diff options
author | Shane Lontis <shane.lontis@oracle.com> | 2018-07-05 01:28:51 +0200 |
---|---|---|
committer | Matt Caswell <matt@openssl.org> | 2019-03-12 13:00:52 +0100 |
commit | 8240d5fa6535fb20e24fbe7eadbb3d6452a8d305 (patch) | |
tree | 3e785e20a83324c8dab559a5e3da6d533bb82f33 /crypto/rsa | |
parent | s390x assembly pack: import chacha from cryptogams repo (diff) | |
download | openssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.tar.xz openssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.zip |
FIPS 186-4 RSA Generation & Validation
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6652)
Diffstat (limited to 'crypto/rsa')
-rw-r--r-- | crypto/rsa/build.info | 3 | ||||
-rw-r--r-- | crypto/rsa/rsa_chk.c | 14 | ||||
-rw-r--r-- | crypto/rsa/rsa_gen.c | 9 | ||||
-rw-r--r-- | crypto/rsa/rsa_lib.c | 2 | ||||
-rw-r--r-- | crypto/rsa/rsa_locl.h | 38 | ||||
-rw-r--r-- | crypto/rsa/rsa_sp800_56b_check.c | 386 | ||||
-rw-r--r-- | crypto/rsa/rsa_sp800_56b_gen.c | 362 |
7 files changed, 811 insertions, 3 deletions
diff --git a/crypto/rsa/build.info b/crypto/rsa/build.info index 87f924922f..70864170ed 100644 --- a/crypto/rsa/build.info +++ b/crypto/rsa/build.info @@ -3,4 +3,5 @@ SOURCE[../../libcrypto]=\ rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \ rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \ rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \ - rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c + rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c \ + rsa_sp800_56b_gen.c rsa_sp800_56b_check.c diff --git a/crypto/rsa/rsa_chk.c b/crypto/rsa/rsa_chk.c index 805f998ff2..4f65dfa64b 100644 --- a/crypto/rsa/rsa_chk.c +++ b/crypto/rsa/rsa_chk.c @@ -16,8 +16,21 @@ int RSA_check_key(const RSA *key) return RSA_check_key_ex(key, NULL); } +/* + * NOTE: Key validation requires separate checks to be able to be accessed + * individually. These should be visible from the PKEY API.. + * See rsa_sp800_56b_check_public, rsa_sp800_56b_check_private and + * rsa_sp800_56b_check_keypair. + */ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb) { +#ifdef FIPS_MODE + if (!(rsa_sp800_56b_check_public(key) + && rsa_sp800_56b_check_private(key) + && rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key)) + return 0; + +#else BIGNUM *i, *j, *k, *l, *m; BN_CTX *ctx; int ret = 1, ex_primes = 0, idx; @@ -225,4 +238,5 @@ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb) BN_free(m); BN_CTX_free(ctx); return ret; +#endif /* FIPS_MODE */ } diff --git a/crypto/rsa/rsa_gen.c b/crypto/rsa/rsa_gen.c index 1d38ec993a..4bfe3c3a96 100644 --- a/crypto/rsa/rsa_gen.c +++ b/crypto/rsa/rsa_gen.c @@ -41,6 +41,7 @@ int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { +#ifndef FIPS_MODE /* multi-prime is only supported with the builtin key generation */ if (rsa->meth->rsa_multi_prime_keygen != NULL) { return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, @@ -57,13 +58,18 @@ int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, else return 0; } - +#endif /* FIPS_MODE */ return rsa_builtin_keygen(rsa, bits, primes, e_value, cb); } static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { +#ifdef FIPS_MODE + if (primes != 2) + return 0; + return rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); +#else BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; @@ -391,4 +397,5 @@ static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; +#endif /* FIPS_MODE */ } diff --git a/crypto/rsa/rsa_lib.c b/crypto/rsa/rsa_lib.c index 0848936b2d..f337a0df08 100644 --- a/crypto/rsa/rsa_lib.c +++ b/crypto/rsa/rsa_lib.c @@ -253,7 +253,7 @@ static uint32_t ilog_e(uint64_t v) * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} * The two cube roots are merged together here. */ -static uint16_t rsa_compute_security_bits(int n) +uint16_t rsa_compute_security_bits(int n) { uint64_t x; uint32_t lx; diff --git a/crypto/rsa/rsa_locl.h b/crypto/rsa/rsa_locl.h index 44a2a2df39..5dcd6eab7b 100644 --- a/crypto/rsa/rsa_locl.h +++ b/crypto/rsa/rsa_locl.h @@ -7,6 +7,9 @@ * https://www.openssl.org/source/license.html */ +#ifndef RSA_LOCAL_HEADER_H +#define RSA_LOCAL_HEADER_H + #include <openssl/rsa.h> #include "internal/refcount.h" @@ -130,3 +133,38 @@ void rsa_multip_info_free(RSA_PRIME_INFO *pinfo); RSA_PRIME_INFO *rsa_multip_info_new(void); int rsa_multip_calc_product(RSA *rsa); int rsa_multip_cap(int bits); + +uint16_t rsa_compute_security_bits(int n); + +int rsa_sp800_56b_validate_strength(int nbits, int strength); +int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, + int nbits); +int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, + BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, + BIGNUM *p1q1); + +int rsa_check_public_exponent(const BIGNUM *e); +int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx); +int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx); +int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx); +int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx); + +int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx); +int rsa_sp800_56b_check_public(const RSA *rsa); +int rsa_sp800_56b_check_private(const RSA *rsa); +int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, + int strength, int nbits); +int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed, + BN_GENCB *cb); + +int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits, + const BIGNUM *e, BN_CTX *ctx); +int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2, + BIGNUM *Xpout, const BIGNUM *Xp, + const BIGNUM *Xp1, const BIGNUM *Xp2, + BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout, + const BIGNUM *Xq, const BIGNUM *Xq1, + const BIGNUM *Xq2, int nbits, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); + +#endif /* RSA_LOCAL_HEADER_H */ diff --git a/crypto/rsa/rsa_sp800_56b_check.c b/crypto/rsa/rsa_sp800_56b_check.c new file mode 100644 index 0000000000..10e264e591 --- /dev/null +++ b/crypto/rsa/rsa_sp800_56b_check.c @@ -0,0 +1,386 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/err.h> +#include <openssl/bn.h> +#include "internal/bn_int.h" +#include "rsa_locl.h" + +/* + * Part of the RSA keypair test. + * Check the Chinese Remainder Theorem components are valid. + * + * See SP800-5bBr1 + * 6.4.1.2.3: rsakpv1-crt Step 7 + * 6.4.1.3.3: rsakpv2-crt Step 7 + */ +int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; + + /* check if only some of the crt components are set */ + if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { + if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) + return 0; + return 1; /* return ok if all components are NULL */ + } + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + ret = (q1 != NULL) + /* p1 = p -1 */ + && (BN_copy(p1, rsa->p) != NULL) + && BN_sub_word(p1, 1) + /* q1 = q - 1 */ + && (BN_copy(q1, rsa->q) != NULL) + && BN_sub_word(q1, 1) + /* (a) 1 < dP < (p – 1). */ + && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) + && (BN_cmp(rsa->dmp1, p1) < 0) + /* (b) 1 < dQ < (q - 1). */ + && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) + && (BN_cmp(rsa->dmq1, q1) < 0) + /* (c) 1 < qInv < p */ + && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) + && (BN_cmp(rsa->iqmp, rsa->p) < 0) + /* (d) 1 = (dP . e) mod (p - 1)*/ + && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) + && BN_is_one(r) + /* (e) 1 = (dQ . e) mod (q - 1) */ + && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) + && BN_is_one(r) + /* (f) 1 = (qInv . q) mod p */ + && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) + && BN_is_one(r); + BN_clear(p1); + BN_clear(q1); + BN_CTX_end(ctx); + return ret; +} + +/* + * Part of the RSA keypair test. + * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 + * + * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. + * + * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) + * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8 + * 0.B504F334 gives an approximation to 11 decimal places. + * The range is then from + * 0xB504F334_0000.......................000 to + * 0xFFFFFFFF_FFFF.......................FFF + */ +int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *tmp, *low; + + nbits >>= 1; + + /* Upper bound check */ + if (BN_num_bits(p) != nbits) + return 0; + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + low = BN_CTX_get(ctx); + + /* set low = (√2)(2^(nbits/2 - 1) */ + if (low == NULL || !BN_set_word(tmp, 0xB504F334)) + goto err; + + if (nbits >= 32) { + if (!BN_lshift(low, tmp, nbits - 32)) + goto err; + } else if (!BN_rshift(low, tmp, 32 - nbits)) { + goto err; + } + if (BN_cmp(p, low) < 0) + goto err; + ret = 1; +err: + BN_CTX_end(ctx); + return ret; +} + +/* + * Part of the RSA keypair test. + * Check the prime factor (for either p or q) + * i.e: p is prime AND GCD(p - 1, e) = 1 + * + * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h). + */ +int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) +{ + int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits); + int ret = 0; + BIGNUM *p1 = NULL, *gcd = NULL; + + /* (Steps 5 a-b) prime test */ + if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1 + /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ + || rsa_check_prime_factor_range(p, nbits, ctx) != 1) + return 0; + + BN_CTX_start(ctx); + p1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + ret = (gcd != NULL) + /* (Step 5d) GCD(p-1, e) = 1 */ + && (BN_copy(p1, p) != NULL) + && BN_sub_word(p1, 1) + && BN_gcd(gcd, p1, e, ctx) + && BN_is_one(gcd); + + BN_clear(p1); + BN_CTX_end(ctx); + return ret; +} + +/* + * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d + * satisfies: + * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). + * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) + */ +int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) +{ + int ret; + BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; + + /* (Step 6a) 2^(nbits/2) < d */ + if (BN_num_bits(rsa->d) <= (nbits >> 1)) + return 0; + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + lcm = BN_CTX_get(ctx); + p1q1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + ret = (gcd != NULL + /* LCM(p - 1, q - 1) */ + && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1) + /* (Step 6a) d < LCM(p - 1, q - 1) */ + && (BN_cmp(rsa->d, lcm) < 0) + /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ + && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) + && BN_is_one(r)); + + BN_clear(p1); + BN_clear(q1); + BN_clear(lcm); + BN_clear(gcd); + BN_CTX_end(ctx); + return ret; +} + +/* Check exponent is odd, and has a bitlen ranging from [17..256] */ +int rsa_check_public_exponent(const BIGNUM *e) +{ + int bitlen = BN_num_bits(e); + + return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); +} + +/* + * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) + * i.e- numbits(p-q-1) > (nbits/2 -100) + */ +int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, + int nbits) +{ + int bitlen = (nbits >> 1) - 100; + + if (!BN_sub(diff, p, q)) + return -1; + BN_set_negative(diff, 0); + + if (BN_is_zero(diff)) + return 0; + + if (!BN_sub_word(diff, 1)) + return -1; + return (BN_num_bits(diff) > bitlen); +} + +/* return LCM(p-1, q-1) */ +int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, + BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, + BIGNUM *p1q1) +{ + return BN_sub(p1, p, BN_value_one()) /* p-1 */ + && BN_sub(q1, q, BN_value_one()) /* q-1 */ + && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ + && BN_gcd(gcd, p1, q1, ctx) + && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ +} + +/* + * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to + * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA + * caveat is that the modulus must be as specified in SP800-56Br1 + */ +int rsa_sp800_56b_check_public(const RSA *rsa) +{ + int ret = 0, nbits, iterations, status; + BN_CTX *ctx = NULL; + BIGNUM *gcd = NULL; + + if (rsa->n == NULL || rsa->e == NULL) + return 0; + + /* + * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) + * NOTE: changed to allow keys >= 2048 + */ + nbits = BN_num_bits(rsa->n); + if (!rsa_sp800_56b_validate_strength(nbits, -1)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH); + return 0; + } + if (!BN_is_odd(rsa->n)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + return 0; + } + + /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ + if (!rsa_check_public_exponent(rsa->e)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + return 0; + } + + ctx = BN_CTX_new(); + gcd = BN_new(); + if (ctx == NULL || gcd == NULL) + goto err; + + iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits); + /* (Steps d-f): + * The modulus is composite, but not a power of a prime. + * The modulus has no factors smaller than 752. + */ + if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + goto err; + } + + ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status); + if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + ret = 0; + goto err; + } + + ret = 1; +err: + BN_free(gcd); + BN_CTX_free(ctx); + return ret; +} + +/* + * Perform validation of the RSA private key to check that 0 < D < N. + */ +int rsa_sp800_56b_check_private(const RSA *rsa) +{ + if (rsa->d == NULL || rsa->n == NULL) + return 0; + return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; +} + +/* + * RSA key pair validation. + * + * SP800-56Br1. + * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" + * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" + * + * It uses: + * 6.4.1.2.3 "rsakpv1 - crt" + * 6.4.1.3.3 "rsakpv2 - crt" + */ +int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, + int strength, int nbits) +{ + int ret = 0; + BN_CTX *ctx = NULL; + BIGNUM *r = NULL; + + if (rsa->p == NULL + || rsa->q == NULL + || rsa->e == NULL + || rsa->d == NULL + || rsa->n == NULL) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + return 0; + } + /* (Step 1): Check Ranges */ + if (!rsa_sp800_56b_validate_strength(nbits, strength)) + return 0; + + /* If the exponent is known */ + if (efixed != NULL) { + /* (2): Check fixed exponent matches public exponent. */ + if (BN_cmp(efixed, rsa->e) != 0) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + return 0; + } + } + /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ + if (!rsa_check_public_exponent(rsa->e)) { + /* exponent out of range */ + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + return 0; + } + /* (Step 3.b): check the modulus */ + if (nbits != BN_num_bits(rsa->n)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); + return 0; + } + + ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) + goto err; + /* (Step 4.c): Check n = pq */ + if (BN_cmp(rsa->n, r) != 0) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + goto err; + } + + /* (Step 5): check prime factors p & q */ + ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) + && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) + && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) + /* (Step 6): Check the private exponent d */ + && rsa_check_private_exponent(rsa, nbits, ctx) + /* 6.4.1.2.3 (Step 7): Check the CRT components */ + && rsa_check_crt_components(rsa, ctx); + if (ret != 1) + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); + +err: + BN_clear(r); + BN_CTX_end(ctx); + BN_CTX_free(ctx); + return ret; +} diff --git a/crypto/rsa/rsa_sp800_56b_gen.c b/crypto/rsa/rsa_sp800_56b_gen.c new file mode 100644 index 0000000000..221136bd0c --- /dev/null +++ b/crypto/rsa/rsa_sp800_56b_gen.c @@ -0,0 +1,362 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/err.h> +#include <openssl/bn.h> +#include "internal/bn_int.h" +#include "rsa_locl.h" + +#define RSA_FIPS1864_MIN_KEYGEN_KEYSIZE 2048 +#define RSA_FIPS1864_MIN_KEYGEN_STRENGTH 112 +#define RSA_FIPS1864_MAX_KEYGEN_STRENGTH 256 + +/* + * Generate probable primes 'p' & 'q'. See FIPS 186-4 Section B.3.6 + * "Generation of Probable Primes with Conditions Based on Auxiliary Probable + * Primes". + * + * Params: + * rsa Object used to store primes p & q. + * p1, p2 The returned auxiliary primes for p. If NULL they are not returned. + * Xpout An optionally returned random number used during generation of p. + * Xp An optional passed in value (that is random number used during + * generation of p). + * Xp1, Xp2 Optionally passed in randomly generated numbers from which + * auxiliary primes p1 & p2 are calculated. If NULL these values + * are generated internally. + * q1, q2 The returned auxiliary primes for q. If NULL they are not returned. + * Xqout An optionally returned random number used during generation of q. + * Xq An optional passed in value (that is random number used during + * generation of q). + * Xq1, Xq2 Optionally passed in randomly generated numbers from which + * auxiliary primes q1 & q2 are calculated. If NULL these values + * are generated internally. + * nbits The key size in bits (The size of the modulus n). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 if successful, or 0 otherwise. + * Notes: + * p1, p2, q1, q2, Xpout, Xqout are returned if they are not NULL. + * Xp, Xp1, Xp2, Xq, Xq1, Xq2 are optionally passed in. + * (Required for CAVS testing). + */ +int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2, + BIGNUM *Xpout, const BIGNUM *Xp, + const BIGNUM *Xp1, const BIGNUM *Xp2, + BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout, + const BIGNUM *Xq, const BIGNUM *Xq1, + const BIGNUM *Xq2, int nbits, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0, ok; + BIGNUM *Xpo = NULL, *Xqo = NULL, *tmp = NULL; + + /* (Step 1) Check key length + * NOTE: SP800-131A Rev1 Disallows key lengths of < 2048 bits for RSA + * Signature Generation and Key Agree/Transport. + */ + if (nbits < RSA_FIPS1864_MIN_KEYGEN_KEYSIZE) { + RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, RSA_R_INVALID_KEY_LENGTH); + return 0; + } + + if (!rsa_check_public_exponent(e)) { + RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + goto err; + } + + /* (Step 3) Determine strength and check rand generator strength is ok - + * this step is redundant because the generator always returns a higher + * strength than is required. + */ + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + Xpo = (Xpout != NULL) ? Xpout : BN_CTX_get(ctx); + Xqo = (Xqout != NULL) ? Xqout : BN_CTX_get(ctx); + if (tmp == NULL || Xpo == NULL || Xqo == NULL) + goto err; + + if (rsa->p == NULL) + rsa->p = BN_secure_new(); + if (rsa->q == NULL) + rsa->q = BN_secure_new(); + if (rsa->p == NULL || rsa->q == NULL) + goto err; + + /* (Step 4) Generate p, Xp */ + if (!bn_rsa_fips186_4_gen_prob_primes(rsa->p, Xpo, p1, p2, Xp, Xp1, Xp2, + nbits, e, ctx, cb)) + goto err; + for(;;) { + /* (Step 5) Generate q, Xq*/ + if (!bn_rsa_fips186_4_gen_prob_primes(rsa->q, Xqo, q1, q2, Xq, Xq1, + Xq2, nbits, e, ctx, cb)) + goto err; + + /* (Step 6) |Xp - Xq| > 2^(nbitlen/2 - 100) */ + ok = rsa_check_pminusq_diff(tmp, Xpo, Xqo, nbits); + if (ok < 0) + goto err; + if (ok == 0) + continue; + + /* (Step 6) |p - q| > 2^(nbitlen/2 - 100) */ + ok = rsa_check_pminusq_diff(tmp, rsa->p, rsa->q, nbits); + if (ok < 0) + goto err; + if (ok == 0) + continue; + break; /* successfully finished */ + } + ret = 1; +err: + /* Zeroize any internally generated values that are not returned */ + if (Xpo != Xpout) + BN_clear(Xpo); + if (Xqo != Xqout) + BN_clear(Xqo); + BN_clear(tmp); + + BN_CTX_end(ctx); + return ret; +} + +/* + * Validates the RSA key size based on the target strength. + * See SP800-56Br1 6.3.1.1 (Steps 1a-1b) + * + * Params: + * nbits The key size in bits. + * strength The target strength in bits. -1 means the target + * strength is unknown. + * Returns: 1 if the key size matches the target strength, or 0 otherwise. + */ +int rsa_sp800_56b_validate_strength(int nbits, int strength) +{ + int s = (int)rsa_compute_security_bits(nbits); + + if (s < RSA_FIPS1864_MIN_KEYGEN_STRENGTH + || s > RSA_FIPS1864_MAX_KEYGEN_STRENGTH) { + RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_MODULUS); + return 0; + } + if (strength != -1 && s != strength) { + RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_STRENGTH); + return 0; + } + return 1; +} + +/* + * + * Using p & q, calculate other required parameters such as n, d. + * as well as the CRT parameters dP, dQ, qInv. + * + * See SP800-56Br1 + * 6.3.1.1 rsakpg1 - basic (Steps 3-4) + * 6.3.1.3 rsakpg1 - crt (Step 5) + * + * Params: + * rsa An rsa object. + * nbits The key size. + * e The public exponent. + * ctx A BN_CTX object. + * Notes: + * There is a small chance that the generated d will be too small. + * Returns: -1 = error, + * 0 = d is too small, + * 1 = success. + */ +int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits, + const BIGNUM *e, BN_CTX *ctx) +{ + int ret = -1; + BIGNUM *p1, *q1, *lcm, *p1q1, *gcd; + + BN_CTX_start(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + lcm = BN_CTX_get(ctx); + p1q1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + if (gcd == NULL) + goto err; + + /* LCM((p-1, q-1)) */ + if (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) != 1) + goto err; + + /* copy e */ + BN_free(rsa->e); + rsa->e = BN_dup(e); + if (rsa->e == NULL) + goto err; + + BN_clear_free(rsa->d); + /* (Step 3) d = (e^-1) mod (LCM(p-1, q-1)) */ + rsa->d = BN_secure_new(); + if (rsa->d == NULL || BN_mod_inverse(rsa->d, e, lcm, ctx) == NULL) + goto err; + + /* (Step 3) return an error if d is too small */ + if (BN_num_bits(rsa->d) <= (nbits >> 1)) { + ret = 0; + goto err; + } + + /* (Step 4) n = pq */ + if (rsa->n == NULL) + rsa->n = BN_new(); + if (rsa->n == NULL || !BN_mul(rsa->n, rsa->p, rsa->q, ctx)) + goto err; + + /* (Step 5a) dP = d mod (p-1) */ + if (rsa->dmp1 == NULL) + rsa->dmp1 = BN_new(); + if (rsa->dmp1 == NULL || !BN_mod(rsa->dmp1, rsa->d, p1, ctx)) + goto err; + + /* (Step 5b) dQ = d mod (q-1) */ + if (rsa->dmq1 == NULL) + rsa->dmq1 = BN_secure_new(); + if (rsa->dmq1 == NULL || !BN_mod(rsa->dmq1, rsa->d, q1, ctx)) + goto err; + + /* (Step 5c) qInv = (inverse of q) mod p */ + BN_free(rsa->iqmp); + rsa->iqmp = BN_secure_new(); + if (rsa->iqmp == NULL + || BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx) == NULL) + goto err; + + ret = 1; +err: + if (ret != 1) { + BN_free(rsa->e); + rsa->e = NULL; + BN_free(rsa->d); + rsa->d = NULL; + BN_free(rsa->n); + rsa->n = NULL; + BN_free(rsa->iqmp); + rsa->iqmp = NULL; + BN_free(rsa->dmq1); + rsa->dmq1 = NULL; + BN_free(rsa->dmp1); + rsa->dmp1 = NULL; + } + BN_clear(p1); + BN_clear(q1); + BN_clear(lcm); + BN_clear(p1q1); + BN_clear(gcd); + + BN_CTX_end(ctx); + return ret; +} + +/* + * Generate a SP800-56B RSA key. + * + * See SP800-56Br1 6.3.1 "RSA Key-Pair Generation with a Fixed Public Exponent" + * 6.3.1.1 rsakpg1 - basic + * 6.3.1.3 rsakpg1 - crt + * + * See also FIPS 186-4 Section B.3.6 + * "Generation of Probable Primes with Conditions Based on Auxiliary + * Probable Primes." + * + * Params: + * rsa The rsa object. + * nbits The intended key size in bits. + * efixed The public exponent. If NULL a default of 65537 is used. + * cb An optional BIGNUM callback. + * Returns: 1 if successfully generated otherwise it returns 0. + */ +int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed, + BN_GENCB *cb) +{ + int ret = 0; + int ok; + BN_CTX *ctx = NULL; + BIGNUM *e = NULL; + + /* (Steps 1a-1b) : Currently ignores the strength check */ + if (!rsa_sp800_56b_validate_strength(nbits, -1)) + return 0; + + ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + + /* Set default if e is not passed in */ + if (efixed == NULL) { + e = BN_new(); + if (e == NULL || !BN_set_word(e, 65537)) + goto err; + } else { + e = (BIGNUM *)efixed; + } + /* (Step 1c) fixed exponent is checked later . */ + + for (;;) { + /* (Step 2) Generate prime factors */ + if (!rsa_fips186_4_gen_prob_primes(rsa, NULL, NULL, NULL, NULL, NULL, + NULL, NULL, NULL, NULL, NULL, NULL, + NULL, nbits, e, ctx, cb)) + goto err; + /* (Steps 3-5) Compute params d, n, dP, dQ, qInv */ + ok = rsa_sp800_56b_derive_params_from_pq(rsa, nbits, e, ctx); + if (ok < 0) + goto err; + if (ok > 0) + break; + /* Gets here if computed d is too small - so try again */ + } + + /* (Step 6) Do pairwise test - optional validity test has been omitted */ + ret = rsa_sp800_56b_pairwise_test(rsa, ctx); +err: + if (efixed == NULL) + BN_free(e); + BN_CTX_free(ctx); + return ret; +} + +/* + * See SP800-56Br1 6.3.1.3 (Step 6) Perform a pair-wise consistency test by + * verifying that: k = (k^e)^d mod n for some integer k where 1 < k < n-1. + * + * Returns 1 if the RSA key passes the pairwise test or 0 it it fails. + */ +int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *k, *tmp; + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + k = BN_CTX_get(ctx); + if (k == NULL) + goto err; + + ret = (BN_set_word(k, 2) + && BN_mod_exp(tmp, k, rsa->e, rsa->n, ctx) + && BN_mod_exp(tmp, tmp, rsa->d, rsa->n, ctx) + && BN_cmp(k, tmp) == 0); + if (ret == 0) + RSAerr(RSA_F_RSA_SP800_56B_PAIRWISE_TEST, RSA_R_PAIRWISE_TEST_FAILURE); +err: + BN_CTX_end(ctx); + return ret; +} |