diff options
author | Ben Lindstrom <mouring@eviladmin.org> | 2000-12-07 06:57:27 +0100 |
---|---|---|
committer | Ben Lindstrom <mouring@eviladmin.org> | 2000-12-07 06:57:27 +0100 |
commit | 01f8463b15ead597f8ecf0052fd7569240dcaab9 (patch) | |
tree | 73ab1f33ee4c21041c160a93ff30e47c8179512b /rijndael.c | |
parent | 20001207 (diff) | |
download | openssh-01f8463b15ead597f8ecf0052fd7569240dcaab9.tar.xz openssh-01f8463b15ead597f8ecf0052fd7569240dcaab9.zip |
- markus@cvs.openbsd.org 2000/12/06 23:10:39
[rijndael.c]
unexpand(1)
- markus@cvs.openbsd.org 2000/12/06 23:05:43
[cipher.c cipher.h rijndael.c rijndael.h rijndael_boxes.h]
new rijndael implementation. fixes endian bugs
Diffstat (limited to 'rijndael.c')
-rw-r--r-- | rijndael.c | 770 |
1 files changed, 294 insertions, 476 deletions
diff --git a/rijndael.c b/rijndael.c index 963738030..92a39762f 100644 --- a/rijndael.c +++ b/rijndael.c @@ -1,493 +1,311 @@ -/* $OpenBSD: rijndael.c,v 1.2 2000/10/15 14:14:01 markus Exp $ */ - -/* This is an independent implementation of the encryption algorithm: */ -/* */ -/* RIJNDAEL by Joan Daemen and Vincent Rijmen */ -/* */ -/* which is a candidate algorithm in the Advanced Encryption Standard */ -/* programme of the US National Institute of Standards and Technology. */ -/* */ -/* Copyright in this implementation is held by Dr B R Gladman but I */ -/* hereby give permission for its free direct or derivative use subject */ -/* to acknowledgment of its origin and compliance with any conditions */ -/* that the originators of the algorithm place on its exploitation. */ -/* */ -/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ - -/* Timing data for Rijndael (rijndael.c) - -Algorithm: rijndael (rijndael.c) - -128 bit key: -Key Setup: 305/1389 cycles (encrypt/decrypt) -Encrypt: 374 cycles = 68.4 mbits/sec -Decrypt: 352 cycles = 72.7 mbits/sec -Mean: 363 cycles = 70.5 mbits/sec - -192 bit key: -Key Setup: 277/1595 cycles (encrypt/decrypt) -Encrypt: 439 cycles = 58.3 mbits/sec -Decrypt: 425 cycles = 60.2 mbits/sec -Mean: 432 cycles = 59.3 mbits/sec - -256 bit key: -Key Setup: 374/1960 cycles (encrypt/decrypt) -Encrypt: 502 cycles = 51.0 mbits/sec -Decrypt: 498 cycles = 51.4 mbits/sec -Mean: 500 cycles = 51.2 mbits/sec - -*/ +/* + * rijndael-alg-fst.c v2.4 April '2000 + * rijndael-alg-api.c v2.4 April '2000 + * + * Optimised ANSI C code + * + * authors: v1.0: Antoon Bosselaers + * v2.0: Vincent Rijmen, K.U.Leuven + * v2.3: Paulo Barreto + * v2.4: Vincent Rijmen, K.U.Leuven + * + * This code is placed in the public domain. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <assert.h> #include "config.h" #include "rijndael.h" +#include "rijndael_boxes.h" -void gen_tabs __P((void)); - -/* 3. Basic macros for speeding up generic operations */ - -/* Circular rotate of 32 bit values */ - -#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n)))) -#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n)))) - -/* Invert byte order in a 32 bit variable */ - -#define bswap(x) (rotl(x, 8) & 0x00ff00ff | rotr(x, 8) & 0xff00ff00) - -/* Extract byte from a 32 bit quantity (little endian notation) */ - -#define byte(x,n) ((u1byte)((x) >> (8 * n))) - -#if BYTE_ORDER != LITTLE_ENDIAN -#define BLOCK_SWAP -#endif - -/* For inverting byte order in input/output 32 bit words if needed */ - -#ifdef BLOCK_SWAP -#define BYTE_SWAP -#define WORD_SWAP -#endif - -#ifdef BYTE_SWAP -#define io_swap(x) bswap(x) -#else -#define io_swap(x) (x) -#endif - -/* For inverting the byte order of input/output blocks if needed */ - -#ifdef WORD_SWAP - -#define get_block(x) \ - ((u4byte*)(x))[0] = io_swap(in_blk[3]); \ - ((u4byte*)(x))[1] = io_swap(in_blk[2]); \ - ((u4byte*)(x))[2] = io_swap(in_blk[1]); \ - ((u4byte*)(x))[3] = io_swap(in_blk[0]) - -#define put_block(x) \ - out_blk[3] = io_swap(((u4byte*)(x))[0]); \ - out_blk[2] = io_swap(((u4byte*)(x))[1]); \ - out_blk[1] = io_swap(((u4byte*)(x))[2]); \ - out_blk[0] = io_swap(((u4byte*)(x))[3]) - -#define get_key(x,len) \ - ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \ - ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \ - switch((((len) + 63) / 64)) { \ - case 2: \ - ((u4byte*)(x))[0] = io_swap(in_key[3]); \ - ((u4byte*)(x))[1] = io_swap(in_key[2]); \ - ((u4byte*)(x))[2] = io_swap(in_key[1]); \ - ((u4byte*)(x))[3] = io_swap(in_key[0]); \ - break; \ - case 3: \ - ((u4byte*)(x))[0] = io_swap(in_key[5]); \ - ((u4byte*)(x))[1] = io_swap(in_key[4]); \ - ((u4byte*)(x))[2] = io_swap(in_key[3]); \ - ((u4byte*)(x))[3] = io_swap(in_key[2]); \ - ((u4byte*)(x))[4] = io_swap(in_key[1]); \ - ((u4byte*)(x))[5] = io_swap(in_key[0]); \ - break; \ - case 4: \ - ((u4byte*)(x))[0] = io_swap(in_key[7]); \ - ((u4byte*)(x))[1] = io_swap(in_key[6]); \ - ((u4byte*)(x))[2] = io_swap(in_key[5]); \ - ((u4byte*)(x))[3] = io_swap(in_key[4]); \ - ((u4byte*)(x))[4] = io_swap(in_key[3]); \ - ((u4byte*)(x))[5] = io_swap(in_key[2]); \ - ((u4byte*)(x))[6] = io_swap(in_key[1]); \ - ((u4byte*)(x))[7] = io_swap(in_key[0]); \ - } - -#else - -#define get_block(x) \ - ((u4byte*)(x))[0] = io_swap(in_blk[0]); \ - ((u4byte*)(x))[1] = io_swap(in_blk[1]); \ - ((u4byte*)(x))[2] = io_swap(in_blk[2]); \ - ((u4byte*)(x))[3] = io_swap(in_blk[3]) - -#define put_block(x) \ - out_blk[0] = io_swap(((u4byte*)(x))[0]); \ - out_blk[1] = io_swap(((u4byte*)(x))[1]); \ - out_blk[2] = io_swap(((u4byte*)(x))[2]); \ - out_blk[3] = io_swap(((u4byte*)(x))[3]) - -#define get_key(x,len) \ - ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \ - ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \ - switch((((len) + 63) / 64)) { \ - case 4: \ - ((u4byte*)(x))[6] = io_swap(in_key[6]); \ - ((u4byte*)(x))[7] = io_swap(in_key[7]); \ - case 3: \ - ((u4byte*)(x))[4] = io_swap(in_key[4]); \ - ((u4byte*)(x))[5] = io_swap(in_key[5]); \ - case 2: \ - ((u4byte*)(x))[0] = io_swap(in_key[0]); \ - ((u4byte*)(x))[1] = io_swap(in_key[1]); \ - ((u4byte*)(x))[2] = io_swap(in_key[2]); \ - ((u4byte*)(x))[3] = io_swap(in_key[3]); \ - } - -#endif - -#define LARGE_TABLES - -u1byte pow_tab[256]; -u1byte log_tab[256]; -u1byte sbx_tab[256]; -u1byte isb_tab[256]; -u4byte rco_tab[ 10]; -u4byte ft_tab[4][256]; -u4byte it_tab[4][256]; - -#ifdef LARGE_TABLES - u4byte fl_tab[4][256]; - u4byte il_tab[4][256]; -#endif - -u4byte tab_gen = 0; - -#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) - -#define f_rn(bo, bi, n, k) \ - bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ - ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ - ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ - ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) - -#define i_rn(bo, bi, n, k) \ - bo[n] = it_tab[0][byte(bi[n],0)] ^ \ - it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ - it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ - it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) - -#ifdef LARGE_TABLES - -#define ls_box(x) \ - ( fl_tab[0][byte(x, 0)] ^ \ - fl_tab[1][byte(x, 1)] ^ \ - fl_tab[2][byte(x, 2)] ^ \ - fl_tab[3][byte(x, 3)] ) - -#define f_rl(bo, bi, n, k) \ - bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ - fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ - fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ - fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) - -#define i_rl(bo, bi, n, k) \ - bo[n] = il_tab[0][byte(bi[n],0)] ^ \ - il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ - il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ - il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) - -#else - -#define ls_box(x) \ - ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \ - ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \ - ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \ - ((u4byte)sbx_tab[byte(x, 3)] << 24) - -#define f_rl(bo, bi, n, k) \ - bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \ - rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \ - rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ - rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n) - -#define i_rl(bo, bi, n, k) \ - bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \ - rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \ - rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ - rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n) - -#endif - -void -gen_tabs(void) +int +rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4], + u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS) { - u4byte i, t; - u1byte p, q; - - /* log and power tables for GF(2**8) finite field with */ - /* 0x11b as modular polynomial - the simplest prmitive */ - /* root is 0x11, used here to generate the tables */ - - for(i = 0,p = 1; i < 256; ++i) { - pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i; - - p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0); - } - - log_tab[1] = 0; p = 1; - - for(i = 0; i < 10; ++i) { - rco_tab[i] = p; - - p = (p << 1) ^ (p & 0x80 ? 0x1b : 0); + /* Calculate the necessary round keys + * The number of calculations depends on keyBits and blockBits + */ + int j, r, t, rconpointer = 0; + u_int8_t tk[RIJNDAEL_MAXKC][4]; + int KC = ROUNDS - 6; + + for (j = KC-1; j >= 0; j--) { + *((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]); } - - /* note that the affine byte transformation matrix in */ - /* rijndael specification is in big endian format with */ - /* bit 0 as the most significant bit. In the remainder */ - /* of the specification the bits are numbered from the */ - /* least significant end of a byte. */ - - for(i = 0; i < 256; ++i) { - p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; - q = (q >> 7) | (q << 1); p ^= q; - q = (q >> 7) | (q << 1); p ^= q; - q = (q >> 7) | (q << 1); p ^= q; - q = (q >> 7) | (q << 1); p ^= q ^ 0x63; - sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i; - } - - for(i = 0; i < 256; ++i) { - p = sbx_tab[i]; - -#ifdef LARGE_TABLES - - t = p; fl_tab[0][i] = t; - fl_tab[1][i] = rotl(t, 8); - fl_tab[2][i] = rotl(t, 16); - fl_tab[3][i] = rotl(t, 24); -#endif - t = ((u4byte)ff_mult(2, p)) | - ((u4byte)p << 8) | - ((u4byte)p << 16) | - ((u4byte)ff_mult(3, p) << 24); - - ft_tab[0][i] = t; - ft_tab[1][i] = rotl(t, 8); - ft_tab[2][i] = rotl(t, 16); - ft_tab[3][i] = rotl(t, 24); - - p = isb_tab[i]; - -#ifdef LARGE_TABLES - - t = p; il_tab[0][i] = t; - il_tab[1][i] = rotl(t, 8); - il_tab[2][i] = rotl(t, 16); - il_tab[3][i] = rotl(t, 24); -#endif - t = ((u4byte)ff_mult(14, p)) | - ((u4byte)ff_mult( 9, p) << 8) | - ((u4byte)ff_mult(13, p) << 16) | - ((u4byte)ff_mult(11, p) << 24); - - it_tab[0][i] = t; - it_tab[1][i] = rotl(t, 8); - it_tab[2][i] = rotl(t, 16); - it_tab[3][i] = rotl(t, 24); - } - - tab_gen = 1; -} - -#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) - -#define imix_col(y,x) \ - u = star_x(x); \ - v = star_x(u); \ - w = star_x(v); \ - t = w ^ (x); \ - (y) = u ^ v ^ w; \ - (y) ^= rotr(u ^ t, 8) ^ \ - rotr(v ^ t, 16) ^ \ - rotr(t,24) - -/* initialise the key schedule from the user supplied key */ - -#define loop4(i) \ -{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ - t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \ - t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \ - t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \ - t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \ -} - -#define loop6(i) \ -{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ - t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \ - t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \ - t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \ - t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \ - t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \ - t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \ -} - -#define loop8(i) \ -{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ - t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \ - t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \ - t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \ - t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \ - t = e_key[8 * i + 4] ^ ls_box(t); \ - e_key[8 * i + 12] = t; \ - t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \ - t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \ - t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \ -} - -rijndael_ctx * -rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len, - int encrypt) -{ - u4byte i, t, u, v, w; - u4byte *e_key = ctx->e_key; - u4byte *d_key = ctx->d_key; - - ctx->decrypt = !encrypt; - - if(!tab_gen) - gen_tabs(); - - ctx->k_len = (key_len + 31) / 32; - - e_key[0] = in_key[0]; e_key[1] = in_key[1]; - e_key[2] = in_key[2]; e_key[3] = in_key[3]; - - switch(ctx->k_len) { - case 4: t = e_key[3]; - for(i = 0; i < 10; ++i) - loop4(i); - break; - - case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5]; - for(i = 0; i < 8; ++i) - loop6(i); - break; - - case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5]; - e_key[6] = in_key[6]; t = e_key[7] = in_key[7]; - for(i = 0; i < 7; ++i) - loop8(i); - break; - } - - if (!encrypt) { - d_key[0] = e_key[0]; d_key[1] = e_key[1]; - d_key[2] = e_key[2]; d_key[3] = e_key[3]; - - for(i = 4; i < 4 * ctx->k_len + 24; ++i) { - imix_col(d_key[i], e_key[i]); + r = 0; + t = 0; + /* copy values into round key array */ + for (j = 0; (j < KC) && (r < ROUNDS + 1); ) { + for (; (j < KC) && (t < 4); j++, t++) { + *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]); + } + if (t == 4) { + r++; + t = 0; } } - - return ctx; + + while (r < ROUNDS + 1) { /* while not enough round key material calculated */ + /* calculate new values */ + tk[0][0] ^= S[tk[KC-1][1]]; + tk[0][1] ^= S[tk[KC-1][2]]; + tk[0][2] ^= S[tk[KC-1][3]]; + tk[0][3] ^= S[tk[KC-1][0]]; + tk[0][0] ^= rcon[rconpointer++]; + + if (KC != 8) { + for (j = 1; j < KC; j++) { + *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]); + } + } else { + for (j = 1; j < KC/2; j++) { + *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]); + } + tk[KC/2][0] ^= S[tk[KC/2 - 1][0]]; + tk[KC/2][1] ^= S[tk[KC/2 - 1][1]]; + tk[KC/2][2] ^= S[tk[KC/2 - 1][2]]; + tk[KC/2][3] ^= S[tk[KC/2 - 1][3]]; + for (j = KC/2 + 1; j < KC; j++) { + *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]); + } + } + /* copy values into round key array */ + for (j = 0; (j < KC) && (r < ROUNDS + 1); ) { + for (; (j < KC) && (t < 4); j++, t++) { + *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]); + } + if (t == 4) { + r++; + t = 0; + } + } + } + return 0; } -/* encrypt a block of text */ - -#define f_nround(bo, bi, k) \ - f_rn(bo, bi, 0, k); \ - f_rn(bo, bi, 1, k); \ - f_rn(bo, bi, 2, k); \ - f_rn(bo, bi, 3, k); \ - k += 4 - -#define f_lround(bo, bi, k) \ - f_rl(bo, bi, 0, k); \ - f_rl(bo, bi, 1, k); \ - f_rl(bo, bi, 2, k); \ - f_rl(bo, bi, 3, k) - -void -rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) -{ - u4byte k_len = ctx->k_len; - u4byte *e_key = ctx->e_key; - u4byte b0[4], b1[4], *kp; - - b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1]; - b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3]; - - kp = e_key + 4; - - if(k_len > 6) { - f_nround(b1, b0, kp); f_nround(b0, b1, kp); +int +rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS) +{ + int r; + u_int8_t *w; + + for (r = 1; r < ROUNDS; r++) { + w = W[r][0]; + *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]]) + ^ *((u_int32_t*)U2[w[1]]) + ^ *((u_int32_t*)U3[w[2]]) + ^ *((u_int32_t*)U4[w[3]]); + + w = W[r][1]; + *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]]) + ^ *((u_int32_t*)U2[w[1]]) + ^ *((u_int32_t*)U3[w[2]]) + ^ *((u_int32_t*)U4[w[3]]); + + w = W[r][2]; + *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]]) + ^ *((u_int32_t*)U2[w[1]]) + ^ *((u_int32_t*)U3[w[2]]) + ^ *((u_int32_t*)U4[w[3]]); + + w = W[r][3]; + *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]]) + ^ *((u_int32_t*)U2[w[1]]) + ^ *((u_int32_t*)U3[w[2]]) + ^ *((u_int32_t*)U4[w[3]]); } - - if(k_len > 4) { - f_nround(b1, b0, kp); f_nround(b0, b1, kp); + return 0; +} + +/** + * Encrypt a single block. + */ +int +rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16]) +{ + u_int8_t (*rk)[4][4] = key->keySched; + int ROUNDS = key->ROUNDS; + int r; + u_int8_t temp[4][4]; + + *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[0][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]); + *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]]) + ^ *((u_int32_t*)T2[temp[1][1]]) + ^ *((u_int32_t*)T3[temp[2][2]]) + ^ *((u_int32_t*)T4[temp[3][3]]); + *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]]) + ^ *((u_int32_t*)T2[temp[2][1]]) + ^ *((u_int32_t*)T3[temp[3][2]]) + ^ *((u_int32_t*)T4[temp[0][3]]); + *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]]) + ^ *((u_int32_t*)T2[temp[3][1]]) + ^ *((u_int32_t*)T3[temp[0][2]]) + ^ *((u_int32_t*)T4[temp[1][3]]); + *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]]) + ^ *((u_int32_t*)T2[temp[0][1]]) + ^ *((u_int32_t*)T3[temp[1][2]]) + ^ *((u_int32_t*)T4[temp[2][3]]); + for (r = 1; r < ROUNDS-1; r++) { + *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]); + + *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]]) + ^ *((u_int32_t*)T2[temp[1][1]]) + ^ *((u_int32_t*)T3[temp[2][2]]) + ^ *((u_int32_t*)T4[temp[3][3]]); + *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]]) + ^ *((u_int32_t*)T2[temp[2][1]]) + ^ *((u_int32_t*)T3[temp[3][2]]) + ^ *((u_int32_t*)T4[temp[0][3]]); + *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]]) + ^ *((u_int32_t*)T2[temp[3][1]]) + ^ *((u_int32_t*)T3[temp[0][2]]) + ^ *((u_int32_t*)T4[temp[1][3]]); + *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]]) + ^ *((u_int32_t*)T2[temp[0][1]]) + ^ *((u_int32_t*)T3[temp[1][2]]) + ^ *((u_int32_t*)T4[temp[2][3]]); } - - f_nround(b1, b0, kp); f_nround(b0, b1, kp); - f_nround(b1, b0, kp); f_nround(b0, b1, kp); - f_nround(b1, b0, kp); f_nround(b0, b1, kp); - f_nround(b1, b0, kp); f_nround(b0, b1, kp); - f_nround(b1, b0, kp); f_lround(b0, b1, kp); - - out_blk[0] = b0[0]; out_blk[1] = b0[1]; - out_blk[2] = b0[2]; out_blk[3] = b0[3]; + /* last round is special */ + *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[ROUNDS-1][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]); + b[ 0] = T1[temp[0][0]][1]; + b[ 1] = T1[temp[1][1]][1]; + b[ 2] = T1[temp[2][2]][1]; + b[ 3] = T1[temp[3][3]][1]; + b[ 4] = T1[temp[1][0]][1]; + b[ 5] = T1[temp[2][1]][1]; + b[ 6] = T1[temp[3][2]][1]; + b[ 7] = T1[temp[0][3]][1]; + b[ 8] = T1[temp[2][0]][1]; + b[ 9] = T1[temp[3][1]][1]; + b[10] = T1[temp[0][2]][1]; + b[11] = T1[temp[1][3]][1]; + b[12] = T1[temp[3][0]][1]; + b[13] = T1[temp[0][1]][1]; + b[14] = T1[temp[1][2]][1]; + b[15] = T1[temp[2][3]][1]; + *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[ROUNDS][0]); + *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]); + *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]); + *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]); + + return 0; } -/* decrypt a block of text */ - -#define i_nround(bo, bi, k) \ - i_rn(bo, bi, 0, k); \ - i_rn(bo, bi, 1, k); \ - i_rn(bo, bi, 2, k); \ - i_rn(bo, bi, 3, k); \ - k -= 4 - -#define i_lround(bo, bi, k) \ - i_rl(bo, bi, 0, k); \ - i_rl(bo, bi, 1, k); \ - i_rl(bo, bi, 2, k); \ - i_rl(bo, bi, 3, k) - -void -rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) -{ - u4byte b0[4], b1[4], *kp; - u4byte k_len = ctx->k_len; - u4byte *e_key = ctx->e_key; - u4byte *d_key = ctx->d_key; - - b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25]; - b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27]; - - kp = d_key + 4 * (k_len + 5); - - if(k_len > 6) { - i_nround(b1, b0, kp); i_nround(b0, b1, kp); - } - - if(k_len > 4) { - i_nround(b1, b0, kp); i_nround(b0, b1, kp); +/** + * Decrypt a single block. + */ +int +rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16]) +{ + u_int8_t (*rk)[4][4] = key->keySched; + int ROUNDS = key->ROUNDS; + int r; + u_int8_t temp[4][4]; + + *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[ROUNDS][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]); + + *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]]) + ^ *((u_int32_t*)T6[temp[3][1]]) + ^ *((u_int32_t*)T7[temp[2][2]]) + ^ *((u_int32_t*)T8[temp[1][3]]); + *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]]) + ^ *((u_int32_t*)T6[temp[0][1]]) + ^ *((u_int32_t*)T7[temp[3][2]]) + ^ *((u_int32_t*)T8[temp[2][3]]); + *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]]) + ^ *((u_int32_t*)T6[temp[1][1]]) + ^ *((u_int32_t*)T7[temp[0][2]]) + ^ *((u_int32_t*)T8[temp[3][3]]); + *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]]) + ^ *((u_int32_t*)T6[temp[2][1]]) + ^ *((u_int32_t*)T7[temp[1][2]]) + ^ *((u_int32_t*)T8[temp[0][3]]); + for (r = ROUNDS-1; r > 1; r--) { + *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]); + *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]]) + ^ *((u_int32_t*)T6[temp[3][1]]) + ^ *((u_int32_t*)T7[temp[2][2]]) + ^ *((u_int32_t*)T8[temp[1][3]]); + *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]]) + ^ *((u_int32_t*)T6[temp[0][1]]) + ^ *((u_int32_t*)T7[temp[3][2]]) + ^ *((u_int32_t*)T8[temp[2][3]]); + *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]]) + ^ *((u_int32_t*)T6[temp[1][1]]) + ^ *((u_int32_t*)T7[temp[0][2]]) + ^ *((u_int32_t*)T8[temp[3][3]]); + *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]]) + ^ *((u_int32_t*)T6[temp[2][1]]) + ^ *((u_int32_t*)T7[temp[1][2]]) + ^ *((u_int32_t*)T8[temp[0][3]]); } + /* last round is special */ + *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[1][0]); + *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]); + *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]); + *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]); + b[ 0] = S5[temp[0][0]]; + b[ 1] = S5[temp[3][1]]; + b[ 2] = S5[temp[2][2]]; + b[ 3] = S5[temp[1][3]]; + b[ 4] = S5[temp[1][0]]; + b[ 5] = S5[temp[0][1]]; + b[ 6] = S5[temp[3][2]]; + b[ 7] = S5[temp[2][3]]; + b[ 8] = S5[temp[2][0]]; + b[ 9] = S5[temp[1][1]]; + b[10] = S5[temp[0][2]]; + b[11] = S5[temp[3][3]]; + b[12] = S5[temp[3][0]]; + b[13] = S5[temp[2][1]]; + b[14] = S5[temp[1][2]]; + b[15] = S5[temp[0][3]]; + *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[0][0]); + *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]); + *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]); + *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]); + + return 0; +} - i_nround(b1, b0, kp); i_nround(b0, b1, kp); - i_nround(b1, b0, kp); i_nround(b0, b1, kp); - i_nround(b1, b0, kp); i_nround(b0, b1, kp); - i_nround(b1, b0, kp); i_nround(b0, b1, kp); - i_nround(b1, b0, kp); i_lround(b0, b1, kp); - - out_blk[0] = b0[0]; out_blk[1] = b0[1]; - out_blk[2] = b0[2]; out_blk[3] = b0[3]; +int +rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial) +{ + u_int8_t k[RIJNDAEL_MAXKC][4]; + int i; + + if (key == NULL) + return -1; + if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT)) + return -1; + if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256)) + return -1; + + key->ROUNDS = keyLen/32 + 6; + + /* initialize key schedule: */ + for (i = 0; i < keyLen/8; i++) + k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i]; + + rijndael_keysched(k, key->keySched, key->ROUNDS); + if (direction == RIJNDAEL_DECRYPT) + rijndael_key_enc_to_dec(key->keySched, key->ROUNDS); + return 0; } |