summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xcrypto/sha/asm/keccak1600-avx512.pl454
1 files changed, 278 insertions, 176 deletions
diff --git a/crypto/sha/asm/keccak1600-avx512.pl b/crypto/sha/asm/keccak1600-avx512.pl
index 70dec4ed98..2f32151471 100755
--- a/crypto/sha/asm/keccak1600-avx512.pl
+++ b/crypto/sha/asm/keccak1600-avx512.pl
@@ -20,28 +20,60 @@
# Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c).
# Pretty straightforward, the only "magic" is data layout in registers.
# It's impossible to have one that is optimal for every step, hence
-# it's changing as algorithm progresses. Data is saved in order that
-# benefits Chi, but at the same time is easily convertible to order
-# that benefits Theta. Conversion from Chi layout to Theta is
-# explicit and reverse one is kind of fused with Pi...
+# it's changing as algorithm progresses. Data is saved in linear order,
+# but in-register order morphs between rounds. Even rounds take in
+# linear layout, and odd rounds - transposed, or "verticaly-shaped"...
#
########################################################################
# Numbers are cycles per processed byte out of large message.
#
# r=1088(*)
#
-# Knights Landing 8.9
-# Skylake-X 6.7
+# Knights Landing 7.6
+# Skylake-X 5.7
#
# (*) Corresponds to SHA3-256.
########################################################################
-# Coordinates below correspond to those in sha/keccak1600.c. Layout
-# suitable for Chi is one with y coordinates aligned column-wise. Trick
-# is to add regular shift to x coordinate, so that Chi can still be
-# performed with as little as 7 instructions, yet be converted to layout
-# suitable for Theta with intra-register permutations alone. Here is
-# "magic" layout for Chi (with pre-Theta shuffle):
+# Below code is combination of two ideas. One is taken from Keccak Code
+# Package, hereafter KCP, and another one from initial version of this
+# module. What is common is observation that Pi's input and output are
+# "mostly transposed", i.e. if input is aligned by x coordinate, then
+# output is [mostly] aligned by y. Both versions, KCP and predecessor,
+# were trying to use one of them from round to round, which resulted in
+# some kind of transposition in each round. This version still does
+# transpose data, but only every second round. Another essential factor
+# is that KCP transposition has to be performed with instructions that
+# turned to be rather expensive on Knights Landing, both latency- and
+# throughput-wise. Not to mention that some of them have to depend on
+# each other. On the other hand initial version of this module was
+# relying heavily on blend instructions. There were lots of them,
+# resulting in higher instruction count, yet it performed better on
+# Knights Landing, because processor can execute pair of them each
+# cycle and they have minimal latency. This module is an attempt to
+# bring best parts together:-)
+#
+# Coordinates below correspond to those in sha/keccak1600.c. Input
+# layout is straight linear:
+#
+# [0][4] [0][3] [0][2] [0][1] [0][0]
+# [1][4] [1][3] [1][2] [1][1] [1][0]
+# [2][4] [2][3] [2][2] [2][1] [2][0]
+# [3][4] [3][3] [3][2] [3][1] [3][0]
+# [4][4] [4][3] [4][2] [4][1] [4][0]
+#
+# It's perfect for Theta, while Pi is reduced to intra-register
+# permutations which yield layout perfect for Chi:
+#
+# [4][0] [3][0] [2][0] [1][0] [0][0]
+# [4][1] [3][1] [2][1] [1][1] [0][1]
+# [4][2] [3][2] [2][2] [1][2] [0][2]
+# [4][3] [3][3] [2][3] [1][3] [0][3]
+# [4][4] [3][4] [2][4] [1][4] [0][4]
+#
+# Now instead of performing full transposition and feeding it to next
+# identical round, we perform kind of diagonal transposition to layout
+# from initial version of this module, and make it suitable for Theta:
#
# [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0]
# [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0]
@@ -49,53 +81,52 @@
# [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0]
# [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0]
#
-# Layout suitable to Theta has x coordinates aligned column-wise
-# [it's interleaved with Pi indices transformation for reference]:
+# Now intra-register permutations yield initial [almost] straight
+# linear layout:
#
-# [4][4] [3][3] [2][2] [1][1] [0][0] $A00
+# [4][4] [3][3] [2][2] [1][1] [0][0]
##[0][4] [0][3] [0][2] [0][1] [0][0]
-# [3][4] [2][3] [1][2] [0][1] [4][0] $A01
+# [3][4] [2][3] [1][2] [0][1] [4][0]
##[2][3] [2][2] [2][1] [2][0] [2][4]
-# [2][4] [1][3] [0][2] [4][1] [3][0] $A02
+# [2][4] [1][3] [0][2] [4][1] [3][0]
##[4][2] [4][1] [4][0] [4][4] [4][3]
-# [1][4] [0][3] [4][2] [3][1] [2][0] $A03
+# [1][4] [0][3] [4][2] [3][1] [2][0]
##[1][1] [1][0] [1][4] [1][3] [1][2]
-# [0][4] [4][3] [3][2] [2][1] [1][0] $A04
+# [0][4] [4][3] [3][2] [2][1] [1][0]
##[3][0] [3][4] [3][3] [3][2] [3][1]
#
-# Pi itself is performed by blending above data and finally shuffling it
-# to original Chi layout:
-#
-# [1][1] [2][2] [3][3] [4][4] [0][0]>1.2.3.4.0>[4][4] [3][3] [2][2] [1][1] [0][0]
-# [2][3] [3][4] [4][0] [0][1] [1][2]>2.3.4.0.1>[4][0] [3][4] [2][3] [1][2] [0][1]
-# [3][0] [4][1] [0][2] [1][3] [2][4]>3.4.0.1.2>[4][1] [3][0] [2][4] [1][3] [0][2]
-# [4][2] [0][3] [1][4] [2][0] [3][1]>4.0.1.2.3>[4][2] [3][1] [2][0] [1][4] [0][3]
-# [0][4] [1][0] [2][1] [3][2] [4][3]>0.1.2.3.4>[4][3] [3][2] [2][1] [1][0] [0][4]
+# This means that odd round Chi is performed in less suitable layout,
+# with a number of additional permutations. But overall it turned to be
+# a win. Permutations are fastest possible on Knights Landing and they
+# are laid down to be independent of each other. In the essence I traded
+# 20 blend instructions for 3 permutations. The result is 13% faster
+# than KCP on Skylake-X, and >40% on Knights Landing.
#
-# As implied, data is loaded in Chi layout. Digits in variables' names
-# represent right most coordinates of loaded data chunk:
-
-my ($A00, # [4][4] [3][3] [2][2] [1][1] [0][0]
- $A01, # [4][0] [3][4] [2][3] [1][2] [0][1]
- $A02, # [4][1] [3][0] [2][4] [1][3] [0][2]
- $A03, # [4][2] [3][1] [2][0] [1][4] [0][3]
- $A04) = # [4][3] [3][2] [2][1] [1][0] [0][4]
+# As implied, data is loaded in straight linear order. Digits in
+# variables' names represent coordinates of right-most element of
+# loaded data chunk:
+
+my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0]
+ $A10, # [1][4] [1][3] [1][2] [1][1] [1][0]
+ $A20, # [2][4] [2][3] [2][2] [2][1] [2][0]
+ $A30, # [3][4] [3][3] [3][2] [3][1] [3][0]
+ $A40) = # [4][4] [4][3] [4][2] [4][1] [4][0]
map("%zmm$_",(0..4));
# We also need to map the magic order into offsets within structure:
-my @A_jagged = ([0,0], [1,0], [2,0], [3,0], [4,0],
- [4,1], [0,1], [1,1], [2,1], [3,1],
- [3,2], [4,2], [0,2], [1,2], [2,2],
- [2,3], [3,3], [4,3], [0,3], [1,3],
- [1,4], [2,4], [3,4], [4,4], [0,4]);
- @A_jagged_in = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear
- @A_jagged_out = map(8*($$_[0]*5+$$_[1]), @A_jagged); # ... and now linear
+my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4],
+ [1,0], [1,1], [1,2], [1,3], [1,4],
+ [2,0], [2,1], [2,2], [2,3], [2,4],
+ [3,0], [3,1], [3,2], [3,3], [3,4],
+ [4,0], [4,1], [4,2], [4,3], [4,4]);
+ @A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear
-my @T = map("%zmm$_",(5..7,16..17));
-my @Chi = map("%zmm$_",(18..22));
-my @Theta = map("%zmm$_",(33,23..26)); # invalid @Theta[0] is not typo
-my @Rhotate = map("%zmm$_",(27..31));
+my @T = map("%zmm$_",(5..12));
+my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo
+my @Pi0 = map("%zmm$_",(17..21));
+my @Rhotate0 = map("%zmm$_",(22..26));
+my @Rhotate1 = map("%zmm$_",(27..31));
my ($C00,$D00) = @T[0..1];
my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6));
@@ -107,82 +138,136 @@ $code.=<<___;
.align 32
__KeccakF1600:
lea iotas(%rip),%r10
- mov \$24,%eax
+ mov \$12,%eax
jmp .Loop_avx512
.align 32
.Loop_avx512:
- ######################################### Theta
- #vpermq $A00,@Theta[0],$A00 # doesn't actually change order
- vpermq $A01,@Theta[1],$A01
- vpermq $A02,@Theta[2],$A02
- vpermq $A03,@Theta[3],$A03
- vpermq $A04,@Theta[4],$A04
-
+ ######################################### Theta, even round
vmovdqa64 $A00,@T[0] # put aside original A00
- vpternlogq \$0x96,$A02,$A01,$A00 # and use it as "C00"
- vpternlogq \$0x96,$A04,$A03,$A00
+ vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00"
+ vpternlogq \$0x96,$A40,$A30,$A00
vprolq \$1,$A00,$D00
vpermq $A00,@Theta[1],$A00
vpermq $D00,@Theta[4],$D00
vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00
- vpternlogq \$0x96,$A00,$D00,$A01
- vpternlogq \$0x96,$A00,$D00,$A02
- vpternlogq \$0x96,$A00,$D00,$A03
- vpternlogq \$0x96,$A00,$D00,$A04
+ vpternlogq \$0x96,$A00,$D00,$A10
+ vpternlogq \$0x96,$A00,$D00,$A20
+ vpternlogq \$0x96,$A00,$D00,$A30
+ vpternlogq \$0x96,$A00,$D00,$A40
######################################### Rho
- vprolvq @Rhotate[0],@T[0],$A00 # T[0] is original A00
- vprolvq @Rhotate[1],$A01,$A01
- vprolvq @Rhotate[2],$A02,$A02
- vprolvq @Rhotate[3],$A03,$A03
- vprolvq @Rhotate[4],$A04,$A04
+ vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00
+ vprolvq @Rhotate0[1],$A10,$A10
+ vprolvq @Rhotate0[2],$A20,$A20
+ vprolvq @Rhotate0[3],$A30,$A30
+ vprolvq @Rhotate0[4],$A40,$A40
######################################### Pi
- vpblendmq $A02,$A00,@{T[0]}{$k00010}
- vpblendmq $A00,$A03,@{T[1]}{$k00010}
- vpblendmq $A03,$A01,@{T[2]}{$k00010}
- vpblendmq $A01,$A04,@{T[3]}{$k00010}
- vpblendmq $A04,$A02,@{T[4]}{$k00010}
-
- vpblendmq $A04,@T[0],@{T[0]}{$k00100}
- vpblendmq $A02,@T[1],@{T[1]}{$k00100}
- vpblendmq $A00,@T[2],@{T[2]}{$k00100}
- vpblendmq $A03,@T[3],@{T[3]}{$k00100}
- vpblendmq $A01,@T[4],@{T[4]}{$k00100}
-
- vpblendmq $A01,@T[0],@{T[0]}{$k01000}
- vpblendmq $A04,@T[1],@{T[1]}{$k01000}
- vpblendmq $A02,@T[2],@{T[2]}{$k01000}
- vpblendmq $A00,@T[3],@{T[3]}{$k01000}
- vpblendmq $A03,@T[4],@{T[4]}{$k01000}
-
- vpblendmq $A03,@T[0],@{T[0]}{$k10000}
- vpblendmq $A01,@T[1],@{T[1]}{$k10000}
- vpblendmq $A04,@T[2],@{T[2]}{$k10000}
- vpblendmq $A02,@T[3],@{T[3]}{$k10000}
- vpblendmq $A00,@T[4],@{T[4]}{$k10000}
-
- vpermq @T[0],@Chi[0],$A00
- vpermq @T[1],@Chi[1],$A01
- vpermq @T[2],@Chi[2],$A02
- vpermq @T[3],@Chi[3],$A03
- vpermq @T[4],@Chi[4],$A04
+ vpermq $A00,@Pi0[0],$A00
+ vpermq $A10,@Pi0[1],$A10
+ vpermq $A20,@Pi0[2],$A20
+ vpermq $A30,@Pi0[3],$A30
+ vpermq $A40,@Pi0[4],$A40
######################################### Chi
vmovdqa64 $A00,@T[0]
- vpternlogq \$0xD2,$A02,$A01,$A00
- vmovdqa64 $A01,@T[1]
- vpternlogq \$0xD2,$A03,$A02,$A01
- vpternlogq \$0xD2,$A04,$A03,$A02
- vpternlogq \$0xD2,@T[0],$A04,$A03
- vpternlogq \$0xD2,@T[1],@T[0],$A04
+ vmovdqa64 $A10,@T[1]
+ vpternlogq \$0xD2,$A20,$A10,$A00
+ vpternlogq \$0xD2,$A30,$A20,$A10
+ vpternlogq \$0xD2,$A40,$A30,$A20
+ vpternlogq \$0xD2,@T[0],$A40,$A30
+ vpternlogq \$0xD2,@T[1],@T[0],$A40
######################################### Iota
vpxorq (%r10),$A00,${A00}{$k00001}
- lea 8(%r10),%r10
+ lea 16(%r10),%r10
+
+ ######################################### Harmonize rounds
+ vpblendmq $A20,$A10,@{T[1]}{$k00010}
+ vpblendmq $A30,$A20,@{T[2]}{$k00010}
+ vpblendmq $A40,$A30,@{T[3]}{$k00010}
+ vpblendmq $A10,$A00,@{T[0]}{$k00010}
+ vpblendmq $A00,$A40,@{T[4]}{$k00010}
+
+ vpblendmq $A30,@T[1],@{T[1]}{$k00100}
+ vpblendmq $A40,@T[2],@{T[2]}{$k00100}
+ vpblendmq $A20,@T[0],@{T[0]}{$k00100}
+ vpblendmq $A00,@T[3],@{T[3]}{$k00100}
+ vpblendmq $A10,@T[4],@{T[4]}{$k00100}
+
+ vpblendmq $A40,@T[1],@{T[1]}{$k01000}
+ vpblendmq $A30,@T[0],@{T[0]}{$k01000}
+ vpblendmq $A00,@T[2],@{T[2]}{$k01000}
+ vpblendmq $A10,@T[3],@{T[3]}{$k01000}
+ vpblendmq $A20,@T[4],@{T[4]}{$k01000}
+
+ vpblendmq $A40,@T[0],@{T[0]}{$k10000}
+ vpblendmq $A00,@T[1],@{T[1]}{$k10000}
+ vpblendmq $A10,@T[2],@{T[2]}{$k10000}
+ vpblendmq $A20,@T[3],@{T[3]}{$k10000}
+ vpblendmq $A30,@T[4],@{T[4]}{$k10000}
+
+ #vpermq @T[0],@Theta[0],$A00 # doesn't actually change order
+ vpermq @T[1],@Theta[1],$A10
+ vpermq @T[2],@Theta[2],$A20
+ vpermq @T[3],@Theta[3],$A30
+ vpermq @T[4],@Theta[4],$A40
+
+ ######################################### Theta, odd round
+ vmovdqa64 $T[0],$A00 # real A00
+ vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias
+ vpternlogq \$0x96,$A40,$A30,$C00
+
+ vprolq \$1,$C00,$D00
+ vpermq $C00,@Theta[1],$C00
+ vpermq $D00,@Theta[4],$D00
+
+ vpternlogq \$0x96,$C00,$D00,$A00
+ vpternlogq \$0x96,$C00,$D00,$A30
+ vpternlogq \$0x96,$C00,$D00,$A10
+ vpternlogq \$0x96,$C00,$D00,$A40
+ vpternlogq \$0x96,$C00,$D00,$A20
+
+ ######################################### Rho
+ vprolvq @Rhotate1[0],$A00,$A00
+ vprolvq @Rhotate1[3],$A30,@T[1]
+ vprolvq @Rhotate1[1],$A10,@T[2]
+ vprolvq @Rhotate1[4],$A40,@T[3]
+ vprolvq @Rhotate1[2],$A20,@T[4]
+
+ vpermq $A00,@Theta[4],@T[5]
+ vpermq $A00,@Theta[3],@T[6]
+
+ ######################################### Iota
+ vpxorq -8(%r10),$A00,${A00}{$k00001}
+
+ ######################################### Pi
+ vpermq @T[1],@Theta[2],$A10
+ vpermq @T[2],@Theta[4],$A20
+ vpermq @T[3],@Theta[1],$A30
+ vpermq @T[4],@Theta[3],$A40
+
+ ######################################### Chi
+ vpternlogq \$0xD2,@T[6],@T[5],$A00
+
+ vpermq @T[1],@Theta[1],@T[7]
+ #vpermq @T[1],@Theta[0],@T[1]
+ vpternlogq \$0xD2,@T[1],@T[7],$A10
+
+ vpermq @T[2],@Theta[3],@T[0]
+ vpermq @T[2],@Theta[2],@T[2]
+ vpternlogq \$0xD2,@T[2],@T[0],$A20
+
+ #vpermq @T[3],@Theta[0],@T[3]
+ vpermq @T[3],@Theta[4],@T[1]
+ vpternlogq \$0xD2,@T[1],@T[3],$A30
+
+ vpermq @T[4],@Theta[2],@T[0]
+ vpermq @T[4],@Theta[1],@T[4]
+ vpternlogq \$0xD2,@T[4],@T[0],$A40
dec %eax
jnz .Loop_avx512
@@ -208,8 +293,6 @@ SHA3_absorb:
lea 96($inp),$inp
lea 128(%rsp),%r9
- vzeroupper
-
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
@@ -226,24 +309,30 @@ SHA3_absorb:
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
- vmovdqa64 64*5(%r8),@Rhotate[0]
- vmovdqa64 64*6(%r8),@Rhotate[1]
- vmovdqa64 64*7(%r8),@Rhotate[2]
- vmovdqa64 64*8(%r8),@Rhotate[3]
- vmovdqa64 64*9(%r8),@Rhotate[4]
+ vmovdqa64 64*5(%r8),@Rhotate1[0]
+ vmovdqa64 64*6(%r8),@Rhotate1[1]
+ vmovdqa64 64*7(%r8),@Rhotate1[2]
+ vmovdqa64 64*8(%r8),@Rhotate1[3]
+ vmovdqa64 64*9(%r8),@Rhotate1[4]
+
+ vmovdqa64 64*10(%r8),@Rhotate0[0]
+ vmovdqa64 64*11(%r8),@Rhotate0[1]
+ vmovdqa64 64*12(%r8),@Rhotate0[2]
+ vmovdqa64 64*13(%r8),@Rhotate0[3]
+ vmovdqa64 64*14(%r8),@Rhotate0[4]
- vmovdqa64 64*10(%r8),@Chi[0]
- vmovdqa64 64*11(%r8),@Chi[1]
- vmovdqa64 64*12(%r8),@Chi[2]
- vmovdqa64 64*13(%r8),@Chi[3]
- vmovdqa64 64*14(%r8),@Chi[4]
+ vmovdqa64 64*15(%r8),@Pi0[0]
+ vmovdqa64 64*16(%r8),@Pi0[1]
+ vmovdqa64 64*17(%r8),@Pi0[2]
+ vmovdqa64 64*18(%r8),@Pi0[3]
+ vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
vpxorq @T[0],@T[0],@T[0]
- vmovdqu64 40*1-96($A_flat),${A01}{$k11111}{z}
- vmovdqu64 40*2-96($A_flat),${A02}{$k11111}{z}
- vmovdqu64 40*3-96($A_flat),${A03}{$k11111}{z}
- vmovdqu64 40*4-96($A_flat),${A04}{$k11111}{z}
+ vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
+ vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
+ vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
+ vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack
vmovdqa64 @T[0],1*64-128(%r9)
@@ -263,7 +352,7 @@ ___
for(my $i=0; $i<25; $i++) {
$code.=<<___
mov 8*$i-96($inp),%r8
- mov %r8,$A_jagged_in[$i]-128(%r9)
+ mov %r8,$A_jagged[$i]-128(%r9)
dec %eax
jz .Labsorved_avx512
___
@@ -273,10 +362,10 @@ $code.=<<___;
lea ($inp,$bsz),$inp
vpxorq 64*0-128(%r9),$A00,$A00
- vpxorq 64*1-128(%r9),$A01,$A01
- vpxorq 64*2-128(%r9),$A02,$A02
- vpxorq 64*3-128(%r9),$A03,$A03
- vpxorq 64*4-128(%r9),$A04,$A04
+ vpxorq 64*1-128(%r9),$A10,$A10
+ vpxorq 64*2-128(%r9),$A20,$A20
+ vpxorq 64*3-128(%r9),$A30,$A30
+ vpxorq 64*4-128(%r9),$A40,$A40
call __KeccakF1600
@@ -285,10 +374,10 @@ $code.=<<___;
.align 32
.Ldone_absorb_avx512:
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
- vmovdqu64 $A01,40*1-96($A_flat){$k11111}
- vmovdqu64 $A02,40*2-96($A_flat){$k11111}
- vmovdqu64 $A03,40*3-96($A_flat){$k11111}
- vmovdqu64 $A04,40*4-96($A_flat){$k11111}
+ vmovdqu64 $A10,40*1-96($A_flat){$k11111}
+ vmovdqu64 $A20,40*2-96($A_flat){$k11111}
+ vmovdqu64 $A30,40*3-96($A_flat){$k11111}
+ vmovdqu64 $A40,40*4-96($A_flat){$k11111}
vzeroupper
@@ -307,8 +396,6 @@ SHA3_squeeze:
cmp $bsz,$len
jbe .Lno_output_extension_avx512
- vzeroupper
-
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
@@ -325,65 +412,72 @@ SHA3_squeeze:
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
- vmovdqa64 64*5(%r8),@Rhotate[0]
- vmovdqa64 64*6(%r8),@Rhotate[1]
- vmovdqa64 64*7(%r8),@Rhotate[2]
- vmovdqa64 64*8(%r8),@Rhotate[3]
- vmovdqa64 64*9(%r8),@Rhotate[4]
+ vmovdqa64 64*5(%r8),@Rhotate1[0]
+ vmovdqa64 64*6(%r8),@Rhotate1[1]
+ vmovdqa64 64*7(%r8),@Rhotate1[2]
+ vmovdqa64 64*8(%r8),@Rhotate1[3]
+ vmovdqa64 64*9(%r8),@Rhotate1[4]
+
+ vmovdqa64 64*10(%r8),@Rhotate0[0]
+ vmovdqa64 64*11(%r8),@Rhotate0[1]
+ vmovdqa64 64*12(%r8),@Rhotate0[2]
+ vmovdqa64 64*13(%r8),@Rhotate0[3]
+ vmovdqa64 64*14(%r8),@Rhotate0[4]
- vmovdqa64 64*10(%r8),@Chi[0]
- vmovdqa64 64*11(%r8),@Chi[1]
- vmovdqa64 64*12(%r8),@Chi[2]
- vmovdqa64 64*13(%r8),@Chi[3]
- vmovdqa64 64*14(%r8),@Chi[4]
+ vmovdqa64 64*15(%r8),@Pi0[0]
+ vmovdqa64 64*16(%r8),@Pi0[1]
+ vmovdqa64 64*17(%r8),@Pi0[2]
+ vmovdqa64 64*18(%r8),@Pi0[3]
+ vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
- vmovdqu64 40*1-96($A_flat),${A01}{$k11111}{z}
- vmovdqu64 40*2-96($A_flat),${A02}{$k11111}{z}
- vmovdqu64 40*3-96($A_flat),${A03}{$k11111}{z}
- vmovdqu64 40*4-96($A_flat),${A04}{$k11111}{z}
+ vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
+ vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
+ vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
+ vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
.Lno_output_extension_avx512:
shr \$3,$bsz
+ lea -96($A_flat),%r9
mov $bsz,%rax
+ jmp .Loop_squeeze_avx512
+.align 32
.Loop_squeeze_avx512:
- mov @A_jagged_out[$i]-96($A_flat),%r8
-___
-for (my $i=0; $i<25; $i++) {
-$code.=<<___;
- sub \$8,$len
- jc .Ltail_squeeze_avx512
+ cmp \$8,$len
+ jb .Ltail_squeeze_avx512
+
+ mov (%r9),%r8
+ lea 8(%r9),%r9
mov %r8,($out)
lea 8($out),$out
- je .Ldone_squeeze_avx512
- dec %eax
- je .Lextend_output_avx512
- mov @A_jagged_out[$i+1]-96($A_flat),%r8
-___
-}
-$code.=<<___;
-.Lextend_output_avx512:
- call __KeccakF1600
+ sub \$8,$len # len -= 8
+ jz .Ldone_squeeze_avx512
+
+ sub \$1,%rax # bsz--
+ jnz .Loop_squeeze_avx512
+
+ #vpermq @Theta[4],@Theta[4],@Theta[3]
+ #vpermq @Theta[3],@Theta[4],@Theta[2]
+ #vpermq @Theta[3],@Theta[3],@Theta[1]
+
+ call __KeccakF1600
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
- vmovdqu64 $A01,40*1-96($A_flat){$k11111}
- vmovdqu64 $A02,40*2-96($A_flat){$k11111}
- vmovdqu64 $A03,40*3-96($A_flat){$k11111}
- vmovdqu64 $A04,40*4-96($A_flat){$k11111}
+ vmovdqu64 $A10,40*1-96($A_flat){$k11111}
+ vmovdqu64 $A20,40*2-96($A_flat){$k11111}
+ vmovdqu64 $A30,40*3-96($A_flat){$k11111}
+ vmovdqu64 $A40,40*4-96($A_flat){$k11111}
+ lea -96($A_flat),%r9
mov $bsz,%rax
jmp .Loop_squeeze_avx512
-
.Ltail_squeeze_avx512:
- add \$8,$len
-.Loop_tail_avx512:
- mov %r8b,($out)
- lea 1($out),$out
- shr \$8,%r8
- dec $len
- jnz .Loop_tail_avx512
+ mov %r9,%rsi
+ mov $out,%rdi
+ mov $len,%rcx
+ .byte 0xf3,0xa4 # rep movsb
.Ldone_squeeze_avx512:
vzeroupper
@@ -400,19 +494,27 @@ theta_perm:
.quad 2, 3, 4, 0, 1, 5, 6, 7
.quad 1, 2, 3, 4, 0, 5, 6, 7
-rhotates:
+rhotates1:
.quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4]
.quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4]
.quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4]
.quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4]
.quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4]
-chi_perm:
- .quad 0, 4, 3, 2, 1, 5, 6, 7
- .quad 1, 0, 4, 3, 2, 5, 6, 7
- .quad 2, 1, 0, 4, 3, 5, 6, 7
- .quad 3, 2, 1, 0, 4, 5, 6, 7
- .quad 4, 3, 2, 1, 0, 5, 6, 7
+rhotates0:
+ .quad 0, 1, 62, 28, 27, 0, 0, 0
+ .quad 36, 44, 6, 55, 20, 0, 0, 0
+ .quad 3, 10, 43, 25, 39, 0, 0, 0
+ .quad 41, 45, 15, 21, 8, 0, 0, 0
+ .quad 18, 2, 61, 56, 14, 0, 0, 0
+
+pi0_perm:
+ .quad 0, 3, 1, 4, 2, 5, 6, 7
+ .quad 1, 4, 2, 0, 3, 5, 6, 7
+ .quad 2, 0, 3, 1, 4, 5, 6, 7
+ .quad 3, 1, 4, 2, 0, 5, 6, 7
+ .quad 4, 2, 0, 3, 1, 5, 6, 7
+
iotas:
.quad 0x0000000000000001