summaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
authorBernd Edlinger <bernd.edlinger@hotmail.de>2020-01-09 23:02:54 +0100
committerBernd Edlinger <bernd.edlinger@hotmail.de>2021-06-13 06:36:48 +0200
commit0051746e03c65f5970d8ca424579d50f58a877e0 (patch)
tree8c1b5be0d8d5f3785855e0b43b6a7714b56b714d /crypto
parentci: run the on pull request CIs on push to master (diff)
downloadopenssl-0051746e03c65f5970d8ca424579d50f58a877e0.tar.xz
openssl-0051746e03c65f5970d8ca424579d50f58a877e0.zip
Add AES consttime code for no-asm configurations
This adds optional constant time support for AES when building openssl for no-asm. Enable with: ./config no-asm -DOPENSSL_AES_CONST_TIME Disable with: ./config no-asm -DOPENSSL_NO_AES_CONST_TIME This is by default enabled. [extended tests] Reviewed-by: Paul Dale <pauli@openssl.org> (Merged from https://github.com/openssl/openssl/pull/10828)
Diffstat (limited to 'crypto')
-rw-r--r--crypto/aes/aes_core.c632
-rw-r--r--crypto/aes/aes_local.h1
2 files changed, 632 insertions, 1 deletions
diff --git a/crypto/aes/aes_core.c b/crypto/aes/aes_core.c
index b7aa92ed32..acfc19258a 100644
--- a/crypto/aes/aes_core.c
+++ b/crypto/aes/aes_core.c
@@ -50,7 +50,637 @@
#include <openssl/aes.h>
#include "aes_local.h"
-#ifndef AES_ASM
+#if !defined(OPENSSL_NO_AES_CONST_TIME) && !defined(AES_ASM)
+typedef union {
+ unsigned char b[8];
+ u32 w[2];
+ u64 d;
+} uni;
+
+/*
+ * Compute w := (w * x) mod (x^8 + x^4 + x^3 + x^1 + 1)
+ * Therefore the name "xtime".
+ */
+static void XtimeWord(u32 *w)
+{
+ u32 a, b;
+
+ a = *w;
+ b = a & 0x80808080u;
+ a ^= b;
+ b -= b >> 7;
+ b &= 0x1B1B1B1Bu;
+ b ^= a << 1;
+ *w = b;
+}
+
+static void XtimeLong(u64 *w)
+{
+ u64 a, b;
+
+ a = *w;
+ b = a & 0x8080808080808080u;
+ a ^= b;
+ b -= b >> 7;
+ b &= 0x1B1B1B1B1B1B1B1Bu;
+ b ^= a << 1;
+ *w = b;
+}
+
+/*
+ * This computes w := S * w ^ -1 + c, where c = {01100011}.
+ * Instead of using GF(2^8) mod (x^8+x^4+x^3+x+1} we do the inversion
+ * in GF(GF(GF(2^2)^2)^2) mod (X^2+X+8)
+ * and GF(GF(2^2)^2) mod (X^2+X+2)
+ * and GF(2^2) mod (X^2+X+1)
+ * The first part of the algorithm below transfers the coordinates
+ * {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} =>
+ * {1,Y,Y^2,Y^3,Y^4,Y^5,Y^6,Y^7} with Y=0x41:
+ * {0x01,0x41,0x66,0x6c,0x56,0x9a,0x58,0xc4}
+ * The last part undoes the coordinate transfer and the final affine
+ * transformation S:
+ * b[i] = b[i] + b[(i+4)%8] + b[(i+5)%8] + b[(i+6)%8] + b[(i+7)%8] + c[i]
+ * in one step.
+ * The multiplication in GF(2^2^2^2) is done in ordinary coords:
+ * A = (a0*1 + a1*x^4)
+ * B = (b0*1 + b1*x^4)
+ * AB = ((a0*b0 + 8*a1*b1)*1 + (a1*b0 + (a0+a1)*b1)*x^4)
+ * When A = (a0,a1) is given we want to solve AB = 1:
+ * (a) 1 = a0*b0 + 8*a1*b1
+ * (b) 0 = a1*b0 + (a0+a1)*b1
+ * => multiply (a) by a1 and (b) by a0
+ * (c) a1 = a1*a0*b0 + (8*a1*a1)*b1
+ * (d) 0 = a1*a0*b0 + (a0*a0+a1*a0)*b1
+ * => add (c) + (d)
+ * (e) a1 = (a0*a0 + a1*a0 + 8*a1*a1)*b1
+ * => therefore
+ * b1 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * a1
+ * => and adding (a1*b0) to (b) we get
+ * (f) a1*b0 = (a0+a1)*b1
+ * => therefore
+ * b0 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * (a0+a1)
+ * Note this formula also works for the case
+ * (a0+a1)*a0 + 8*a1*a1 = 0
+ * if the inverse element for 0^-1 is mapped to 0.
+ * Repeat the same for GF(2^2^2) and GF(2^2).
+ * We get the following algorithm:
+ * inv8(a0,a1):
+ * x0 = a0^a1
+ * [y0,y1] = mul4([x0,a1],[a0,a1]); (*)
+ * y1 = mul4(8,y1);
+ * t = inv4(y0^y1);
+ * [b0,b1] = mul4([x0,a1],[t,t]); (*)
+ * return [b0,b1];
+ * The non-linear multiplies (*) can be done in parallel at no extra cost.
+ */
+static void SubWord(u32 *w)
+{
+ u32 x, y, a1, a2, a3, a4, a5, a6;
+
+ x = *w;
+ y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
+ x &= 0xDDDDDDDDu;
+ x ^= y & 0x57575757u;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x1C1C1C1Cu;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x4A4A4A4Au;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x42424242u;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x64646464u;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0xE0E0E0E0u;
+ a1 = x;
+ a1 ^= (x & 0xF0F0F0F0u) >> 4;
+ a2 = ((x & 0xCCCCCCCCu) >> 2) | ((x & 0x33333333u) << 2);
+ a3 = x & a1;
+ a3 ^= (a3 & 0xAAAAAAAAu) >> 1;
+ a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAu;
+ a4 = a2 & a1;
+ a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAu;
+ a5 = (a3 & 0xCCCCCCCCu) >> 2;
+ a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
+ a4 = a5 & 0x22222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x22222222u;
+ a3 ^= a4;
+ a5 = a3 & 0xA0A0A0A0u;
+ a5 |= a5 >> 1;
+ a5 ^= (a3 << 1) & 0xA0A0A0A0u;
+ a4 = a5 & 0xC0C0C0C0u;
+ a6 = a4 >> 2;
+ a4 ^= (a5 << 2) & 0xC0C0C0C0u;
+ a5 = a6 & 0x20202020u;
+ a5 |= a5 >> 1;
+ a5 ^= (a6 << 1) & 0x20202020u;
+ a4 |= a5;
+ a3 ^= a4 >> 4;
+ a3 &= 0x0F0F0F0Fu;
+ a2 = a3;
+ a2 ^= (a3 & 0x0C0C0C0Cu) >> 2;
+ a4 = a3 & a2;
+ a4 ^= (a4 & 0x0A0A0A0A0Au) >> 1;
+ a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0Au;
+ a5 = a4 & 0x08080808u;
+ a5 |= a5 >> 1;
+ a5 ^= (a4 << 1) & 0x08080808u;
+ a4 ^= a5 >> 2;
+ a4 &= 0x03030303u;
+ a4 ^= (a4 & 0x02020202u) >> 1;
+ a4 |= a4 << 2;
+ a3 = a2 & a4;
+ a3 ^= (a3 & 0x0A0A0A0Au) >> 1;
+ a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0Au;
+ a3 |= a3 << 4;
+ a2 = ((a1 & 0xCCCCCCCCu) >> 2) | ((a1 & 0x33333333u) << 2);
+ x = a1 & a3;
+ x ^= (x & 0xAAAAAAAAu) >> 1;
+ x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAu;
+ a4 = a2 & a3;
+ a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAu;
+ a5 = (x & 0xCCCCCCCCu) >> 2;
+ x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
+ a4 = a5 & 0x22222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x22222222u;
+ x ^= a4;
+ y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
+ x &= 0x39393939u;
+ x ^= y & 0x3F3F3F3Fu;
+ y = ((y & 0xFCFCFCFCu) >> 2) | ((y & 0x03030303u) << 6);
+ x ^= y & 0x97979797u;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x9B9B9B9Bu;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x3C3C3C3Cu;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0xDDDDDDDDu;
+ y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
+ x ^= y & 0x72727272u;
+ x ^= 0x63636363u;
+ *w = x;
+}
+
+static void SubLong(u64 *w)
+{
+ u64 x, y, a1, a2, a3, a4, a5, a6;
+
+ x = *w;
+ y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
+ x &= 0xDDDDDDDDDDDDDDDDu;
+ x ^= y & 0x5757575757575757u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x1C1C1C1C1C1C1C1Cu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x4A4A4A4A4A4A4A4Au;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x4242424242424242u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x6464646464646464u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xE0E0E0E0E0E0E0E0u;
+ a1 = x;
+ a1 ^= (x & 0xF0F0F0F0F0F0F0F0u) >> 4;
+ a2 = ((x & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((x & 0x3333333333333333u) << 2);
+ a3 = x & a1;
+ a3 ^= (a3 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAAAAAAAAAu;
+ a4 = a2 & a1;
+ a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
+ a5 = (a3 & 0xCCCCCCCCCCCCCCCCu) >> 2;
+ a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
+ a4 = a5 & 0x2222222222222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x2222222222222222u;
+ a3 ^= a4;
+ a5 = a3 & 0xA0A0A0A0A0A0A0A0u;
+ a5 |= a5 >> 1;
+ a5 ^= (a3 << 1) & 0xA0A0A0A0A0A0A0A0u;
+ a4 = a5 & 0xC0C0C0C0C0C0C0C0u;
+ a6 = a4 >> 2;
+ a4 ^= (a5 << 2) & 0xC0C0C0C0C0C0C0C0u;
+ a5 = a6 & 0x2020202020202020u;
+ a5 |= a5 >> 1;
+ a5 ^= (a6 << 1) & 0x2020202020202020u;
+ a4 |= a5;
+ a3 ^= a4 >> 4;
+ a3 &= 0x0F0F0F0F0F0F0F0Fu;
+ a2 = a3;
+ a2 ^= (a3 & 0x0C0C0C0C0C0C0C0Cu) >> 2;
+ a4 = a3 & a2;
+ a4 ^= (a4 & 0x0A0A0A0A0A0A0A0Au) >> 1;
+ a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0A0A0A0A0Au;
+ a5 = a4 & 0x0808080808080808u;
+ a5 |= a5 >> 1;
+ a5 ^= (a4 << 1) & 0x0808080808080808u;
+ a4 ^= a5 >> 2;
+ a4 &= 0x0303030303030303u;
+ a4 ^= (a4 & 0x0202020202020202u) >> 1;
+ a4 |= a4 << 2;
+ a3 = a2 & a4;
+ a3 ^= (a3 & 0x0A0A0A0A0A0A0A0Au) >> 1;
+ a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0A0A0A0A0Au;
+ a3 |= a3 << 4;
+ a2 = ((a1 & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((a1 & 0x3333333333333333u) << 2);
+ x = a1 & a3;
+ x ^= (x & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAAAAAAAAAu;
+ a4 = a2 & a3;
+ a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
+ a5 = (x & 0xCCCCCCCCCCCCCCCCu) >> 2;
+ x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
+ a4 = a5 & 0x2222222222222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x2222222222222222u;
+ x ^= a4;
+ y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
+ x &= 0x3939393939393939u;
+ x ^= y & 0x3F3F3F3F3F3F3F3Fu;
+ y = ((y & 0xFCFCFCFCFCFCFCFCu) >> 2) | ((y & 0x0303030303030303u) << 6);
+ x ^= y & 0x9797979797979797u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x9B9B9B9B9B9B9B9Bu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x3C3C3C3C3C3C3C3Cu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xDDDDDDDDDDDDDDDDu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x7272727272727272u;
+ x ^= 0x6363636363636363u;
+ *w = x;
+}
+
+/*
+ * This computes w := (S^-1 * (w + c))^-1
+ */
+static void InvSubLong(u64 *w)
+{
+ u64 x, y, a1, a2, a3, a4, a5, a6;
+
+ x = *w;
+ x ^= 0x6363636363636363u;
+ y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
+ x &= 0xFDFDFDFDFDFDFDFDu;
+ x ^= y & 0x5E5E5E5E5E5E5E5Eu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xF3F3F3F3F3F3F3F3u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xF5F5F5F5F5F5F5F5u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x7878787878787878u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x7777777777777777u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x1515151515151515u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xA5A5A5A5A5A5A5A5u;
+ a1 = x;
+ a1 ^= (x & 0xF0F0F0F0F0F0F0F0u) >> 4;
+ a2 = ((x & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((x & 0x3333333333333333u) << 2);
+ a3 = x & a1;
+ a3 ^= (a3 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAAAAAAAAAu;
+ a4 = a2 & a1;
+ a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
+ a5 = (a3 & 0xCCCCCCCCCCCCCCCCu) >> 2;
+ a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
+ a4 = a5 & 0x2222222222222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x2222222222222222u;
+ a3 ^= a4;
+ a5 = a3 & 0xA0A0A0A0A0A0A0A0u;
+ a5 |= a5 >> 1;
+ a5 ^= (a3 << 1) & 0xA0A0A0A0A0A0A0A0u;
+ a4 = a5 & 0xC0C0C0C0C0C0C0C0u;
+ a6 = a4 >> 2;
+ a4 ^= (a5 << 2) & 0xC0C0C0C0C0C0C0C0u;
+ a5 = a6 & 0x2020202020202020u;
+ a5 |= a5 >> 1;
+ a5 ^= (a6 << 1) & 0x2020202020202020u;
+ a4 |= a5;
+ a3 ^= a4 >> 4;
+ a3 &= 0x0F0F0F0F0F0F0F0Fu;
+ a2 = a3;
+ a2 ^= (a3 & 0x0C0C0C0C0C0C0C0Cu) >> 2;
+ a4 = a3 & a2;
+ a4 ^= (a4 & 0x0A0A0A0A0A0A0A0Au) >> 1;
+ a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0A0A0A0A0Au;
+ a5 = a4 & 0x0808080808080808u;
+ a5 |= a5 >> 1;
+ a5 ^= (a4 << 1) & 0x0808080808080808u;
+ a4 ^= a5 >> 2;
+ a4 &= 0x0303030303030303u;
+ a4 ^= (a4 & 0x0202020202020202u) >> 1;
+ a4 |= a4 << 2;
+ a3 = a2 & a4;
+ a3 ^= (a3 & 0x0A0A0A0A0A0A0A0Au) >> 1;
+ a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0A0A0A0A0Au;
+ a3 |= a3 << 4;
+ a2 = ((a1 & 0xCCCCCCCCCCCCCCCCu) >> 2) | ((a1 & 0x3333333333333333u) << 2);
+ x = a1 & a3;
+ x ^= (x & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAAAAAAAAAu;
+ a4 = a2 & a3;
+ a4 ^= (a4 & 0xAAAAAAAAAAAAAAAAu) >> 1;
+ a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAAAAAAAAAu;
+ a5 = (x & 0xCCCCCCCCCCCCCCCCu) >> 2;
+ x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCCCCCCCCCu;
+ a4 = a5 & 0x2222222222222222u;
+ a4 |= a4 >> 1;
+ a4 ^= (a5 << 1) & 0x2222222222222222u;
+ x ^= a4;
+ y = ((x & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((x & 0x0101010101010101u) << 7);
+ x &= 0xB5B5B5B5B5B5B5B5u;
+ x ^= y & 0x4040404040404040u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x8080808080808080u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x1616161616161616u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xEBEBEBEBEBEBEBEBu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x9797979797979797u;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0xFBFBFBFBFBFBFBFBu;
+ y = ((y & 0xFEFEFEFEFEFEFEFEu) >> 1) | ((y & 0x0101010101010101u) << 7);
+ x ^= y & 0x7D7D7D7D7D7D7D7Du;
+ *w = x;
+}
+
+static void ShiftRows(u64 *state)
+{
+ unsigned char s[4];
+ unsigned char *s0;
+ int r;
+
+ s0 = (unsigned char *)state;
+ for (r = 0; r < 4; r++) {
+ s[0] = s0[0*4 + r];
+ s[1] = s0[1*4 + r];
+ s[2] = s0[2*4 + r];
+ s[3] = s0[3*4 + r];
+ s0[0*4 + r] = s[(r+0) % 4];
+ s0[1*4 + r] = s[(r+1) % 4];
+ s0[2*4 + r] = s[(r+2) % 4];
+ s0[3*4 + r] = s[(r+3) % 4];
+ }
+}
+
+static void InvShiftRows(u64 *state)
+{
+ unsigned char s[4];
+ unsigned char *s0;
+ int r;
+
+ s0 = (unsigned char *)state;
+ for (r = 0; r < 4; r++) {
+ s[0] = s0[0*4 + r];
+ s[1] = s0[1*4 + r];
+ s[2] = s0[2*4 + r];
+ s[3] = s0[3*4 + r];
+ s0[0*4 + r] = s[(4-r) % 4];
+ s0[1*4 + r] = s[(5-r) % 4];
+ s0[2*4 + r] = s[(6-r) % 4];
+ s0[3*4 + r] = s[(7-r) % 4];
+ }
+}
+
+static void MixColumns(u64 *state)
+{
+ uni s1;
+ uni s;
+ int c;
+
+ for (c = 0; c < 2; c++) {
+ s1.d = state[c];
+ s.d = s1.d;
+ s.d ^= ((s.d & 0xFFFF0000FFFF0000u) >> 16)
+ | ((s.d & 0x0000FFFF0000FFFFu) << 16);
+ s.d ^= ((s.d & 0xFF00FF00FF00FF00u) >> 8)
+ | ((s.d & 0x00FF00FF00FF00FFu) << 8);
+ s.d ^= s1.d;
+ XtimeLong(&s1.d);
+ s.d ^= s1.d;
+ s.b[0] ^= s1.b[1];
+ s.b[1] ^= s1.b[2];
+ s.b[2] ^= s1.b[3];
+ s.b[3] ^= s1.b[0];
+ s.b[4] ^= s1.b[5];
+ s.b[5] ^= s1.b[6];
+ s.b[6] ^= s1.b[7];
+ s.b[7] ^= s1.b[4];
+ state[c] = s.d;
+ }
+}
+
+static void InvMixColumns(u64 *state)
+{
+ uni s1;
+ uni s;
+ int c;
+
+ for (c = 0; c < 2; c++) {
+ s1.d = state[c];
+ s.d = s1.d;
+ s.d ^= ((s.d & 0xFFFF0000FFFF0000u) >> 16)
+ | ((s.d & 0x0000FFFF0000FFFFu) << 16);
+ s.d ^= ((s.d & 0xFF00FF00FF00FF00u) >> 8)
+ | ((s.d & 0x00FF00FF00FF00FFu) << 8);
+ s.d ^= s1.d;
+ XtimeLong(&s1.d);
+ s.d ^= s1.d;
+ s.b[0] ^= s1.b[1];
+ s.b[1] ^= s1.b[2];
+ s.b[2] ^= s1.b[3];
+ s.b[3] ^= s1.b[0];
+ s.b[4] ^= s1.b[5];
+ s.b[5] ^= s1.b[6];
+ s.b[6] ^= s1.b[7];
+ s.b[7] ^= s1.b[4];
+ XtimeLong(&s1.d);
+ s1.d ^= ((s1.d & 0xFFFF0000FFFF0000u) >> 16)
+ | ((s1.d & 0x0000FFFF0000FFFFu) << 16);
+ s.d ^= s1.d;
+ XtimeLong(&s1.d);
+ s1.d ^= ((s1.d & 0xFF00FF00FF00FF00u) >> 8)
+ | ((s1.d & 0x00FF00FF00FF00FFu) << 8);
+ s.d ^= s1.d;
+ state[c] = s.d;
+ }
+}
+
+static void AddRoundKey(u64 *state, const u64 *w)
+{
+ state[0] ^= w[0];
+ state[1] ^= w[1];
+}
+
+static void Cipher(const unsigned char *in, unsigned char *out,
+ const u64 *w, int nr)
+{
+ u64 state[2];
+ int i;
+
+ memcpy(state, in, 16);
+
+ AddRoundKey(state, w);
+
+ for (i = 1; i < nr; i++) {
+ SubLong(&state[0]);
+ SubLong(&state[1]);
+ ShiftRows(state);
+ MixColumns(state);
+ AddRoundKey(state, w + i*2);
+ }
+
+ SubLong(&state[0]);
+ SubLong(&state[1]);
+ ShiftRows(state);
+ AddRoundKey(state, w + nr*2);
+
+ memcpy(out, state, 16);
+}
+
+static void InvCipher(const unsigned char *in, unsigned char *out,
+ const u64 *w, int nr)
+
+{
+ u64 state[2];
+ int i;
+
+ memcpy(state, in, 16);
+
+ AddRoundKey(state, w + nr*2);
+
+ for (i = nr - 1; i > 0; i--) {
+ InvShiftRows(state);
+ InvSubLong(&state[0]);
+ InvSubLong(&state[1]);
+ AddRoundKey(state, w + i*2);
+ InvMixColumns(state);
+ }
+
+ InvShiftRows(state);
+ InvSubLong(&state[0]);
+ InvSubLong(&state[1]);
+ AddRoundKey(state, w);
+
+ memcpy(out, state, 16);
+}
+
+static void RotWord(u32 *x)
+{
+ unsigned char *w0;
+ unsigned char tmp;
+
+ w0 = (unsigned char *)x;
+ tmp = w0[0];
+ w0[0] = w0[1];
+ w0[1] = w0[2];
+ w0[2] = w0[3];
+ w0[3] = tmp;
+}
+
+static void KeyExpansion(const unsigned char *key, u64 *w,
+ int nr, int nk)
+{
+ u32 rcon;
+ uni prev;
+ u32 temp;
+ int i, n;
+
+ memcpy(w, key, nk*4);
+ memcpy(&rcon, "\1\0\0\0", 4);
+ n = nk/2;
+ prev.d = w[n-1];
+ for (i = n; i < (nr+1)*2; i++) {
+ temp = prev.w[1];
+ if (i % n == 0) {
+ RotWord(&temp);
+ SubWord(&temp);
+ temp ^= rcon;
+ XtimeWord(&rcon);
+ } else if (nk > 6 && i % n == 2) {
+ SubWord(&temp);
+ }
+ prev.d = w[i-n];
+ prev.w[0] ^= temp;
+ prev.w[1] ^= prev.w[0];
+ w[i] = prev.d;
+ }
+}
+
+/**
+ * Expand the cipher key into the encryption key schedule.
+ */
+int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
+ AES_KEY *key)
+{
+ u64 *rk;
+
+ if (!userKey || !key)
+ return -1;
+ if (bits != 128 && bits != 192 && bits != 256)
+ return -2;
+
+ rk = (u64*)key->rd_key;
+
+ if (bits == 128)
+ key->rounds = 10;
+ else if (bits == 192)
+ key->rounds = 12;
+ else
+ key->rounds = 14;
+
+ KeyExpansion(userKey, rk, key->rounds, bits/32);
+ return 0;
+}
+
+/**
+ * Expand the cipher key into the decryption key schedule.
+ */
+int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
+ AES_KEY *key)
+{
+ return AES_set_encrypt_key(userKey, bits, key);
+}
+
+/*
+ * Encrypt a single block
+ * in and out can overlap
+ */
+void AES_encrypt(const unsigned char *in, unsigned char *out,
+ const AES_KEY *key)
+{
+ const u64 *rk;
+
+ assert(in && out && key);
+ rk = (u64*)key->rd_key;
+
+ Cipher(in, out, rk, key->rounds);
+}
+
+/*
+ * Decrypt a single block
+ * in and out can overlap
+ */
+void AES_decrypt(const unsigned char *in, unsigned char *out,
+ const AES_KEY *key)
+{
+ const u64 *rk;
+
+ assert(in && out && key);
+ rk = (u64*)key->rd_key;
+
+ InvCipher(in, out, rk, key->rounds);
+}
+#elif !defined(AES_ASM)
/*-
Te0[x] = S [x].[02, 01, 01, 03];
Te1[x] = S [x].[03, 02, 01, 01];
diff --git a/crypto/aes/aes_local.h b/crypto/aes/aes_local.h
index b201905831..14994d5f42 100644
--- a/crypto/aes/aes_local.h
+++ b/crypto/aes/aes_local.h
@@ -24,6 +24,7 @@
# define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16); (ct)[2] = (u8)((st) >> 8); (ct)[3] = (u8)(st); }
# endif
+typedef uint64_t u64;
# ifdef AES_LONG
typedef unsigned long u32;
# else