summaryrefslogtreecommitdiffstats
path: root/crypto/rsa
diff options
context:
space:
mode:
authorShane Lontis <shane.lontis@oracle.com>2018-07-05 01:28:51 +0200
committerMatt Caswell <matt@openssl.org>2019-03-12 13:00:52 +0100
commit8240d5fa6535fb20e24fbe7eadbb3d6452a8d305 (patch)
tree3e785e20a83324c8dab559a5e3da6d533bb82f33 /crypto/rsa
parents390x assembly pack: import chacha from cryptogams repo (diff)
downloadopenssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.tar.xz
openssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.zip
FIPS 186-4 RSA Generation & Validation
Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6652)
Diffstat (limited to 'crypto/rsa')
-rw-r--r--crypto/rsa/build.info3
-rw-r--r--crypto/rsa/rsa_chk.c14
-rw-r--r--crypto/rsa/rsa_gen.c9
-rw-r--r--crypto/rsa/rsa_lib.c2
-rw-r--r--crypto/rsa/rsa_locl.h38
-rw-r--r--crypto/rsa/rsa_sp800_56b_check.c386
-rw-r--r--crypto/rsa/rsa_sp800_56b_gen.c362
7 files changed, 811 insertions, 3 deletions
diff --git a/crypto/rsa/build.info b/crypto/rsa/build.info
index 87f924922f..70864170ed 100644
--- a/crypto/rsa/build.info
+++ b/crypto/rsa/build.info
@@ -3,4 +3,5 @@ SOURCE[../../libcrypto]=\
rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \
rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \
rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \
- rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c
+ rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c \
+ rsa_sp800_56b_gen.c rsa_sp800_56b_check.c
diff --git a/crypto/rsa/rsa_chk.c b/crypto/rsa/rsa_chk.c
index 805f998ff2..4f65dfa64b 100644
--- a/crypto/rsa/rsa_chk.c
+++ b/crypto/rsa/rsa_chk.c
@@ -16,8 +16,21 @@ int RSA_check_key(const RSA *key)
return RSA_check_key_ex(key, NULL);
}
+/*
+ * NOTE: Key validation requires separate checks to be able to be accessed
+ * individually. These should be visible from the PKEY API..
+ * See rsa_sp800_56b_check_public, rsa_sp800_56b_check_private and
+ * rsa_sp800_56b_check_keypair.
+ */
int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
{
+#ifdef FIPS_MODE
+ if (!(rsa_sp800_56b_check_public(key)
+ && rsa_sp800_56b_check_private(key)
+ && rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key))
+ return 0;
+
+#else
BIGNUM *i, *j, *k, *l, *m;
BN_CTX *ctx;
int ret = 1, ex_primes = 0, idx;
@@ -225,4 +238,5 @@ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
BN_free(m);
BN_CTX_free(ctx);
return ret;
+#endif /* FIPS_MODE */
}
diff --git a/crypto/rsa/rsa_gen.c b/crypto/rsa/rsa_gen.c
index 1d38ec993a..4bfe3c3a96 100644
--- a/crypto/rsa/rsa_gen.c
+++ b/crypto/rsa/rsa_gen.c
@@ -41,6 +41,7 @@ int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
BIGNUM *e_value, BN_GENCB *cb)
{
+#ifndef FIPS_MODE
/* multi-prime is only supported with the builtin key generation */
if (rsa->meth->rsa_multi_prime_keygen != NULL) {
return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
@@ -57,13 +58,18 @@ int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
else
return 0;
}
-
+#endif /* FIPS_MODE */
return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
}
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
BN_GENCB *cb)
{
+#ifdef FIPS_MODE
+ if (primes != 2)
+ return 0;
+ return rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
+#else
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
@@ -391,4 +397,5 @@ static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ok;
+#endif /* FIPS_MODE */
}
diff --git a/crypto/rsa/rsa_lib.c b/crypto/rsa/rsa_lib.c
index 0848936b2d..f337a0df08 100644
--- a/crypto/rsa/rsa_lib.c
+++ b/crypto/rsa/rsa_lib.c
@@ -253,7 +253,7 @@ static uint32_t ilog_e(uint64_t v)
* \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
* The two cube roots are merged together here.
*/
-static uint16_t rsa_compute_security_bits(int n)
+uint16_t rsa_compute_security_bits(int n)
{
uint64_t x;
uint32_t lx;
diff --git a/crypto/rsa/rsa_locl.h b/crypto/rsa/rsa_locl.h
index 44a2a2df39..5dcd6eab7b 100644
--- a/crypto/rsa/rsa_locl.h
+++ b/crypto/rsa/rsa_locl.h
@@ -7,6 +7,9 @@
* https://www.openssl.org/source/license.html
*/
+#ifndef RSA_LOCAL_HEADER_H
+#define RSA_LOCAL_HEADER_H
+
#include <openssl/rsa.h>
#include "internal/refcount.h"
@@ -130,3 +133,38 @@ void rsa_multip_info_free(RSA_PRIME_INFO *pinfo);
RSA_PRIME_INFO *rsa_multip_info_new(void);
int rsa_multip_calc_product(RSA *rsa);
int rsa_multip_cap(int bits);
+
+uint16_t rsa_compute_security_bits(int n);
+
+int rsa_sp800_56b_validate_strength(int nbits, int strength);
+int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
+ int nbits);
+int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
+ BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
+ BIGNUM *p1q1);
+
+int rsa_check_public_exponent(const BIGNUM *e);
+int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx);
+int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx);
+int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx);
+int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx);
+
+int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx);
+int rsa_sp800_56b_check_public(const RSA *rsa);
+int rsa_sp800_56b_check_private(const RSA *rsa);
+int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
+ int strength, int nbits);
+int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed,
+ BN_GENCB *cb);
+
+int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits,
+ const BIGNUM *e, BN_CTX *ctx);
+int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2,
+ BIGNUM *Xpout, const BIGNUM *Xp,
+ const BIGNUM *Xp1, const BIGNUM *Xp2,
+ BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout,
+ const BIGNUM *Xq, const BIGNUM *Xq1,
+ const BIGNUM *Xq2, int nbits,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
+
+#endif /* RSA_LOCAL_HEADER_H */
diff --git a/crypto/rsa/rsa_sp800_56b_check.c b/crypto/rsa/rsa_sp800_56b_check.c
new file mode 100644
index 0000000000..10e264e591
--- /dev/null
+++ b/crypto/rsa/rsa_sp800_56b_check.c
@@ -0,0 +1,386 @@
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/err.h>
+#include <openssl/bn.h>
+#include "internal/bn_int.h"
+#include "rsa_locl.h"
+
+/*
+ * Part of the RSA keypair test.
+ * Check the Chinese Remainder Theorem components are valid.
+ *
+ * See SP800-5bBr1
+ * 6.4.1.2.3: rsakpv1-crt Step 7
+ * 6.4.1.3.3: rsakpv2-crt Step 7
+ */
+int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
+
+ /* check if only some of the crt components are set */
+ if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
+ if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
+ return 0;
+ return 1; /* return ok if all components are NULL */
+ }
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ ret = (q1 != NULL)
+ /* p1 = p -1 */
+ && (BN_copy(p1, rsa->p) != NULL)
+ && BN_sub_word(p1, 1)
+ /* q1 = q - 1 */
+ && (BN_copy(q1, rsa->q) != NULL)
+ && BN_sub_word(q1, 1)
+ /* (a) 1 < dP < (p – 1). */
+ && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
+ && (BN_cmp(rsa->dmp1, p1) < 0)
+ /* (b) 1 < dQ < (q - 1). */
+ && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
+ && (BN_cmp(rsa->dmq1, q1) < 0)
+ /* (c) 1 < qInv < p */
+ && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
+ && (BN_cmp(rsa->iqmp, rsa->p) < 0)
+ /* (d) 1 = (dP . e) mod (p - 1)*/
+ && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
+ && BN_is_one(r)
+ /* (e) 1 = (dQ . e) mod (q - 1) */
+ && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
+ && BN_is_one(r)
+ /* (f) 1 = (qInv . q) mod p */
+ && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
+ && BN_is_one(r);
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Part of the RSA keypair test.
+ * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
+ *
+ * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
+ *
+ * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
+ * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
+ * 0.B504F334 gives an approximation to 11 decimal places.
+ * The range is then from
+ * 0xB504F334_0000.......................000 to
+ * 0xFFFFFFFF_FFFF.......................FFF
+ */
+int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *tmp, *low;
+
+ nbits >>= 1;
+
+ /* Upper bound check */
+ if (BN_num_bits(p) != nbits)
+ return 0;
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ low = BN_CTX_get(ctx);
+
+ /* set low = (√2)(2^(nbits/2 - 1) */
+ if (low == NULL || !BN_set_word(tmp, 0xB504F334))
+ goto err;
+
+ if (nbits >= 32) {
+ if (!BN_lshift(low, tmp, nbits - 32))
+ goto err;
+ } else if (!BN_rshift(low, tmp, 32 - nbits)) {
+ goto err;
+ }
+ if (BN_cmp(p, low) < 0)
+ goto err;
+ ret = 1;
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Part of the RSA keypair test.
+ * Check the prime factor (for either p or q)
+ * i.e: p is prime AND GCD(p - 1, e) = 1
+ *
+ * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
+ */
+int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
+{
+ int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
+ int ret = 0;
+ BIGNUM *p1 = NULL, *gcd = NULL;
+
+ /* (Steps 5 a-b) prime test */
+ if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
+ /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
+ || rsa_check_prime_factor_range(p, nbits, ctx) != 1)
+ return 0;
+
+ BN_CTX_start(ctx);
+ p1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ ret = (gcd != NULL)
+ /* (Step 5d) GCD(p-1, e) = 1 */
+ && (BN_copy(p1, p) != NULL)
+ && BN_sub_word(p1, 1)
+ && BN_gcd(gcd, p1, e, ctx)
+ && BN_is_one(gcd);
+
+ BN_clear(p1);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
+ * satisfies:
+ * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
+ * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
+ */
+int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
+{
+ int ret;
+ BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
+
+ /* (Step 6a) 2^(nbits/2) < d */
+ if (BN_num_bits(rsa->d) <= (nbits >> 1))
+ return 0;
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ lcm = BN_CTX_get(ctx);
+ p1q1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ ret = (gcd != NULL
+ /* LCM(p - 1, q - 1) */
+ && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
+ /* (Step 6a) d < LCM(p - 1, q - 1) */
+ && (BN_cmp(rsa->d, lcm) < 0)
+ /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
+ && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
+ && BN_is_one(r));
+
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_clear(lcm);
+ BN_clear(gcd);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/* Check exponent is odd, and has a bitlen ranging from [17..256] */
+int rsa_check_public_exponent(const BIGNUM *e)
+{
+ int bitlen = BN_num_bits(e);
+
+ return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
+}
+
+/*
+ * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
+ * i.e- numbits(p-q-1) > (nbits/2 -100)
+ */
+int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
+ int nbits)
+{
+ int bitlen = (nbits >> 1) - 100;
+
+ if (!BN_sub(diff, p, q))
+ return -1;
+ BN_set_negative(diff, 0);
+
+ if (BN_is_zero(diff))
+ return 0;
+
+ if (!BN_sub_word(diff, 1))
+ return -1;
+ return (BN_num_bits(diff) > bitlen);
+}
+
+/* return LCM(p-1, q-1) */
+int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
+ BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
+ BIGNUM *p1q1)
+{
+ return BN_sub(p1, p, BN_value_one()) /* p-1 */
+ && BN_sub(q1, q, BN_value_one()) /* q-1 */
+ && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
+ && BN_gcd(gcd, p1, q1, ctx)
+ && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
+}
+
+/*
+ * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
+ * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
+ * caveat is that the modulus must be as specified in SP800-56Br1
+ */
+int rsa_sp800_56b_check_public(const RSA *rsa)
+{
+ int ret = 0, nbits, iterations, status;
+ BN_CTX *ctx = NULL;
+ BIGNUM *gcd = NULL;
+
+ if (rsa->n == NULL || rsa->e == NULL)
+ return 0;
+
+ /*
+ * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
+ * NOTE: changed to allow keys >= 2048
+ */
+ nbits = BN_num_bits(rsa->n);
+ if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
+ return 0;
+ }
+ if (!BN_is_odd(rsa->n)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ return 0;
+ }
+
+ /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
+ if (!rsa_check_public_exponent(rsa->e)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ return 0;
+ }
+
+ ctx = BN_CTX_new();
+ gcd = BN_new();
+ if (ctx == NULL || gcd == NULL)
+ goto err;
+
+ iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
+ /* (Steps d-f):
+ * The modulus is composite, but not a power of a prime.
+ * The modulus has no factors smaller than 752.
+ */
+ if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ goto err;
+ }
+
+ ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
+ if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ ret = 0;
+ goto err;
+ }
+
+ ret = 1;
+err:
+ BN_free(gcd);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+/*
+ * Perform validation of the RSA private key to check that 0 < D < N.
+ */
+int rsa_sp800_56b_check_private(const RSA *rsa)
+{
+ if (rsa->d == NULL || rsa->n == NULL)
+ return 0;
+ return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
+}
+
+/*
+ * RSA key pair validation.
+ *
+ * SP800-56Br1.
+ * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
+ * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
+ *
+ * It uses:
+ * 6.4.1.2.3 "rsakpv1 - crt"
+ * 6.4.1.3.3 "rsakpv2 - crt"
+ */
+int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
+ int strength, int nbits)
+{
+ int ret = 0;
+ BN_CTX *ctx = NULL;
+ BIGNUM *r = NULL;
+
+ if (rsa->p == NULL
+ || rsa->q == NULL
+ || rsa->e == NULL
+ || rsa->d == NULL
+ || rsa->n == NULL) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ return 0;
+ }
+ /* (Step 1): Check Ranges */
+ if (!rsa_sp800_56b_validate_strength(nbits, strength))
+ return 0;
+
+ /* If the exponent is known */
+ if (efixed != NULL) {
+ /* (2): Check fixed exponent matches public exponent. */
+ if (BN_cmp(efixed, rsa->e) != 0) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ return 0;
+ }
+ }
+ /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
+ if (!rsa_check_public_exponent(rsa->e)) {
+ /* exponent out of range */
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ return 0;
+ }
+ /* (Step 3.b): check the modulus */
+ if (nbits != BN_num_bits(rsa->n)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
+ return 0;
+ }
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
+ goto err;
+ /* (Step 4.c): Check n = pq */
+ if (BN_cmp(rsa->n, r) != 0) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ goto err;
+ }
+
+ /* (Step 5): check prime factors p & q */
+ ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
+ && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
+ && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
+ /* (Step 6): Check the private exponent d */
+ && rsa_check_private_exponent(rsa, nbits, ctx)
+ /* 6.4.1.2.3 (Step 7): Check the CRT components */
+ && rsa_check_crt_components(rsa, ctx);
+ if (ret != 1)
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
+
+err:
+ BN_clear(r);
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ return ret;
+}
diff --git a/crypto/rsa/rsa_sp800_56b_gen.c b/crypto/rsa/rsa_sp800_56b_gen.c
new file mode 100644
index 0000000000..221136bd0c
--- /dev/null
+++ b/crypto/rsa/rsa_sp800_56b_gen.c
@@ -0,0 +1,362 @@
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/err.h>
+#include <openssl/bn.h>
+#include "internal/bn_int.h"
+#include "rsa_locl.h"
+
+#define RSA_FIPS1864_MIN_KEYGEN_KEYSIZE 2048
+#define RSA_FIPS1864_MIN_KEYGEN_STRENGTH 112
+#define RSA_FIPS1864_MAX_KEYGEN_STRENGTH 256
+
+/*
+ * Generate probable primes 'p' & 'q'. See FIPS 186-4 Section B.3.6
+ * "Generation of Probable Primes with Conditions Based on Auxiliary Probable
+ * Primes".
+ *
+ * Params:
+ * rsa Object used to store primes p & q.
+ * p1, p2 The returned auxiliary primes for p. If NULL they are not returned.
+ * Xpout An optionally returned random number used during generation of p.
+ * Xp An optional passed in value (that is random number used during
+ * generation of p).
+ * Xp1, Xp2 Optionally passed in randomly generated numbers from which
+ * auxiliary primes p1 & p2 are calculated. If NULL these values
+ * are generated internally.
+ * q1, q2 The returned auxiliary primes for q. If NULL they are not returned.
+ * Xqout An optionally returned random number used during generation of q.
+ * Xq An optional passed in value (that is random number used during
+ * generation of q).
+ * Xq1, Xq2 Optionally passed in randomly generated numbers from which
+ * auxiliary primes q1 & q2 are calculated. If NULL these values
+ * are generated internally.
+ * nbits The key size in bits (The size of the modulus n).
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 if successful, or 0 otherwise.
+ * Notes:
+ * p1, p2, q1, q2, Xpout, Xqout are returned if they are not NULL.
+ * Xp, Xp1, Xp2, Xq, Xq1, Xq2 are optionally passed in.
+ * (Required for CAVS testing).
+ */
+int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2,
+ BIGNUM *Xpout, const BIGNUM *Xp,
+ const BIGNUM *Xp1, const BIGNUM *Xp2,
+ BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout,
+ const BIGNUM *Xq, const BIGNUM *Xq1,
+ const BIGNUM *Xq2, int nbits,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
+{
+ int ret = 0, ok;
+ BIGNUM *Xpo = NULL, *Xqo = NULL, *tmp = NULL;
+
+ /* (Step 1) Check key length
+ * NOTE: SP800-131A Rev1 Disallows key lengths of < 2048 bits for RSA
+ * Signature Generation and Key Agree/Transport.
+ */
+ if (nbits < RSA_FIPS1864_MIN_KEYGEN_KEYSIZE) {
+ RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, RSA_R_INVALID_KEY_LENGTH);
+ return 0;
+ }
+
+ if (!rsa_check_public_exponent(e)) {
+ RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ goto err;
+ }
+
+ /* (Step 3) Determine strength and check rand generator strength is ok -
+ * this step is redundant because the generator always returns a higher
+ * strength than is required.
+ */
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ Xpo = (Xpout != NULL) ? Xpout : BN_CTX_get(ctx);
+ Xqo = (Xqout != NULL) ? Xqout : BN_CTX_get(ctx);
+ if (tmp == NULL || Xpo == NULL || Xqo == NULL)
+ goto err;
+
+ if (rsa->p == NULL)
+ rsa->p = BN_secure_new();
+ if (rsa->q == NULL)
+ rsa->q = BN_secure_new();
+ if (rsa->p == NULL || rsa->q == NULL)
+ goto err;
+
+ /* (Step 4) Generate p, Xp */
+ if (!bn_rsa_fips186_4_gen_prob_primes(rsa->p, Xpo, p1, p2, Xp, Xp1, Xp2,
+ nbits, e, ctx, cb))
+ goto err;
+ for(;;) {
+ /* (Step 5) Generate q, Xq*/
+ if (!bn_rsa_fips186_4_gen_prob_primes(rsa->q, Xqo, q1, q2, Xq, Xq1,
+ Xq2, nbits, e, ctx, cb))
+ goto err;
+
+ /* (Step 6) |Xp - Xq| > 2^(nbitlen/2 - 100) */
+ ok = rsa_check_pminusq_diff(tmp, Xpo, Xqo, nbits);
+ if (ok < 0)
+ goto err;
+ if (ok == 0)
+ continue;
+
+ /* (Step 6) |p - q| > 2^(nbitlen/2 - 100) */
+ ok = rsa_check_pminusq_diff(tmp, rsa->p, rsa->q, nbits);
+ if (ok < 0)
+ goto err;
+ if (ok == 0)
+ continue;
+ break; /* successfully finished */
+ }
+ ret = 1;
+err:
+ /* Zeroize any internally generated values that are not returned */
+ if (Xpo != Xpout)
+ BN_clear(Xpo);
+ if (Xqo != Xqout)
+ BN_clear(Xqo);
+ BN_clear(tmp);
+
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Validates the RSA key size based on the target strength.
+ * See SP800-56Br1 6.3.1.1 (Steps 1a-1b)
+ *
+ * Params:
+ * nbits The key size in bits.
+ * strength The target strength in bits. -1 means the target
+ * strength is unknown.
+ * Returns: 1 if the key size matches the target strength, or 0 otherwise.
+ */
+int rsa_sp800_56b_validate_strength(int nbits, int strength)
+{
+ int s = (int)rsa_compute_security_bits(nbits);
+
+ if (s < RSA_FIPS1864_MIN_KEYGEN_STRENGTH
+ || s > RSA_FIPS1864_MAX_KEYGEN_STRENGTH) {
+ RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_MODULUS);
+ return 0;
+ }
+ if (strength != -1 && s != strength) {
+ RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_STRENGTH);
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ *
+ * Using p & q, calculate other required parameters such as n, d.
+ * as well as the CRT parameters dP, dQ, qInv.
+ *
+ * See SP800-56Br1
+ * 6.3.1.1 rsakpg1 - basic (Steps 3-4)
+ * 6.3.1.3 rsakpg1 - crt (Step 5)
+ *
+ * Params:
+ * rsa An rsa object.
+ * nbits The key size.
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * Notes:
+ * There is a small chance that the generated d will be too small.
+ * Returns: -1 = error,
+ * 0 = d is too small,
+ * 1 = success.
+ */
+int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits,
+ const BIGNUM *e, BN_CTX *ctx)
+{
+ int ret = -1;
+ BIGNUM *p1, *q1, *lcm, *p1q1, *gcd;
+
+ BN_CTX_start(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ lcm = BN_CTX_get(ctx);
+ p1q1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ if (gcd == NULL)
+ goto err;
+
+ /* LCM((p-1, q-1)) */
+ if (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) != 1)
+ goto err;
+
+ /* copy e */
+ BN_free(rsa->e);
+ rsa->e = BN_dup(e);
+ if (rsa->e == NULL)
+ goto err;
+
+ BN_clear_free(rsa->d);
+ /* (Step 3) d = (e^-1) mod (LCM(p-1, q-1)) */
+ rsa->d = BN_secure_new();
+ if (rsa->d == NULL || BN_mod_inverse(rsa->d, e, lcm, ctx) == NULL)
+ goto err;
+
+ /* (Step 3) return an error if d is too small */
+ if (BN_num_bits(rsa->d) <= (nbits >> 1)) {
+ ret = 0;
+ goto err;
+ }
+
+ /* (Step 4) n = pq */
+ if (rsa->n == NULL)
+ rsa->n = BN_new();
+ if (rsa->n == NULL || !BN_mul(rsa->n, rsa->p, rsa->q, ctx))
+ goto err;
+
+ /* (Step 5a) dP = d mod (p-1) */
+ if (rsa->dmp1 == NULL)
+ rsa->dmp1 = BN_new();
+ if (rsa->dmp1 == NULL || !BN_mod(rsa->dmp1, rsa->d, p1, ctx))
+ goto err;
+
+ /* (Step 5b) dQ = d mod (q-1) */
+ if (rsa->dmq1 == NULL)
+ rsa->dmq1 = BN_secure_new();
+ if (rsa->dmq1 == NULL || !BN_mod(rsa->dmq1, rsa->d, q1, ctx))
+ goto err;
+
+ /* (Step 5c) qInv = (inverse of q) mod p */
+ BN_free(rsa->iqmp);
+ rsa->iqmp = BN_secure_new();
+ if (rsa->iqmp == NULL
+ || BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx) == NULL)
+ goto err;
+
+ ret = 1;
+err:
+ if (ret != 1) {
+ BN_free(rsa->e);
+ rsa->e = NULL;
+ BN_free(rsa->d);
+ rsa->d = NULL;
+ BN_free(rsa->n);
+ rsa->n = NULL;
+ BN_free(rsa->iqmp);
+ rsa->iqmp = NULL;
+ BN_free(rsa->dmq1);
+ rsa->dmq1 = NULL;
+ BN_free(rsa->dmp1);
+ rsa->dmp1 = NULL;
+ }
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_clear(lcm);
+ BN_clear(p1q1);
+ BN_clear(gcd);
+
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Generate a SP800-56B RSA key.
+ *
+ * See SP800-56Br1 6.3.1 "RSA Key-Pair Generation with a Fixed Public Exponent"
+ * 6.3.1.1 rsakpg1 - basic
+ * 6.3.1.3 rsakpg1 - crt
+ *
+ * See also FIPS 186-4 Section B.3.6
+ * "Generation of Probable Primes with Conditions Based on Auxiliary
+ * Probable Primes."
+ *
+ * Params:
+ * rsa The rsa object.
+ * nbits The intended key size in bits.
+ * efixed The public exponent. If NULL a default of 65537 is used.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 if successfully generated otherwise it returns 0.
+ */
+int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed,
+ BN_GENCB *cb)
+{
+ int ret = 0;
+ int ok;
+ BN_CTX *ctx = NULL;
+ BIGNUM *e = NULL;
+
+ /* (Steps 1a-1b) : Currently ignores the strength check */
+ if (!rsa_sp800_56b_validate_strength(nbits, -1))
+ return 0;
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+
+ /* Set default if e is not passed in */
+ if (efixed == NULL) {
+ e = BN_new();
+ if (e == NULL || !BN_set_word(e, 65537))
+ goto err;
+ } else {
+ e = (BIGNUM *)efixed;
+ }
+ /* (Step 1c) fixed exponent is checked later . */
+
+ for (;;) {
+ /* (Step 2) Generate prime factors */
+ if (!rsa_fips186_4_gen_prob_primes(rsa, NULL, NULL, NULL, NULL, NULL,
+ NULL, NULL, NULL, NULL, NULL, NULL,
+ NULL, nbits, e, ctx, cb))
+ goto err;
+ /* (Steps 3-5) Compute params d, n, dP, dQ, qInv */
+ ok = rsa_sp800_56b_derive_params_from_pq(rsa, nbits, e, ctx);
+ if (ok < 0)
+ goto err;
+ if (ok > 0)
+ break;
+ /* Gets here if computed d is too small - so try again */
+ }
+
+ /* (Step 6) Do pairwise test - optional validity test has been omitted */
+ ret = rsa_sp800_56b_pairwise_test(rsa, ctx);
+err:
+ if (efixed == NULL)
+ BN_free(e);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+/*
+ * See SP800-56Br1 6.3.1.3 (Step 6) Perform a pair-wise consistency test by
+ * verifying that: k = (k^e)^d mod n for some integer k where 1 < k < n-1.
+ *
+ * Returns 1 if the RSA key passes the pairwise test or 0 it it fails.
+ */
+int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *k, *tmp;
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ k = BN_CTX_get(ctx);
+ if (k == NULL)
+ goto err;
+
+ ret = (BN_set_word(k, 2)
+ && BN_mod_exp(tmp, k, rsa->e, rsa->n, ctx)
+ && BN_mod_exp(tmp, tmp, rsa->d, rsa->n, ctx)
+ && BN_cmp(k, tmp) == 0);
+ if (ret == 0)
+ RSAerr(RSA_F_RSA_SP800_56B_PAIRWISE_TEST, RSA_R_PAIRWISE_TEST_FAILURE);
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}