summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--crypto/bn/Makefile.ssl4
-rw-r--r--crypto/bn/bn.h9
-rw-r--r--crypto/bn/bn_err.c4
-rw-r--r--crypto/bn/bn_exp.c39
-rw-r--r--crypto/bn/bn_exp2.c10
-rw-r--r--crypto/bn/bn_kron.c2
-rw-r--r--crypto/bn/bn_sqrt.c309
-rw-r--r--crypto/bn/bntest.c82
8 files changed, 438 insertions, 21 deletions
diff --git a/crypto/bn/Makefile.ssl b/crypto/bn/Makefile.ssl
index b32fd97c41..962cda9bae 100644
--- a/crypto/bn/Makefile.ssl
+++ b/crypto/bn/Makefile.ssl
@@ -37,12 +37,12 @@ APPS=
LIB=$(TOP)/libcrypto.a
LIBSRC= bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c bn_mod.c \
bn_print.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
- bn_kron.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c \
+ bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c \
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c
LIBOBJ= bn_add.o bn_div.o bn_exp.o bn_lib.o bn_ctx.o bn_mul.o bn_mod.o \
bn_print.o bn_rand.o bn_shift.o bn_word.o bn_blind.o \
- bn_kron.o bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) \
+ bn_kron.o bn_sqrt.o bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) \
bn_recp.o bn_mont.o bn_mpi.o bn_exp2.o
SRC= $(LIBSRC)
diff --git a/crypto/bn/bn.h b/crypto/bn/bn.h
index c81f3de8be..b55ac95642 100644
--- a/crypto/bn/bn.h
+++ b/crypto/bn/bn.h
@@ -238,7 +238,7 @@ typedef struct bignum_st
} BIGNUM;
/* Used for temp variables */
-#define BN_CTX_NUM 16
+#define BN_CTX_NUM 20
#define BN_CTX_NUM_POS 12
typedef struct bignum_ctx
{
@@ -357,6 +357,7 @@ int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
+int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx);
@@ -414,6 +415,8 @@ int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx);
int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */
BIGNUM *BN_mod_inverse(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
+BIGNUM *BN_mod_sqrt(BIGNUM *ret,
+ const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe,
const BIGNUM *add, const BIGNUM *rem,
void (*callback)(int,int,void *),void *cb_arg);
@@ -517,6 +520,7 @@ void bn_dump1(FILE *o, const char *a, const BN_ULONG *b,int n);
#define BN_F_BN_MOD_INVERSE 110
#define BN_F_BN_MOD_LSHIFT_QUICK 119
#define BN_F_BN_MOD_MUL_RECIPROCAL 111
+#define BN_F_BN_MOD_SQRT 121
#define BN_F_BN_MPI2BN 112
#define BN_F_BN_NEW 113
#define BN_F_BN_RAND 114
@@ -531,8 +535,11 @@ void bn_dump1(FILE *o, const char *a, const BN_ULONG *b,int n);
#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105
#define BN_R_INPUT_NOT_REDUCED 110
#define BN_R_INVALID_LENGTH 106
+#define BN_R_NOT_A_SQUARE 111
#define BN_R_NOT_INITIALIZED 107
#define BN_R_NO_INVERSE 108
+#define BN_R_P_IS_NOT_PRIME 112
+#define BN_R_TOO_MANY_ITERATIONS 113
#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109
#ifdef __cplusplus
diff --git a/crypto/bn/bn_err.c b/crypto/bn/bn_err.c
index 75a3458b11..afb9320322 100644
--- a/crypto/bn/bn_err.c
+++ b/crypto/bn/bn_err.c
@@ -83,6 +83,7 @@ static ERR_STRING_DATA BN_str_functs[]=
{ERR_PACK(0,BN_F_BN_MOD_INVERSE,0), "BN_mod_inverse"},
{ERR_PACK(0,BN_F_BN_MOD_LSHIFT_QUICK,0), "BN_mod_lshift_quick"},
{ERR_PACK(0,BN_F_BN_MOD_MUL_RECIPROCAL,0), "BN_mod_mul_reciprocal"},
+{ERR_PACK(0,BN_F_BN_MOD_SQRT,0), "BN_mod_sqrt"},
{ERR_PACK(0,BN_F_BN_MPI2BN,0), "BN_mpi2bn"},
{ERR_PACK(0,BN_F_BN_NEW,0), "BN_new"},
{ERR_PACK(0,BN_F_BN_RAND,0), "BN_rand"},
@@ -100,8 +101,11 @@ static ERR_STRING_DATA BN_str_reasons[]=
{BN_R_EXPAND_ON_STATIC_BIGNUM_DATA ,"expand on static bignum data"},
{BN_R_INPUT_NOT_REDUCED ,"input not reduced"},
{BN_R_INVALID_LENGTH ,"invalid length"},
+{BN_R_NOT_A_SQUARE ,"not a square"},
{BN_R_NOT_INITIALIZED ,"not initialized"},
{BN_R_NO_INVERSE ,"no inverse"},
+{BN_R_P_IS_NOT_PRIME ,"p is not prime"},
+{BN_R_TOO_MANY_ITERATIONS ,"too many iterations"},
{BN_R_TOO_MANY_TEMPORARY_VARIABLES ,"too many temporary variables"},
{0,NULL}
};
diff --git a/crypto/bn/bn_exp.c b/crypto/bn/bn_exp.c
index 35ab56efc0..51c8282593 100644
--- a/crypto/bn/bn_exp.c
+++ b/crypto/bn/bn_exp.c
@@ -205,6 +205,8 @@ int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
if (a->top == 1 && !a->neg)
{
BN_ULONG A = a->d[0];
+ if (m->top == 1)
+ A %= m->d[0]; /* make sure that A is reduced */
ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
}
else
@@ -235,8 +237,13 @@ int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
if (bits == 0)
{
- BN_one(r);
- return(1);
+ ret = BN_one(r);
+ return ret;
+ }
+ if (BN_is_zero(a))
+ {
+ ret = BN_zero(r);
+ return ret;
}
BN_CTX_start(ctx);
@@ -355,8 +362,13 @@ int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
bits=BN_num_bits(p);
if (bits == 0)
{
- BN_one(rr);
- return(1);
+ ret = BN_one(rr);
+ return ret;
+ }
+ if (BN_is_zero(a))
+ {
+ ret = BN_zero(rr);
+ return ret;
}
BN_CTX_start(ctx);
d = BN_CTX_get(ctx);
@@ -500,9 +512,15 @@ int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
bits = BN_num_bits(p);
if (bits == 0)
{
- BN_one(rr);
- return(1);
+ ret = BN_one(rr);
+ return ret;
}
+ if (a == 0)
+ {
+ ret = BN_zero(rr);
+ return ret;
+ }
+
BN_CTX_start(ctx);
d = BN_CTX_get(ctx);
r = BN_CTX_get(ctx);
@@ -611,8 +629,13 @@ int BN_mod_exp_simple(BIGNUM *r,
if (bits == 0)
{
- BN_one(r);
- return(1);
+ ret = BN_one(r);
+ return ret;
+ }
+ if (BN_is_zero(a))
+ {
+ ret = BN_one(r);
+ return ret;
}
BN_CTX_start(ctx);
diff --git a/crypto/bn/bn_exp2.c b/crypto/bn/bn_exp2.c
index 70c4d83a79..56f1c959bd 100644
--- a/crypto/bn/bn_exp2.c
+++ b/crypto/bn/bn_exp2.c
@@ -141,9 +141,15 @@ int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
bits2=BN_num_bits(p2);
if ((bits1 == 0) && (bits2 == 0))
{
- BN_one(rr);
- return(1);
+ ret = BN_one(rr);
+ return ret;
}
+ if (BN_is_zero(a1) || BN_is_zero(a2))
+ {
+ ret = BN_zero(rr);
+ return ret;
+ }
+
bits=(bits1 > bits2)?bits1:bits2;
BN_CTX_start(ctx);
diff --git a/crypto/bn/bn_kron.c b/crypto/bn/bn_kron.c
index 0dd8a194cb..49f75594ae 100644
--- a/crypto/bn/bn_kron.c
+++ b/crypto/bn/bn_kron.c
@@ -1,5 +1,3 @@
-/* totally untested */
-
/* crypto/bn/bn_kron.c */
/* ====================================================================
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c
index dd6d86a43d..5176772e4e 100644
--- a/crypto/bn/bn_sqrt.c
+++ b/crypto/bn/bn_sqrt.c
@@ -1 +1,308 @@
-XXX
+/* crypto/bn/bn_mod.c */
+/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
+ * and Bodo Moeller for the OpenSSL project. */
+/* ====================================================================
+ * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * openssl-core@openssl.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay@cryptsoft.com). This product includes software written by Tim
+ * Hudson (tjh@cryptsoft.com).
+ *
+ */
+
+#include "cryptlib.h"
+#include "bn_lcl.h"
+
+
+BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
+/* Returns 'ret' such that
+ * ret^2 == a (mod p),
+ * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
+ * in Algebraic Computational Number Theory", algorithm 1.5.1).
+ * 'p' must be prime!
+ */
+ {
+ BIGNUM *ret = in;
+ int err = 1;
+ int r;
+ BIGNUM *b, *q, *t, *x, *y;
+ int e, i, j;
+
+ if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
+ {
+ if (BN_abs_is_word(p, 2))
+ {
+ if (ret == NULL)
+ ret = BN_new();
+ if (ret == NULL)
+ goto end;
+ if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
+ {
+ BN_free(ret);
+ return NULL;
+ }
+ return ret;
+ }
+
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
+ return(NULL);
+ }
+
+#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
+ r = BN_kronecker(a, p, ctx);
+ if (r < -1) return NULL;
+ if (r == -1)
+ {
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
+ return(NULL);
+ }
+#endif
+
+ BN_CTX_start(ctx);
+ b = BN_CTX_get(ctx);
+ q = BN_CTX_get(ctx);
+ t = BN_CTX_get(ctx);
+ x = BN_CTX_get(ctx);
+ y = BN_CTX_get(ctx);
+ if (y == NULL) goto end;
+
+ if (ret == NULL)
+ ret = BN_new();
+ if (ret == NULL) goto end;
+
+ /* now write |p| - 1 as 2^e*q where q is odd */
+ e = 1;
+ while (!BN_is_bit_set(p, e))
+ e++;
+ if (!BN_rshift(q, p, e)) goto end;
+ q->neg = 0;
+
+ if (e == 1)
+ {
+ /* The easy case: (p-1)/2 is odd, so 2 has an inverse
+ * modulo (p-1)/2, and square roots can be computed
+ * directly by modular exponentiation.
+ * We have
+ * 2 * (p+1)/4 == 1 (mod (p-1)/2),
+ * so we can use exponent (p+1)/4, i.e. (q+1)/2.
+ */
+ if (!BN_add_word(q,1)) goto end;
+ if (!BN_rshift1(q,q)) goto end;
+ if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
+ err = 0;
+ goto end;
+ }
+
+ /* e > 1, so we really have to use the Tonelli/Shanks algorithm.
+ * First, find some y that is not a square. */
+ i = 1;
+ do
+ {
+ /* For efficiency, try small numbers first;
+ * if this fails, try random numbers.
+ */
+ if (i < 20)
+ {
+ if (!BN_set_word(y, i)) goto end;
+ }
+ else
+ {
+ if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
+ if (BN_ucmp(y, p) >= 0)
+ {
+ if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
+ }
+ /* now 0 <= y < |p| */
+ if (BN_is_zero(y))
+ if (!BN_set_word(y, i)) goto end;
+ }
+
+ r = BN_kronecker(y, p, ctx);
+ if (r < -1) goto end;
+ if (r == 0)
+ {
+ /* m divides p */
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
+ goto end;
+ }
+ }
+ while (r == 1 && i++ < 80);
+
+ if (r != -1)
+ {
+ /* Many rounds and still no non-square -- this is more likely
+ * a bug than just bad luck.
+ * Even if p is not prime, we should have found some y
+ * such that r == -1.
+ */
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
+ goto end;
+ }
+
+
+ /* Now that we have some non-square, we can find an element
+ * of order 2^e by computing its q'th power. */
+ if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
+ if (BN_is_one(y))
+ {
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
+ goto end;
+ }
+
+ /* Now we know that (if p is indeed prime) there is an integer
+ * k, 0 <= k < 2^e, such that
+ *
+ * a^q * y^k == 1 (mod p).
+ *
+ * As a^q is a square and y is not, k must be even.
+ * q+1 is even, too, so there is an element
+ *
+ * X := a^((q+1)/2) * y^(k/2),
+ *
+ * and it satisfies
+ *
+ * X^2 = a^q * a * y^k
+ * = a,
+ *
+ * so it is the square root that we are looking for.
+ */
+
+ /* t := (q-1)/2 (note that q is odd) */
+ if (!BN_rshift1(t, q)) goto end;
+
+ /* x := a^((q-1)/2) */
+ if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
+ {
+ if (!BN_nnmod(t, a, p, ctx)) goto end;
+ if (BN_is_zero(t))
+ {
+ /* special case: a == 0 (mod p) */
+ if (!BN_zero(ret)) goto end;
+ err = 0;
+ goto end;
+ }
+ else
+ if (!BN_one(x)) goto end;
+ }
+ else
+ {
+ if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
+ if (BN_is_zero(x))
+ {
+ /* special case: a == 0 (mod p) */
+ if (!BN_zero(ret)) goto end;
+ err = 0;
+ goto end;
+ }
+ }
+
+ /* b := a*x^2 (= a^q) */
+ if (!BN_mod_sqr(b, x, p, ctx)) goto end;
+ if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
+
+ /* x := a*x (= a^((q+1)/2)) */
+ if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
+
+ while (1)
+ {
+ /* Now b is a^q * y^k for some even k (0 <= k < 2^E
+ * where E refers to the original value of e, which we
+ * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
+ *
+ * We have a*b = x^2,
+ * y^2^(e-1) = -1,
+ * b^2^(e-1) = 1.
+ */
+
+ if (BN_is_one(b))
+ {
+ if (!BN_copy(ret, x)) goto end;
+ err = 0;
+ goto end;
+ }
+
+
+ /* find smallest i such that b^(2^i) = 1 */
+ i = 1;
+ if (!BN_mod_sqr(t, b, p, ctx)) goto end;
+ while (!BN_is_one(t))
+ {
+ i++;
+ if (i == e)
+ {
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
+ goto end;
+ }
+ if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
+ }
+
+
+ /* t := y^2^(e - i - 1) */
+ if (!BN_copy(t, y)) goto end;
+ for (j = e - i - 1; j > 0; j--)
+ {
+ if (!BN_mod_sqr(t, t, p, ctx)) goto end;
+ }
+ if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
+ if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
+ if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
+ e = i;
+ }
+
+ end:
+ if (err)
+ {
+ if (ret != NULL && ret != in)
+ {
+ BN_clear_free(ret);
+ }
+ ret = NULL;
+ }
+ BN_CTX_end(ctx);
+ return ret;
+ }
diff --git a/crypto/bn/bntest.c b/crypto/bn/bntest.c
index a664f3b91a..8f5b72c7f2 100644
--- a/crypto/bn/bntest.c
+++ b/crypto/bn/bntest.c
@@ -92,6 +92,7 @@ int test_mod_mul(BIO *bp,BN_CTX *ctx);
int test_mod_exp(BIO *bp,BN_CTX *ctx);
int test_exp(BIO *bp,BN_CTX *ctx);
int test_kron(BIO *bp,BN_CTX *ctx);
+int test_sqrt(BIO *bp,BN_CTX *ctx);
int rand_neg(void);
static int results=0;
@@ -233,6 +234,10 @@ int main(int argc, char *argv[])
if (!test_kron(out,ctx)) goto err;
BIO_flush(out);
+ message(out,"BN_mod_sqrt");
+ if (!test_sqrt(out,ctx)) goto err;
+ BIO_flush(out);
+
BN_CTX_free(ctx);
BIO_free(out);
@@ -940,11 +945,6 @@ int test_kron(BIO *bp, BN_CTX *ctx)
if (!BN_generate_prime(b, 512, 0, NULL, NULL, genprime_cb, NULL)) goto err;
putc('\n', stderr);
- if (1 != BN_is_prime(b, 10, NULL, ctx, NULL))
- {
- fprintf(stderr, "BN_is_prime failed\n");
- goto err;
- }
for (i = 0; i < num0; i++)
{
@@ -998,6 +998,78 @@ int test_kron(BIO *bp, BN_CTX *ctx)
return ret;
}
+int test_sqrt(BIO *bp, BN_CTX *ctx)
+ {
+ BIGNUM *a,*p,*r;
+ int i, j;
+ int ret = 0;
+
+ a = BN_new();
+ p = BN_new();
+ r = BN_new();
+ if (a == NULL || p == NULL || r == NULL) goto err;
+
+ for (i = 0; i < 16; i++)
+ {
+ if (i < 8)
+ {
+ unsigned primes[8] = { 2, 3, 7, 11, 13, 17, 19 };
+
+ if (!BN_set_word(p, primes[i])) goto err;
+ }
+ else
+ {
+ if (!BN_set_word(a, 32)) goto err;
+ if (!BN_set_word(r, 2*i + 1)) goto err;
+
+ if (!BN_generate_prime(p, 256, 0, a, r, genprime_cb, NULL)) goto err;
+ putc('\n', stderr);
+ }
+
+ for (j = 0; j < num2; j++)
+ {
+ /* construct 'a' such that it is a square modulo p,
+ * but in general not a proper square and not reduced modulo p */
+ if (!BN_rand(r, 256, 0, 3)) goto err;
+ if (!BN_nnmod(r, r, p, ctx)) goto err;
+ if (!BN_mod_sqr(r, r, p, ctx)) goto err;
+ if (!BN_rand(a, 256, 0, 3)) goto err;
+ if (!BN_nnmod(a, a, p, ctx)) goto err;
+ if (!BN_mod_sqr(a, a, p, ctx)) goto err;
+ if (!BN_mul(a, a, r, ctx)) goto err;
+
+ if (!BN_mod_sqrt(r, a, p, ctx)) goto err;
+ if (!BN_mod_sqr(r, r, p, ctx)) goto err;
+
+ if (!BN_nnmod(a, a, p, ctx)) goto err;
+
+ if (BN_cmp(a, r) != 0)
+ {
+ fprintf(stderr, "BN_mod_sqrt failed: a = ");
+ BN_print_fp(stderr, a);
+ fprintf(stderr, ", r = ");
+ BN_print_fp(stderr, r);
+ fprintf(stderr, ", p = ");
+ BN_print_fp(stderr, p);
+ fprintf(stderr, "\n");
+ goto err;
+ }
+
+ putc('.', stderr);
+ fflush(stderr);
+ }
+
+ putc('\n', stderr);
+ fflush(stderr);
+ }
+ ret = 1;
+ err:
+ if (a != NULL) BN_free(a);
+ if (p != NULL) BN_free(p);
+ if (r != NULL) BN_free(r);
+ return ret;
+ }
+
int test_lshift(BIO *bp,BN_CTX *ctx,BIGNUM *a_)
{
BIGNUM *a,*b,*c,*d;