms->version == BITMAP_MAJOR_CLUSTERED && !IsBitmapDirty(devname)) sb->resync_offset = MaxSector; break; case UOPT_BBL: { /* only possible if there is room after the bitmap, or if * there is no bitmap */ unsigned long long sb_offset = __le64_to_cpu(sb->super_offset); unsigned long long data_offset = __le64_to_cpu(sb->data_offset); long bitmap_offset = 0; long bm_sectors = 0; long space; if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { bitmap_offset = (long)__le32_to_cpu(sb->bitmap_offset); bm_sectors = calc_bitmap_size(bms, 4096) >> 9; } else if (md_feature_any_ppl_on(sb->feature_map)) { bitmap_offset = (long)__le16_to_cpu(sb->ppl.offset); bm_sectors = (long)__le16_to_cpu(sb->ppl.size); } if (sb_offset < data_offset) { /* * 1.1 or 1.2. Put bbl after bitmap leaving * at least 32K */ long bb_offset; bb_offset = sb_offset + 8; if (bm_sectors && bitmap_offset > 0) bb_offset = bitmap_offset + bm_sectors; while (bb_offset < (long)sb_offset + 8 + 32*2 && bb_offset + 8+8 <= (long)data_offset) bb_offset += 8; if (bb_offset + 8 <= (long)data_offset) { sb->bblog_size = __cpu_to_le16(8); sb->bblog_offset = __cpu_to_le32(bb_offset); } } else { if (bm_sectors && bitmap_offset < 0) space = -bitmap_offset - bm_sectors; else space = sb_offset - data_offset - __le64_to_cpu(sb->data_size); if (space >= 8) { sb->bblog_size = __cpu_to_le16(8); sb->bblog_offset = __cpu_to_le32((unsigned)-8); } } break; } case UOPT_NO_BBL: if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BAD_BLOCKS)) pr_err("Cannot remove active bbl from %s\n",devname); else { sb->bblog_size = 0; sb->bblog_shift = 0; sb->bblog_offset = 0; } break; case UOPT_FORCE_NO_BBL: sb->feature_map &= ~ __cpu_to_le32(MD_FEATURE_BAD_BLOCKS); sb->bblog_size = 0; sb->bblog_shift = 0; sb->bblog_offset = 0; break; case UOPT_PPL: { unsigned long long sb_offset = __le64_to_cpu(sb->super_offset); unsigned long long data_offset = __le64_to_cpu(sb->data_offset); unsigned long long data_size = __le64_to_cpu(sb->data_size); long bb_offset = __le32_to_cpu(sb->bblog_offset); int space; int offset; if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { pr_err("Cannot add PPL to array with bitmap\n"); return -2; } if (sb->feature_map & __cpu_to_le32(MD_FEATURE_JOURNAL)) { pr_err("Cannot add PPL to array with journal\n"); return -2; } if (sb_offset < data_offset) { if (bb_offset) space = bb_offset - 8; else space = data_offset - sb_offset - 8; offset = 8; } else { offset = -(sb_offset - data_offset - data_size); if (offset < INT16_MIN) offset = INT16_MIN; space = -(offset - bb_offset); } if (space < (PPL_HEADER_SIZE >> 9) + 8) { pr_err("Not enough space to add ppl\n"); return -2; } if (space >= (MULTIPLE_PPL_AREA_SIZE_SUPER1 >> 9)) { space = (MULTIPLE_PPL_AREA_SIZE_SUPER1 >> 9); } else { int optimal_space = choose_ppl_space( __le32_to_cpu(sb->chunksize)); if (space > optimal_space) space = optimal_space; } sb->ppl.offset = __cpu_to_le16(offset); sb->ppl.size = __cpu_to_le16(space); sb->feature_map |= __cpu_to_le32(MD_FEATURE_PPL); break; } case UOPT_NO_PPL: sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_PPL | MD_FEATURE_MUTLIPLE_PPLS); break; case UOPT_DEVICESIZE: if (__le64_to_cpu(sb->super_offset) >= __le64_to_cpu(sb->data_offset)) break; /* * set data_size to device size less data_offset */ struct misc_dev_info *misc = (struct misc_dev_info*) (st->sb + MAX_SB_SIZE + BM_SUPER_SIZE); sb->data_size = __cpu_to_le64( misc->device_size - __le64_to_cpu(sb->data_offset)); break; case UOPT_SPEC_REVERT_RESHAPE_NOBACKUP: case UOPT_REVERT_RESHAPE: rv = -2; if (!(sb->feature_map & __cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE))) pr_err("No active reshape to revert on %s\n", devname); else { __u32 temp; unsigned long long reshape_sectors; long reshape_chunk; rv = 0; /* If the reshape hasn't started, just stop it. * It is conceivable that a stripe was modified but * the metadata not updated. In that case the backup * should have been used to get passed the critical stage. * If that couldn't happen, the "-nobackup" version * will be used. */ if (update == UOPT_SPEC_REVERT_RESHAPE_NOBACKUP && sb->reshape_position == 0 && (__le32_to_cpu(sb->delta_disks) > 0 || (__le32_to_cpu(sb->delta_disks) == 0 && !(sb->feature_map & __cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS))))) { sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); sb->raid_disks = __cpu_to_le32(__le32_to_cpu(sb->raid_disks) - __le32_to_cpu(sb->delta_disks)); sb->delta_disks = 0; goto done; } /* reshape_position is a little messy. * Its value must be a multiple of the larger * chunk size, and of the "after" data disks. * So when reverting we need to change it to * be a multiple of the new "after" data disks, * which is the old "before". * If it isn't already a multiple of 'before', * the only thing we could do would be * copy some block around on the disks, which * is easy to get wrong. * So we reject a revert-reshape unless the * alignment is good. */ if (is_level456(__le32_to_cpu(sb->level))) { reshape_sectors = __le64_to_cpu(sb->reshape_position); reshape_chunk = __le32_to_cpu(sb->new_chunk); reshape_chunk *= __le32_to_cpu(sb->raid_disks) - __le32_to_cpu(sb->delta_disks) - (__le32_to_cpu(sb->level)==6 ? 2 : 1); if (reshape_sectors % reshape_chunk) { pr_err("Reshape position is not suitably aligned.\n"); pr_err("Try normal assembly and stop again\n"); return -2; } } sb->raid_disks = __cpu_to_le32(__le32_to_cpu(sb->raid_disks) - __le32_to_cpu(sb->delta_disks)); if (sb->delta_disks == 0) sb->feature_map ^= __cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); else sb->delta_disks = __cpu_to_le32(-__le32_to_cpu(sb->delta_disks)); temp = sb->new_layout; sb->new_layout = sb->layout; sb->layout = temp; temp = sb->new_chunk; sb->new_chunk = sb->chunksize; sb->chunksize = temp; if (sb->feature_map & __cpu_to_le32(MD_FEATURE_NEW_OFFSET)) { long offset_delta = (int32_t)__le32_to_cpu(sb->new_offset); sb->data_offset = __cpu_to_le64(__le64_to_cpu(sb->data_offset) + offset_delta); sb->new_offset = __cpu_to_le32(-offset_delta); sb->data_size = __cpu_to_le64(__le64_to_cpu(sb->data_size) - offset_delta); } done:; } break; case UOPT_SPEC__RESHAPE_PROGRESS: sb->reshape_position = __cpu_to_le64(info->reshape_progress); break; case UOPT_SPEC_WRITEMOSTLY: sb->devflags |= WriteMostly1; break; case UOPT_SPEC_READWRITE: sb->devflags &= ~WriteMostly1; break; case UOPT_SPEC_FAILFAST: sb->devflags |= FailFast1; break; case UOPT_SPEC_NOFAILFAST: sb->devflags &= ~FailFast1; break; case UOPT_LAYOUT_ORIGINAL: case UOPT_LAYOUT_ALTERNATE: case UOPT_LAYOUT_UNSPECIFIED: if (__le32_to_cpu(sb->level) != 0) { pr_err("%s: %s only supported for RAID0\n", devname ?: "", map_num(update_options, update)); rv = -1; } else if (update == UOPT_LAYOUT_UNSPECIFIED) { sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_RAID0_LAYOUT); sb->layout = 0; } else { sb->feature_map |= __cpu_to_le32(MD_FEATURE_RAID0_LAYOUT); sb->layout = __cpu_to_le32(update == UOPT_LAYOUT_ORIGINAL ? 1 : 2); } break; default: rv = -1; } sb->sb_csum = calc_sb_1_csum(sb); return rv; } static int init_super1(struct supertype *st, mdu_array_info_t *info, struct shape *s, char *name, char *homehost, int *uuid, unsigned long long data_offset) { struct mdp_superblock_1 *sb; int spares; char defname[10]; int sbsize; if (posix_memalign((void **)&sb, 4096, SUPER1_SIZE) != 0) { pr_err("could not allocate superblock\n"); return 0; } memset(sb, 0, SUPER1_SIZE); st->sb = sb; if (info == NULL) { /* zeroing superblock */ return 0; } spares = info->working_disks - info->active_disks; if (info->raid_disks + spares > MAX_DEVS) { pr_err("too many devices requested: %d+%d > %d\n", info->raid_disks , spares, MAX_DEVS); return 0; } sb->magic = __cpu_to_le32(MD_SB_MAGIC); sb->major_version = __cpu_to_le32(1); sb->feature_map = 0; sb->pad0 = 0; if (uuid) copy_uuid(sb->set_uuid, uuid, super1.swapuuid); else random_uuid(sb->set_uuid);; if (name == NULL || *name == 0) { sprintf(defname, "%d", info->md_minor); name = defname; } if (homehost && strchr(name, ':') == NULL && strlen(homehost) + 1 + strlen(name) < 32) { strcpy(sb->set_name, homehost); strcat(sb->set_name, ":"); strcat(sb->set_name, name); } else { int namelen; namelen = min((int)strlen(name), (int)sizeof(sb->set_name) - 1); memcpy(sb->set_name, name, namelen); memset(&sb->set_name[namelen], '\0', sizeof(sb->set_name) - namelen); } sb->ctime = __cpu_to_le64((unsigned long long)time(0)); sb->level = __cpu_to_le32(info->level); sb->layout = __cpu_to_le32(info->layout); sb->size = __cpu_to_le64(s->size*2ULL); sb->chunksize = __cpu_to_le32(info->chunk_size>>9); sb->raid_disks = __cpu_to_le32(info->raid_disks); sb->data_offset = __cpu_to_le64(data_offset); sb->data_size = __cpu_to_le64(0); sb->super_offset = __cpu_to_le64(0); sb->recovery_offset = __cpu_to_le64(0); sb->utime = sb->ctime; sb->events = __cpu_to_le64(1); if (info->state & (1<resync_offset = MaxSector; else sb->resync_offset = 0; sbsize = sizeof(struct mdp_superblock_1) + 2 * (info->raid_disks + spares); sbsize = ROUND_UP(sbsize, 512); sb->max_dev = __cpu_to_le32((sbsize - sizeof(struct mdp_superblock_1)) / 2); memset(sb->dev_roles, 0xff, MAX_SB_SIZE - sizeof(struct mdp_superblock_1)); if (s->consistency_policy == CONSISTENCY_POLICY_PPL) sb->feature_map |= __cpu_to_le32(MD_FEATURE_PPL); return 1; } struct devinfo { int fd; char *devname; long long data_offset; unsigned long long dev_size; mdu_disk_info_t disk; struct devinfo *next; }; /* Add a device to the superblock being created */ static int add_to_super1(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname, unsigned long long data_offset) { struct mdp_superblock_1 *sb = st->sb; __u16 *rp = sb->dev_roles + dk->number; struct devinfo *di, **dip; int dk_state; dk_state = dk->state & ~(1<raid_disk); else if (dk_state & (1< spare */ *rp = MD_DISK_ROLE_SPARE; else *rp = MD_DISK_ROLE_FAULTY; if (dk->number >= (int)__le32_to_cpu(sb->max_dev) && __le32_to_cpu(sb->max_dev) < MAX_DEVS) sb->max_dev = __cpu_to_le32(dk->number + 1); sb->dev_number = __cpu_to_le32(dk->number); sb->devflags = 0; /* don't copy another disks flags */ sb->sb_csum = calc_sb_1_csum(sb); dip = (struct devinfo **)&st->info; while (*dip) dip = &(*dip)->next; di = xmalloc(sizeof(struct devinfo)); di->fd = fd; di->devname = devname; di->disk = *dk; di->data_offset = data_offset; if (is_fd_valid(fd)) get_dev_size(fd, NULL, &di->dev_size); di->next = NULL; *dip = di; return 0; } static int locate_bitmap1(struct supertype *st, int fd, int node_num); static int store_super1(struct supertype *st, int fd) { struct mdp_superblock_1 *sb = st->sb; unsigned long long sb_offset; struct align_fd afd; int sbsize; unsigned long long dsize; if (!get_dev_size(fd, NULL, &dsize)) return 1; dsize >>= 9; if (dsize < 24) return 2; init_afd(&afd, fd); /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); break; case 1: sb_offset = 0; break; case 2: sb_offset = 4*2; break; default: return -EINVAL; } if (sb_offset != __le64_to_cpu(sb->super_offset) && 0 != __le64_to_cpu(sb->super_offset) ) { pr_err("internal error - sb_offset is wrong\n"); abort(); } if (lseek64(fd, sb_offset << 9, 0)< 0LL) return 3; sbsize = ROUND_UP(sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev), 512); if (awrite(&afd, sb, sbsize) != sbsize) return 4; if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { struct bitmap_super_s *bm; bm = (struct bitmap_super_s *)(((char *)sb) + MAX_SB_SIZE); if (__le32_to_cpu(bm->magic) == BITMAP_MAGIC) { locate_bitmap1(st, fd, 0); if (awrite(&afd, bm, sizeof(*bm)) != sizeof(*bm)) return 5; } } fsync(fd); return 0; } static int load_super1(struct supertype *st, int fd, char *devname); static unsigned long choose_bm_space(unsigned long devsize) { /* if the device is bigger than 8Gig, save 64k for bitmap usage, * if bigger than 200Gig, save 128k * NOTE: result must be multiple of 4K else bad things happen * on 4K-sector devices. */ if (devsize < 64*2) return 0; if (devsize - 64*2 >= 200*1024*1024*2) return 128*2; if (devsize - 4*2 > 8*1024*1024*2) return 64*2; return 4*2; } static void free_super1(struct supertype *st); __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len); static int write_init_ppl1(struct supertype *st, struct mdinfo *info, int fd) { struct mdp_superblock_1 *sb = st->sb; void *buf; struct ppl_header *ppl_hdr; int ret; /* first clear entire ppl space */ ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size); if (ret) return ret; ret = posix_memalign(&buf, 4096, PPL_HEADER_SIZE); if (ret) { pr_err("Failed to allocate PPL header buffer\n"); return ret; } memset(buf, 0, PPL_HEADER_SIZE); ppl_hdr = buf; memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED); ppl_hdr->signature = __cpu_to_le32(~crc32c_le(~0, sb->set_uuid, sizeof(sb->set_uuid))); ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE)); if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) { ret = errno; perror("Failed to seek to PPL header location"); } if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) { ret = errno; perror("Write PPL header failed"); } if (!ret) fsync(fd); free(buf); return ret; } #define META_BLOCK_SIZE 4096 static int write_empty_r5l_meta_block(struct supertype *st, int fd) { struct r5l_meta_block *mb; struct mdp_superblock_1 *sb = st->sb; struct align_fd afd; __u32 crc; init_afd(&afd, fd); if (posix_memalign((void **)&mb, 4096, META_BLOCK_SIZE) != 0) { pr_err("Could not allocate memory for the meta block.\n"); return 1; } memset(mb, 0, META_BLOCK_SIZE); mb->magic = __cpu_to_le32(R5LOG_MAGIC); mb->version = R5LOG_VERSION; mb->meta_size = __cpu_to_le32(sizeof(struct r5l_meta_block)); mb->seq = __cpu_to_le64(random32()); mb->position = __cpu_to_le64(0); crc = crc32c_le(0xffffffff, sb->set_uuid, sizeof(sb->set_uuid)); crc = crc32c_le(crc, (void *)mb, META_BLOCK_SIZE); mb->checksum = crc; if (lseek64(fd, __le64_to_cpu(sb->data_offset) * 512, 0) < 0LL) { pr_err("cannot seek to offset of the meta block\n"); goto fail_to_write; } if (awrite(&afd, mb, META_BLOCK_SIZE) != META_BLOCK_SIZE) { pr_err("failed to store write the meta block \n"); goto fail_to_write; } fsync(fd); free(mb); return 0; fail_to_write: free(mb); return 1; } static bool has_raid0_layout(struct mdp_superblock_1 *sb) { if (sb->level == 0 && sb->layout != 0) return true; else return false; } static int write_init_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; struct supertype *refst; int rv = 0; unsigned long long bm_space; struct devinfo *di; unsigned long long dsize, array_size; unsigned long long sb_offset; unsigned long long data_offset; long bm_offset; bool raid0_need_layout = false; /* Since linux kernel v5.4, raid0 always has a layout */ if (has_raid0_layout(sb) && get_linux_version() >= 5004000) raid0_need_layout = true; for (di = st->info; di; di = di->next) { if (di->disk.state & (1 << MD_DISK_JOURNAL)) sb->feature_map |= __cpu_to_le32(MD_FEATURE_JOURNAL); if (has_raid0_layout(sb) && !raid0_need_layout) { struct devinfo *di2 = st->info; unsigned long long s1, s2; s1 = di->dev_size; if (di->data_offset != INVALID_SECTORS) s1 -= di->data_offset; s1 /= __le32_to_cpu(sb->chunksize); s2 = di2->dev_size; if (di2->data_offset != INVALID_SECTORS) s2 -= di2->data_offset; s2 /= __le32_to_cpu(sb->chunksize); if (s1 != s2) raid0_need_layout = true; } } for (di = st->info; di; di = di->next) { if (di->disk.state & (1 << MD_DISK_FAULTY)) continue; if (di->fd < 0) continue; while (Kill(di->devname, NULL, 0, -1, 1) == 0) ; sb->dev_number = __cpu_to_le32(di->disk.number); if (di->disk.state & (1<devflags |= WriteMostly1; else sb->devflags &= ~WriteMostly1; if (di->disk.state & (1<devflags |= FailFast1; else sb->devflags &= ~FailFast1; random_uuid(sb->device_uuid); if (!(di->disk.state & (1<events = 0; refst = dup_super(st); if (load_super1(refst, di->fd, NULL)==0) { struct mdp_superblock_1 *refsb = refst->sb; memcpy(sb->device_uuid, refsb->device_uuid, 16); if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) { /* same array, so preserve events and * dev_number */ sb->events = refsb->events; } free_super1(refst); } free(refst); if (!get_dev_size(di->fd, NULL, &dsize)) { rv = 1; goto error_out; } dsize >>= 9; if (dsize < 24) { close(di->fd); rv = 2; goto error_out; } /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. * data_offset has already been set. */ array_size = __le64_to_cpu(sb->size); /* work out how much space we left for a bitmap */ if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { bitmap_super_t *bms = (bitmap_super_t *) (((char *)sb) + MAX_SB_SIZE); bm_space = calc_bitmap_size(bms, 4096) >> 9; bm_offset = (long)__le32_to_cpu(sb->bitmap_offset); } else if (md_feature_any_ppl_on(sb->feature_map)) { bm_space = MULTIPLE_PPL_AREA_SIZE_SUPER1 >> 9; if (st->minor_version == 0) bm_offset = -bm_space - 8; else bm_offset = 8; sb->ppl.offset = __cpu_to_le16(bm_offset); sb->ppl.size = __cpu_to_le16(bm_space); } else { bm_space = choose_bm_space(array_size); bm_offset = 8; } data_offset = di->data_offset; if (data_offset == INVALID_SECTORS) data_offset = st->data_offset; switch(st->minor_version) { case 0: /* Add 8 sectors for bad block log */ bm_space += 8; if (data_offset == INVALID_SECTORS) data_offset = 0; sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); sb->data_offset = __cpu_to_le64(data_offset); sb->super_offset = __cpu_to_le64(sb_offset); if (sb_offset < array_size + bm_space) bm_space = sb_offset - array_size; sb->data_size = __cpu_to_le64(sb_offset - bm_space); if (bm_space >= 8) { sb->bblog_size = __cpu_to_le16(8); sb->bblog_offset = __cpu_to_le32((unsigned)-8); } break; case 1: case 2: sb_offset = st->minor_version == 2 ? 8 : 0; sb->super_offset = __cpu_to_le64(sb_offset); if (data_offset == INVALID_SECTORS) data_offset = sb_offset + 16; sb->data_offset = __cpu_to_le64(data_offset); sb->data_size = __cpu_to_le64(dsize - data_offset); if (data_offset >= sb_offset+bm_offset+bm_space+8) { sb->bblog_size = __cpu_to_le16(8); sb->bblog_offset = __cpu_to_le32(bm_offset + bm_space); } else if (data_offset >= sb_offset + 16) { sb->bblog_size = __cpu_to_le16(8); /* '8' sectors for the bblog, and 'sb_offset' * because we want offset from superblock, not * start of device. */ sb->bblog_offset = __cpu_to_le32(data_offset - 8 - sb_offset); } break; default: pr_err("Failed to write invalid metadata format 1.%i to %s\n", st->minor_version, di->devname); rv = -EINVAL; goto out; } /* * Disable badblock log on clusters, or when * explicitly requested */ if (st->nodes > 0 || conf_get_create_info()->bblist == 0) { sb->bblog_size = 0; sb->bblog_offset = 0; } /* RAID0 needs a layout if devices aren't all the same size */ if (raid0_need_layout) sb->feature_map |= __cpu_to_le32(MD_FEATURE_RAID0_LAYOUT); sb->sb_csum = calc_sb_1_csum(sb); rv = store_super1(st, di->fd); if (rv == 0 && (di->disk.state & (1 << MD_DISK_JOURNAL))) { rv = write_empty_r5l_meta_block(st, di->fd); if (rv) goto error_out; } if (rv == 0 && (__le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { rv = st->ss->write_bitmap(st, di->fd, NodeNumUpdate); } else if (rv == 0 && md_feature_any_ppl_on(sb->feature_map)) { struct mdinfo info; st->ss->getinfo_super(st, &info, NULL); rv = st->ss->write_init_ppl(st, &info, di->fd); } close(di->fd); di->fd = -1; if (rv) goto error_out; } error_out: if (rv) pr_err("Failed to write metadata to %s\n", di->devname); out: return rv; } static int compare_super1(struct supertype *st, struct supertype *tst, int verbose) { /* * return: * 0 same, or first was empty, and second was copied * 1 second had wrong number * 2 wrong uuid * 3 wrong other info */ struct mdp_superblock_1 *first = st->sb; struct mdp_superblock_1 *second = tst->sb; if (second->magic != __cpu_to_le32(MD_SB_MAGIC)) return 1; if (second->major_version != __cpu_to_le32(1)) return 1; if (!first) { if (posix_memalign((void **)&first, 4096, SUPER1_SIZE) != 0) { pr_err("could not allocate superblock\n"); return 1; } memcpy(first, second, SUPER1_SIZE); st->sb = first; return 0; } if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0) return 2; if (first->ctime != second->ctime || first->level != second->level || first->layout != second->layout || first->size != second->size || first->chunksize != second->chunksize || first->raid_disks != second->raid_disks) return 3; return 0; } static int load_super1(struct supertype *st, int fd, char *devname) { unsigned long long dsize; unsigned long long sb_offset; struct mdp_superblock_1 *super; int uuid[4]; struct bitmap_super_s *bsb; struct misc_dev_info *misc; struct align_fd afd; free_super1(st); init_afd(&afd, fd); if (st->ss == NULL || st->minor_version == -1) { int bestvers = -1; struct supertype tst; __u64 bestctime = 0; /* guess... choose latest ctime */ memset(&tst, 0, sizeof(tst)); tst.ss = &super1; for (tst.minor_version = 0; tst.minor_version <= 2; tst.minor_version++) { tst.ignore_hw_compat = st->ignore_hw_compat; switch(load_super1(&tst, fd, devname)) { case 0: super = tst.sb; if (bestvers == -1 || bestctime < __le64_to_cpu(super->ctime)) { bestvers = tst.minor_version; bestctime = __le64_to_cpu(super->ctime); } free(super); tst.sb = NULL; break; case 1: return 1; /*bad device */ case 2: break; /* bad, try next */ } } if (bestvers != -1) { int rv; tst.minor_version = bestvers; tst.ss = &super1; tst.max_devs = MAX_DEVS; rv = load_super1(&tst, fd, devname); if (rv == 0) *st = tst; return rv; } return 2; } if (!get_dev_size(fd, devname, &dsize)) return 1; dsize >>= 9; if (dsize < 24) { if (devname) pr_err("%s is too small for md: size is %llu sectors.\n", devname, dsize); return 1; } /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); break; case 1: sb_offset = 0; break; case 2: sb_offset = 4*2; break; default: return -EINVAL; } if (lseek64(fd, sb_offset << 9, 0)< 0LL) { if (devname) pr_err("Cannot seek to superblock on %s: %s\n", devname, strerror(errno)); return 1; } if (posix_memalign((void **)&super, 4096, SUPER1_SIZE) != 0) { pr_err("could not allocate superblock\n"); return 1; } memset(super, 0, SUPER1_SIZE); if (aread(&afd, super, MAX_SB_SIZE) != MAX_SB_SIZE) { if (devname) pr_err("Cannot read superblock on %s\n", devname); free(super); return 1; } if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) { if (devname) pr_err("No super block found on %s (Expected magic %08x, got %08x)\n", devname, MD_SB_MAGIC, __le32_to_cpu(super->magic)); free(super); return 2; } if (__le32_to_cpu(super->major_version) != 1) { if (devname) pr_err("Cannot interpret superblock on %s - version is %d\n", devname, __le32_to_cpu(super->major_version)); free(super); return 2; } if (__le64_to_cpu(super->super_offset) != sb_offset) { if (devname) pr_err("No superblock found on %s (super_offset is wrong)\n", devname); free(super); return 2; } bsb = (struct bitmap_super_s *)(((char *)super) + MAX_SB_SIZE); misc = (struct misc_dev_info*) (((char *)super) + MAX_SB_SIZE+BM_SUPER_SIZE); misc->device_size = dsize; if (st->data_offset == INVALID_SECTORS) st->data_offset = __le64_to_cpu(super->data_offset); if (st->minor_version >= 1 && st->ignore_hw_compat == 0 && ((role_from_sb(super) != MD_DISK_ROLE_JOURNAL && dsize < (__le64_to_cpu(super->data_offset) + __le64_to_cpu(super->size))) || dsize < (__le64_to_cpu(super->data_offset) + __le64_to_cpu(super->data_size)))) { if (devname) pr_err("Device %s is not large enough for data described in superblock\n", devname); free(super); return 2; } st->sb = super; /* Now check on the bitmap superblock */ if ((__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) == 0) return 0; /* Read the bitmap superblock and make sure it looks * valid. If it doesn't clear the bit. An --assemble --force * should get that written out. */ locate_bitmap1(st, fd, 0); if (aread(&afd, bsb, 512) != 512) goto no_bitmap; uuid_from_super1(st, uuid); if (__le32_to_cpu(bsb->magic) != BITMAP_MAGIC || memcmp(bsb->uuid, uuid, 16) != 0) goto no_bitmap; return 0; no_bitmap: super->feature_map = __cpu_to_le32(__le32_to_cpu(super->feature_map) & ~MD_FEATURE_BITMAP_OFFSET); return 0; } static struct supertype *match_metadata_desc1(char *arg) { struct supertype *st = xcalloc(1, sizeof(*st)); st->container_devnm[0] = 0; st->ss = &super1; st->max_devs = MAX_DEVS; st->sb = NULL; st->data_offset = INVALID_SECTORS; /* leading zeros can be safely ignored. --detail generates them. */ while (*arg == '0') arg++; if (strcmp(arg, "1.0") == 0 || strcmp(arg, "1.00") == 0) { st->minor_version = 0; return st; } if (strcmp(arg, "1.1") == 0 || strcmp(arg, "1.01") == 0 ) { st->minor_version = 1; return st; } if (strcmp(arg, "1.2") == 0 || #ifndef DEFAULT_OLD_METADATA /* ifdef in super0.c */ strcmp(arg, "default") == 0 || #endif /* DEFAULT_OLD_METADATA */ strcmp(arg, "1.02") == 0) { st->minor_version = 2; return st; } if (strcmp(arg, "1") == 0 || strcmp(arg, "default") == 0) { st->minor_version = -1; return st; } free(st); return NULL; } /* find available size on device with this devsize, using * superblock type st, and reserving 'reserve' sectors for * a possible bitmap */ static __u64 avail_size1(struct supertype *st, __u64 devsize, unsigned long long data_offset) { struct mdp_superblock_1 *super = st->sb; int bmspace = 0; int bbspace = 0; if (devsize < 24) return 0; if (__le32_to_cpu(super->feature_map) & MD_FEATURE_BITMAP_OFFSET) { /* hot-add. allow for actual size of bitmap */ struct bitmap_super_s *bsb; bsb = (struct bitmap_super_s *)(((char *)super) + MAX_SB_SIZE); bmspace = calc_bitmap_size(bsb, 4096) >> 9; } else if (md_feature_any_ppl_on(super->feature_map)) { bmspace = __le16_to_cpu(super->ppl.size); } /* Allow space for bad block log */ if (super->bblog_size) bbspace = __le16_to_cpu(super->bblog_size); if (st->minor_version < 0) /* not specified, so time to set default */ st->minor_version = 2; if (data_offset == INVALID_SECTORS) data_offset = st->data_offset; if (data_offset != INVALID_SECTORS) switch(st->minor_version) { case 0: return devsize - data_offset - 8*2 - bbspace; case 1: case 2: return devsize - data_offset; default: return 0; } devsize -= bmspace; switch(st->minor_version) { case 0: /* at end */ return ((devsize - 8*2 - bbspace ) & ~(4*2-1)); case 1: /* at start, 4K for superblock and possible bitmap */ return devsize - 4*2 - bbspace; case 2: /* 4k from start, 4K for superblock and possible bitmap */ return devsize - (4+4)*2 - bbspace; } return 0; } static int add_internal_bitmap1(struct supertype *st, int *chunkp, int delay, int write_behind, unsigned long long size, int may_change, int major) { /* * If not may_change, then this is a 'Grow' without sysfs support for * bitmaps, and the bitmap must fit after the superblock at 1K offset. * If may_change, then this is create or a Grow with sysfs support, * and we can put the bitmap wherever we like. * * size is in sectors, chunk is in bytes !!! */ unsigned long long bits; unsigned long long max_bits; unsigned long long min_chunk; long offset; long bbl_offset, bbl_size; unsigned long long chunk = *chunkp; int room = 0; int creating = 0; int len; struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); int uuid[4]; if (__le64_to_cpu(sb->data_size) == 0) /* * Must be creating the array, else data_size * would be non-zero */ creating = 1; switch(st->minor_version) { case 0: /* * either 3K after the superblock (when hot-add), * or some amount of space before. */ if (creating) { /* * We are creating array, so we *know* how much room has * been left. */ offset = 0; bbl_size = 8; room = choose_bm_space(__le64_to_cpu(sb->size)) + bbl_size; } else { room = __le64_to_cpu(sb->super_offset) - __le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->data_size); bbl_size = __le16_to_cpu(sb->bblog_size); if (bbl_size < 8) bbl_size = 8; bbl_offset = (__s32)__le32_to_cpu(sb->bblog_offset); if (bbl_size < -bbl_offset) bbl_size = -bbl_offset; if (!may_change || (room < 3*2 && __le32_to_cpu(sb->max_dev) <= 384)) { room = 3*2; offset = 1*2; bbl_size = 0; } else { offset = 0; /* means movable offset */ } } break; case 1: case 2: /* between superblock and data */ if (creating) { offset = 4*2; bbl_size = 8; room = choose_bm_space(__le64_to_cpu(sb->size)) + bbl_size; } else { room = __le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset); bbl_size = __le16_to_cpu(sb->bblog_size); if (bbl_size) room = __le32_to_cpu(sb->bblog_offset) + bbl_size; else bbl_size = 8; if (!may_change) { room -= 2; /* Leave 1K for superblock */ offset = 2; bbl_size = 0; } else { room -= 4*2; /* leave 4K for superblock */ offset = 4*2; } } break; default: return -ENOSPC; } room -= bbl_size; if (chunk == UnSet && room > 128*2) /* Limit to 128K of bitmap when chunk size not requested */ room = 128*2; if (room <= 1) /* No room for a bitmap */ return -ENOSPC; max_bits = (room * 512 - sizeof(bitmap_super_t)) * 8; min_chunk = 4096; /* sub-page chunks don't work yet.. */ bits = (size * 512) / min_chunk + 1; while (bits > max_bits) { min_chunk *= 2; bits = (bits + 1) / 2; } if (chunk == UnSet) { /* For practical purpose, 64Meg is a good * default chunk size for internal bitmaps. */ chunk = min_chunk; if (chunk < 64*1024*1024) chunk = 64*1024*1024; } else if (chunk < min_chunk) return -EINVAL; /* chunk size too small */ if (chunk == 0) /* rounding problem */ return -EINVAL; if (offset == 0) { /* start bitmap on a 4K boundary with enough space for * the bitmap */ bits = (size * 512) / chunk + 1; room = ((bits + 7) / 8 + sizeof(bitmap_super_t) + 4095) / 4096; room *= 8; /* convert 4K blocks to sectors */ offset = -room - bbl_size; } sb->bitmap_offset = (int32_t)__cpu_to_le32(offset); sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | MD_FEATURE_BITMAP_OFFSET); memset(bms, 0, sizeof(*bms)); bms->magic = __cpu_to_le32(BITMAP_MAGIC); bms->version = __cpu_to_le32(major); uuid_from_super1(st, uuid); memcpy(bms->uuid, uuid, 16); bms->chunksize = __cpu_to_le32(chunk); bms->daemon_sleep = __cpu_to_le32(delay); bms->sync_size = __cpu_to_le64(size); bms->write_behind = __cpu_to_le32(write_behind); bms->nodes = __cpu_to_le32(st->nodes); if (st->nodes) sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | MD_FEATURE_BITMAP_VERSIONED); if (st->cluster_name) { len = sizeof(bms->cluster_name); strncpy((char *)bms->cluster_name, st->cluster_name, len); bms->cluster_name[len - 1] = '\0'; } *chunkp = chunk; return 0; } static int locate_bitmap1(struct supertype *st, int fd, int node_num) { unsigned long long offset, bm_sectors_per_node; struct mdp_superblock_1 *sb; bitmap_super_t *bms; int mustfree = 0; int ret; if (!st->sb) { if (st->ss->load_super(st, fd, NULL)) return -1; /* no error I hope... */ mustfree = 1; } sb = st->sb; if ((__le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) ret = 0; else ret = -1; offset = __le64_to_cpu(sb->super_offset) + (int32_t)__le32_to_cpu(sb->bitmap_offset); if (node_num) { bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); bm_sectors_per_node = calc_bitmap_size(bms, 4096) >> 9; offset += bm_sectors_per_node * node_num; } if (mustfree) free(sb); if (lseek64(fd, offset<<9, 0) < 0) { pr_err("lseek fails\n"); ret = -1; } return ret; } static int write_bitmap1(struct supertype *st, int fd, enum bitmap_update update) { struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t *)(((char *)sb) + MAX_SB_SIZE); int rv = 0; void *buf; int towrite, n, len; struct align_fd afd; unsigned int i = 0; unsigned long long total_bm_space, bm_space_per_node; switch (update) { case NameUpdate: /* update cluster name */ if (st->cluster_name) { len = sizeof(bms->cluster_name); memset((char *)bms->cluster_name, 0, len); strncpy((char *)bms->cluster_name, st->cluster_name, len); bms->cluster_name[len - 1] = '\0'; } break; case NodeNumUpdate: /* cluster md only supports superblock 1.2 now */ if (st->minor_version != 2 && bms->version == BITMAP_MAJOR_CLUSTERED) { pr_err("Warning: cluster md only works with superblock 1.2\n"); return -EINVAL; } if (bms->version == BITMAP_MAJOR_CLUSTERED) { if (st->nodes == 1) { /* the parameter for nodes is not valid */ pr_err("Warning: cluster-md at least needs two nodes\n"); return -EINVAL; } else if (st->nodes == 0) { /* * parameter "--nodes" is not specified, (eg, add a disk to * clustered raid) */ break; } else if (__cpu_to_le32(st->nodes) < bms->nodes) { /* * Since the nodes num is not increased, no * need to check the space enough or not, * just update bms->nodes */ bms->nodes = __cpu_to_le32(st->nodes); break; } } else { /* * no need to change bms->nodes for other * bitmap types */ if (st->nodes) pr_err("Warning: --nodes option is only suitable for clustered bitmap\n"); break; } /* * Each node has an independent bitmap, it is necessary to * calculate the space is enough or not, first get how many * bytes for the total bitmap */ bm_space_per_node = calc_bitmap_size(bms, 4096); total_bm_space = 512 * (__le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset)); /* leave another 4k for superblock */ total_bm_space = total_bm_space - 4096; if (bm_space_per_node * st->nodes > total_bm_space) { pr_err("Warning: The max num of nodes can't exceed %llu\n", total_bm_space / bm_space_per_node); return -ENOMEM; } bms->nodes = __cpu_to_le32(st->nodes); break; case NoUpdate: default: break; } init_afd(&afd, fd); if (locate_bitmap1(st, fd, 0) < 0) { pr_err("Error: Invalid bitmap\n"); return -EINVAL; } if (posix_memalign(&buf, 4096, 4096)) return -ENOMEM; do { /* Only the bitmap[0] should resync * whole device on initial assembly */ if (i) memset(buf, 0x00, 4096); else memset(buf, 0xff, 4096); memcpy(buf, (char *)bms, sizeof(bitmap_super_t)); /* * use 4096 boundary if bitmap_offset is aligned * with 8 sectors, then it should compatible with * older mdadm. */ if (__le32_to_cpu(sb->bitmap_offset) & 7) towrite = calc_bitmap_size(bms, 512); else towrite = calc_bitmap_size(bms, 4096); while (towrite > 0) { n = towrite; if (n > 4096) n = 4096; n = awrite(&afd, buf, n); if (n > 0) towrite -= n; else break; if (i) memset(buf, 0x00, 4096); else memset(buf, 0xff, 4096); } fsync(fd); if (towrite) { rv = -2; break; } } while (++i < __le32_to_cpu(bms->nodes)); free(buf); return rv; } static void free_super1(struct supertype *st) { if (st->sb) free(st->sb); while (st->info) { struct devinfo *di = st->info; st->info = di->next; if (di->fd >= 0) close(di->fd); free(di); } st->sb = NULL; } static int validate_geometry1(struct supertype *st, int level, int layout, int raiddisks, int *chunk, unsigned long long size, unsigned long long data_offset, char *subdev, unsigned long long *freesize, int consistency_policy, int verbose) { unsigned long long ldsize, devsize; int bmspace; unsigned long long headroom; unsigned long long overhead; int fd; if (is_container(level)) { if (verbose) pr_err("1.x metadata does not support containers\n"); return 0; } if (*chunk == UnSet) *chunk = DEFAULT_CHUNK; if (!subdev) return 1; if (st->minor_version < 0) /* not specified, so time to set default */ st->minor_version = 2; fd = open(subdev, O_RDONLY|O_EXCL, 0); if (fd < 0) { if (verbose) pr_err("super1.x cannot open %s: %s\n", subdev, strerror(errno)); return 0; } if (!get_dev_size(fd, subdev, &ldsize)) { close(fd); return 0; } close(fd); devsize = ldsize >> 9; /* creating: allow suitable space for bitmap or PPL */ if (consistency_policy == CONSISTENCY_POLICY_PPL) bmspace = MULTIPLE_PPL_AREA_SIZE_SUPER1 >> 9; else bmspace = choose_bm_space(devsize); if (data_offset == INVALID_SECTORS) data_offset = st->data_offset; if (data_offset == INVALID_SECTORS) switch (st->minor_version) { case 0: data_offset = 0; break; case 1: case 2: /* Choose data offset appropriate for this device * and use as default for whole array. * The data_offset must allow for bitmap space * and base metadata, should allow for some headroom * for reshape, and should be rounded to multiple * of 1M. * Headroom is limited to 128M, but aim for about 0.1% */ headroom = 128*1024*2; while ((headroom << 10) > devsize && (*chunk == 0 || headroom / 2 >= ((unsigned)(*chunk)*2)*2)) headroom >>= 1; data_offset = 12*2 + bmspace + headroom; #define ONE_MEG (2*1024) data_offset = ROUND_UP(data_offset, ONE_MEG); break; } if (st->data_offset == INVALID_SECTORS) st->data_offset = data_offset; switch(st->minor_version) { case 0: /* metadata at end. Round down and subtract space to reserve */ devsize = (devsize & ~(4ULL*2-1)); /* space for metadata, bblog, bitmap/ppl */ overhead = 8*2 + 8 + bmspace; if (devsize < overhead) /* detect underflow */ goto dev_too_small_err; devsize -= overhead; break; case 1: case 2: if (devsize < data_offset) /* detect underflow */ goto dev_too_small_err; devsize -= data_offset; break; } *freesize = devsize; return 1; /* Error condition, device cannot even hold the overhead. */ dev_too_small_err: fprintf(stderr, "device %s is too small (%lluK) for " "required metadata!\n", subdev, devsize>>1); *freesize = 0; return 0; } void *super1_make_v0(struct supertype *st, struct mdinfo *info, mdp_super_t *sb0) { /* Create a v1.0 superblock based on 'info'*/ void *ret; struct mdp_superblock_1 *sb; int i; unsigned long long offset; if (posix_memalign(&ret, 4096, 1024) != 0) return NULL; sb = ret; memset(ret, 0, 1024); sb->magic = __cpu_to_le32(MD_SB_MAGIC); sb->major_version = __cpu_to_le32(1); copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid); sprintf(sb->set_name, "%d", sb0->md_minor); sb->ctime = __cpu_to_le32(info->array.ctime + 1); sb->level = __cpu_to_le32(info->array.level); sb->layout = __cpu_to_le32(info->array.layout); sb->size = __cpu_to_le64(info->component_size); sb->chunksize = __cpu_to_le32(info->array.chunk_size / 512); sb->raid_disks = __cpu_to_le32(info->array.raid_disks); if (info->array.level > 0) sb->data_size = sb->size; else sb->data_size = st->ss->avail_size(st, st->devsize / 512, 0); sb->resync_offset = MaxSector; sb->max_dev = __cpu_to_le32(MD_SB_DISKS); sb->dev_number = __cpu_to_le32(info->disk.number); sb->utime = __cpu_to_le64(info->array.utime); offset = st->devsize/512 - 8*2; offset &= ~(4*2-1); sb->super_offset = __cpu_to_le64(offset); //*(__u64*)(st->other + 128 + 8 + 8) = __cpu_to_le64(offset); random_uuid(sb->device_uuid); for (i = 0; i < MD_SB_DISKS; i++) { int state = sb0->disks[i].state; sb->dev_roles[i] = MD_DISK_ROLE_SPARE; if ((state & (1<dev_roles[i] = __cpu_to_le16(sb0->disks[i].raid_disk); } sb->sb_csum = calc_sb_1_csum(sb); return ret; } struct superswitch super1 = { .examine_super = examine_super1, .brief_examine_super = brief_examine_super1, .export_examine_super = export_examine_super1, .detail_super = detail_super1, .brief_detail_super = brief_detail_super1, .export_detail_super = export_detail_super1, .write_init_super = write_init_super1, .validate_geometry = validate_geometry1, .add_to_super = add_to_super1, .examine_badblocks = examine_badblocks_super1, .copy_metadata = copy_metadata1, .write_init_ppl = write_init_ppl1, .match_home = match_home1, .uuid_from_super = uuid_from_super1, .getinfo_super = getinfo_super1, .container_content = container_content1, .update_super = update_super1, .init_super = init_super1, .store_super = store_super1, .compare_super = compare_super1, .load_super = load_super1, .match_metadata_desc = match_metadata_desc1, .avail_size = avail_size1, .add_internal_bitmap = add_internal_bitmap1, .locate_bitmap = locate_bitmap1, .write_bitmap = write_bitmap1, .free_super = free_super1, #if __BYTE_ORDER == BIG_ENDIAN .swapuuid = 0, #else .swapuuid = 1, #endif .name = "1.x", };