diff options
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/bn/bn_prime.c | 271 | ||||
-rw-r--r-- | crypto/bn/bn_rsa_fips186_4.c | 346 | ||||
-rw-r--r-- | crypto/bn/build.info | 3 | ||||
-rw-r--r-- | crypto/include/internal/bn_int.h | 27 | ||||
-rw-r--r-- | crypto/rsa/build.info | 3 | ||||
-rw-r--r-- | crypto/rsa/rsa_chk.c | 14 | ||||
-rw-r--r-- | crypto/rsa/rsa_gen.c | 9 | ||||
-rw-r--r-- | crypto/rsa/rsa_lib.c | 2 | ||||
-rw-r--r-- | crypto/rsa/rsa_locl.h | 38 | ||||
-rw-r--r-- | crypto/rsa/rsa_sp800_56b_check.c | 386 | ||||
-rw-r--r-- | crypto/rsa/rsa_sp800_56b_gen.c | 362 |
11 files changed, 1375 insertions, 86 deletions
diff --git a/crypto/bn/bn_prime.c b/crypto/bn/bn_prime.c index c4ab8693fc..7a87b97db3 100644 --- a/crypto/bn/bn_prime.c +++ b/crypto/bn/bn_prime.c @@ -1,5 +1,5 @@ /* - * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy @@ -19,14 +19,49 @@ */ #include "bn_prime.h" -static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, - const BIGNUM *a1_odd, int k, BN_CTX *ctx, - BN_MONT_CTX *mont); static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods); static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); +#if BN_BITS2 == 64 +# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo +#else +# define BN_DEF(lo, hi) lo, hi +#endif + +/* + * See SP800 89 5.3.3 (Step f) + * The product of the set of primes ranging from 3 to 751 + * Generated using process in test/bn_internal_test.c test_bn_small_factors(). + * This includes 751 (which is not currently included in SP 800-89). + */ +static const BN_ULONG small_prime_factors[] = { + BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6), + BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3), + BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817), + BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2), + BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3), + BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28), + BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112), + BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460), + (BN_ULONG)0x000017b1 +}; + +#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors) +static const BIGNUM _bignum_small_prime_factors = { + (BN_ULONG *)small_prime_factors, + BN_SMALL_PRIME_FACTORS_TOP, + BN_SMALL_PRIME_FACTORS_TOP, + 0, + BN_FLG_STATIC_DATA +}; + +const BIGNUM *bn_get0_small_factors(void) +{ + return &_bignum_small_prime_factors; +} + int BN_GENCB_call(BN_GENCB *cb, int a, int b) { /* No callback means continue */ @@ -148,127 +183,199 @@ int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); } -int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, +/* See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. */ +int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx_passed, int do_trial_division, BN_GENCB *cb) { - int i, j, ret = -1; - int k; + int i, status, ret = -1; BN_CTX *ctx = NULL; - BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */ - BN_MONT_CTX *mont = NULL; - /* Take care of the really small primes 2 & 3 */ - if (BN_is_word(a, 2) || BN_is_word(a, 3)) - return 1; - - /* Check odd and bigger than 1 */ - if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0) + /* w must be bigger than 1 */ + if (BN_cmp(w, BN_value_one()) <= 0) return 0; - if (checks == BN_prime_checks) - checks = BN_prime_checks_for_size(BN_num_bits(a)); + /* w must be odd */ + if (BN_is_odd(w)) { + /* Take care of the really small prime 3 */ + if (BN_is_word(w, 3)) + return 1; + } else { + /* 2 is the only even prime */ + return BN_is_word(w, 2); + } /* first look for small factors */ if (do_trial_division) { for (i = 1; i < NUMPRIMES; i++) { - BN_ULONG mod = BN_mod_word(a, primes[i]); + BN_ULONG mod = BN_mod_word(w, primes[i]); if (mod == (BN_ULONG)-1) - goto err; + return -1; if (mod == 0) - return BN_is_word(a, primes[i]); + return BN_is_word(w, primes[i]); } if (!BN_GENCB_call(cb, 1, -1)) - goto err; + return -1; } - if (ctx_passed != NULL) ctx = ctx_passed; else if ((ctx = BN_CTX_new()) == NULL) goto err; - BN_CTX_start(ctx); - A1 = BN_CTX_get(ctx); - A3 = BN_CTX_get(ctx); - A1_odd = BN_CTX_get(ctx); - check = BN_CTX_get(ctx); - if (check == NULL) + ret = bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status); + if (!ret) goto err; + ret = (status == BN_PRIMETEST_PROBABLY_PRIME); +err: + if (ctx_passed == NULL) + BN_CTX_free(ctx); + return ret; +} + +/* + * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test. + * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero). + * The Step numbers listed in the code refer to the enhanced case. + * + * if enhanced is set, then status returns one of the following: + * BN_PRIMETEST_PROBABLY_PRIME + * BN_PRIMETEST_COMPOSITE_WITH_FACTOR + * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME + * if enhanced is zero, then status returns either + * BN_PRIMETEST_PROBABLY_PRIME or + * BN_PRIMETEST_COMPOSITE + * + * returns 0 if there was an error, otherwise it returns 1. + */ +int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, + BN_GENCB *cb, int enhanced, int *status) +{ + int i, j, a, ret = 0; + BIGNUM *g, *w1, *w3, *x, *m, *z, *b; + BN_MONT_CTX *mont = NULL; - /* compute A1 := a - 1 */ - if (!BN_copy(A1, a) || !BN_sub_word(A1, 1)) + /* w must be odd */ + if (!BN_is_odd(w)) + return 0; + + BN_CTX_start(ctx); + g = BN_CTX_get(ctx); + w1 = BN_CTX_get(ctx); + w3 = BN_CTX_get(ctx); + x = BN_CTX_get(ctx); + m = BN_CTX_get(ctx); + z = BN_CTX_get(ctx); + b = BN_CTX_get(ctx); + + if (!(b != NULL + /* w1 := w - 1 */ + && BN_copy(w1, w) + && BN_sub_word(w1, 1) + /* w3 := w - 3 */ + && BN_copy(w3, w) + && BN_sub_word(w3, 3))) goto err; - /* compute A3 := a - 3 */ - if (!BN_copy(A3, a) || !BN_sub_word(A3, 3)) + + /* check w is larger than 3, otherwise the random b will be too small */ + if (BN_is_zero(w3) || BN_is_negative(w3)) goto err; - /* write A1 as A1_odd * 2^k */ - k = 1; - while (!BN_is_bit_set(A1, k)) - k++; - if (!BN_rshift(A1_odd, A1, k)) + /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */ + a = 1; + while (!BN_is_bit_set(w1, a)) + a++; + /* (Step 2) m = (w-1) / 2^a */ + if (!BN_rshift(m, w1, a)) goto err; /* Montgomery setup for computations mod a */ mont = BN_MONT_CTX_new(); - if (mont == NULL) - goto err; - if (!BN_MONT_CTX_set(mont, a, ctx)) + if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx)) goto err; - for (i = 0; i < checks; i++) { - /* 1 < check < a-1 */ - if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2)) - goto err; + if (iterations == BN_prime_checks) + iterations = BN_prime_checks_for_size(BN_num_bits(w)); - j = witness(check, a, A1, A1_odd, k, ctx, mont); - if (j == -1) + /* (Step 4) */ + for (i = 0; i < iterations; ++i) { + /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */ + if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */ goto err; - if (j) { - ret = 0; + + if (enhanced) { + /* (Step 4.3) */ + if (!BN_gcd(g, b, w, ctx)) + goto err; + /* (Step 4.4) */ + if (!BN_is_one(g)) { + *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; + ret = 1; + goto err; + } + } + /* (Step 4.5) z = b^m mod w */ + if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) goto err; + /* (Step 4.6) if (z = 1 or z = w-1) */ + if (BN_is_one(z) || BN_cmp(z, w1) == 0) + goto outer_loop; + /* (Step 4.7) for j = 1 to a-1 */ + for (j = 1; j < a ; ++j) { + /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */ + if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) + goto err; + /* (Step 4.7.3) */ + if (BN_cmp(z, w1) == 0) + goto outer_loop; + /* (Step 4.7.4) */ + if (BN_is_one(z)) + goto composite; } if (!BN_GENCB_call(cb, 1, i)) goto err; + /* At this point z = b^((w-1)/2) mod w */ + /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */ + if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) + goto err; + /* (Step 4.10) */ + if (BN_is_one(z)) + goto composite; + /* (Step 4.11) x = b^(w-1) mod w */ + if (!BN_copy(x, z)) + goto err; +composite: + if (enhanced) { + /* (Step 4.1.2) g = GCD(x-1, w) */ + if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx)) + goto err; + /* (Steps 4.1.3 - 4.1.4) */ + if (BN_is_one(g)) + *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME; + else + *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; + } else { + *status = BN_PRIMETEST_COMPOSITE; + } + ret = 1; + goto err; +outer_loop: ; + /* (Step 4.1.5) */ } + /* (Step 5) */ + *status = BN_PRIMETEST_PROBABLY_PRIME; ret = 1; - err: - if (ctx != NULL) { - BN_CTX_end(ctx); - if (ctx_passed == NULL) - BN_CTX_free(ctx); - } +err: + BN_clear(g); + BN_clear(w1); + BN_clear(w3); + BN_clear(x); + BN_clear(m); + BN_clear(z); + BN_clear(b); + BN_CTX_end(ctx); BN_MONT_CTX_free(mont); - return ret; } -static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, - const BIGNUM *a1_odd, int k, BN_CTX *ctx, - BN_MONT_CTX *mont) -{ - if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ - return -1; - if (BN_is_one(w)) - return 0; /* probably prime */ - if (BN_cmp(w, a1) == 0) - return 0; /* w == -1 (mod a), 'a' is probably prime */ - while (--k) { - if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ - return -1; - if (BN_is_one(w)) - return 1; /* 'a' is composite, otherwise a previous 'w' - * would have been == -1 (mod 'a') */ - if (BN_cmp(w, a1) == 0) - return 0; /* w == -1 (mod a), 'a' is probably prime */ - } - /* - * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and - * it is neither -1 nor +1 -- so 'a' cannot be prime - */ - bn_check_top(w); - return 1; -} - static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods) { int i; diff --git a/crypto/bn/bn_rsa_fips186_4.c b/crypto/bn/bn_rsa_fips186_4.c new file mode 100644 index 0000000000..261669d0d0 --- /dev/null +++ b/crypto/bn/bn_rsa_fips186_4.c @@ -0,0 +1,346 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +/* + * According to NIST SP800-131A "Transitioning the use of cryptographic + * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer + * allowed for signatures (Table 2) or key transport (Table 5). In the code + * below any attempt to generate 1024 bit RSA keys will result in an error (Note + * that digital signature verification can still use deprecated 1024 bit keys). + * + * Also see FIPS1402IG A.14 + * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that + * must be generated before the module generates the RSA primes p and q. + * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and + * 3072 bits only, the min/max total length of the auxiliary primes. + * When implementing the RSA signature generation algorithm + * with other approved RSA modulus sizes, the vendor shall use the limitations + * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of + * FIPS 186-4 whose length does not exceed that of the implementation's RSA + * modulus. In particular, when generating the primes for the 4096-bit RSA + * modulus the limitations stated for the 3072-bit modulus shall apply. + */ +#include <stdio.h> +#include <openssl/bn.h> +#include "bn_lcl.h" +#include "internal/bn_int.h" + +/* + * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2". + * + * Params: + * nbits The key size in bits. + * Returns: + * The minimum size of the auxiliary primes or 0 if nbits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_min_size(int nbits) +{ + if (nbits >= 3072) + return 171; + if (nbits == 2048) + return 141; + return 0; +} + +/* + * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and + * len(q1) + len(q2) for p,q Probable Primes". + * + * Params: + * nbits The key size in bits. + * Returns: + * The maximum length or 0 if nbits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits) +{ + if (nbits >= 3072) + return 1518; + if (nbits == 2048) + return 1007; + return 0; +} + +/* + * FIPS 186-4 Table C.3 for error probability of 2^-100 + * Minimum number of Miller Rabin Rounds for p1, p2, q1 & q2. + * + * Params: + * aux_prime_bits The auxiliary prime size in bits. + * Returns: + * The minimum number of Miller Rabin Rounds for an auxiliary prime, or + * 0 if aux_prime_bits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_MR_min_checks(int aux_prime_bits) +{ + if (aux_prime_bits > 170) + return 27; + if (aux_prime_bits > 140) + return 32; + return 0; /* Error case */ +} + +/* + * FIPS 186-4 Table C.3 for error probability of 2^-100 + * Minimum number of Miller Rabin Rounds for p, q. + * + * Params: + * nbits The key size in bits. + * Returns: + * The minimum number of Miller Rabin Rounds required, + * or 0 if nbits is invalid. + */ +int bn_rsa_fips186_4_prime_MR_min_checks(int nbits) +{ + if (nbits >= 3072) /* > 170 */ + return 3; + if (nbits == 2048) /* > 140 */ + return 4; + return 0; /* Error case */ +} + +/* + * Find the first odd integer that is a probable prime. + * + * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). + * + * Params: + * Xp1 The passed in starting point to find a probably prime. + * p1 The returned probable prime (first odd integer >= Xp1) + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 on success otherwise it returns 0. + */ +static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, + BIGNUM *p1, BN_CTX *ctx, + BN_GENCB *cb) +{ + int ret = 0; + int i = 0; + int checks = bn_rsa_fips186_4_aux_prime_MR_min_checks(BN_num_bits(Xp1)); + + if (checks == 0 || BN_copy(p1, Xp1) == NULL) + return 0; + + /* Find the first odd number >= Xp1 that is probably prime */ + for(;;) { + i++; + BN_GENCB_call(cb, 0, i); + /* MR test with trial division */ + if (BN_is_prime_fasttest_ex(p1, checks, ctx, 1, cb)) + break; + /* Get next odd number */ + if (!BN_add_word(p1, 2)) + goto err; + } + BN_GENCB_call(cb, 2, i); + ret = 1; +err: + return ret; +} + +/* + * Generate a probable prime (p or q). + * + * See FIPS 186-4 B.3.6 (Steps 4 & 5) + * + * Params: + * p The returned probable prime. + * Xpout An optionally returned random number used during generation of p. + * p1, p2 The returned auxiliary primes. If NULL they are not returned. + * Xp An optional passed in value (that is random number used during + * generation of p). + * Xp1, Xp2 Optional passed in values that are normally generated + * internally. Used to find p1, p2. + * nlen The bit length of the modulus (the key size). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 on success otherwise it returns 0. + */ +int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, + BIGNUM *p1, BIGNUM *p2, + const BIGNUM *Xp, const BIGNUM *Xp1, + const BIGNUM *Xp2, int nlen, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0; + BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; + int bitlen; + + if (p == NULL || Xpout == NULL) + return 0; + + BN_CTX_start(ctx); + + p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); + p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); + Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); + Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); + if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) + goto err; + + bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen); + if (bitlen == 0) + goto err; + + /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ + if (Xp1 == NULL) { + /* Set the top and bottom bits to make it odd and the correct size */ + if (!BN_priv_rand(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) + goto err; + } + /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ + if (Xp2 == NULL) { + /* Set the top and bottom bits to make it odd and the correct size */ + if (!BN_priv_rand(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) + goto err; + } + + /* (Steps 4.2/5.2) - find first auxiliary probable primes */ + if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) + || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) + goto err; + /* (Table B.1) auxiliary prime Max length check */ + if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= + bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen)) + goto err; + /* (Steps 4.3/5.3) - generate prime */ + if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb)) + goto err; + ret = 1; +err: + /* Zeroize any internally generated values that are not returned */ + if (p1 == NULL) + BN_clear(p1i); + if (p2 == NULL) + BN_clear(p2i); + if (Xp1 == NULL) + BN_clear(Xp1i); + if (Xp2 == NULL) + BN_clear(Xp2i); + BN_CTX_end(ctx); + return ret; +} + +/* + * Constructs a probable prime (a candidate for p or q) using 2 auxiliary + * prime numbers and the Chinese Remainder Theorem. + * + * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary + * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. + * + * Params: + * Y The returned prime factor (private_prime_factor) of the modulus n. + * X The returned random number used during generation of the prime factor. + * Xin An optional passed in value for X used for testing purposes. + * r1 An auxiliary prime. + * r2 An auxiliary prime. + * nlen The desired length of n (the RSA modulus). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback object. + * Returns: 1 on success otherwise it returns 0. + * Assumptions: + * Y, X, r1, r2, e are not NULL. + */ +int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, + const BIGNUM *r1, const BIGNUM *r2, int nlen, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0; + int i, imax; + int bits = nlen >> 1; + int checks = bn_rsa_fips186_4_prime_MR_min_checks(nlen); + BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; + + if (checks == 0) + return 0; + BN_CTX_start(ctx); + + R = BN_CTX_get(ctx); + tmp = BN_CTX_get(ctx); + r1r2x2 = BN_CTX_get(ctx); + y1 = BN_CTX_get(ctx); + r1x2 = BN_CTX_get(ctx); + if (r1x2 == NULL) + goto err; + + if (Xin != NULL && BN_copy(X, Xin) == NULL) + goto err; + + if (!(BN_lshift1(r1x2, r1) + /* (Step 1) GCD(2r1, r2) = 1 */ + && BN_gcd(tmp, r1x2, r2, ctx) + && BN_is_one(tmp) + /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ + && BN_mod_inverse(R, r2, r1x2, ctx) + && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ + && BN_mod_inverse(tmp, r1x2, r2, ctx) + && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ + && BN_sub(R, R, tmp) + /* Calculate 2r1r2 */ + && BN_mul(r1r2x2, r1x2, r2, ctx))) + goto err; + /* Make positive by adding the modulus */ + if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) + goto err; + + imax = 5 * bits; /* max = 5/2 * nbits */ + for (;;) { + if (Xin == NULL) { + /* + * (Step 3) Choose Random X such that + * sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1. + * + * For the lower bound: + * sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2) + * where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE... + * so largest number will have B5... as the top byte + * Setting the top 2 bits gives 0xC0. + */ + if (!BN_priv_rand(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) + goto end; + } + /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ + if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) + goto err; + /* (Step 5) */ + i = 0; + for (;;) { + /* (Step 6) */ + if (BN_num_bits(Y) > bits) { + if (Xin == NULL) + break; /* Randomly Generated X so Go back to Step 3 */ + else + goto err; /* X is not random so it will always fail */ + } + BN_GENCB_call(cb, 0, 2); + + /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ + if (BN_copy(y1, Y) == NULL + || !BN_sub_word(y1, 1) + || !BN_gcd(tmp, y1, e, ctx)) + goto err; + if (BN_is_one(tmp) + && BN_is_prime_fasttest_ex(Y, checks, ctx, 1, cb)) + goto end; + /* (Step 8-10) */ + if (++i >= imax || !BN_add(Y, Y, r1r2x2)) + goto err; + } + } +end: + ret = 1; + BN_GENCB_call(cb, 3, 0); +err: + BN_clear(y1); + BN_CTX_end(ctx); + return ret; +} diff --git a/crypto/bn/build.info b/crypto/bn/build.info index a463eddabb..7e34ce41b3 100644 --- a/crypto/bn/build.info +++ b/crypto/bn/build.info @@ -5,7 +5,8 @@ SOURCE[../../libcrypto]=\ bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c \ {- $target{bn_asm_src} -} \ bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \ - bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c + bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c \ + bn_rsa_fips186_4.c INCLUDE[../../libcrypto]=../../crypto/include INCLUDE[bn_exp.o]=.. diff --git a/crypto/include/internal/bn_int.h b/crypto/include/internal/bn_int.h index 66e34ec5b8..514eaeeb90 100644 --- a/crypto/include/internal/bn_int.h +++ b/crypto/include/internal/bn_int.h @@ -87,4 +87,31 @@ int bn_rshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n); int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); +#define BN_PRIMETEST_COMPOSITE 0 +#define BN_PRIMETEST_COMPOSITE_WITH_FACTOR 1 +#define BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME 2 +#define BN_PRIMETEST_PROBABLY_PRIME 3 + +int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, + BN_GENCB *cb, int enhanced, int *status); + +const BIGNUM *bn_get0_small_factors(void); + +int bn_rsa_fips186_4_prime_MR_min_checks(int nbits); + +int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, + BIGNUM *p1, BIGNUM *p2, + const BIGNUM *Xp, const BIGNUM *Xp1, + const BIGNUM *Xp2, int nlen, + const BIGNUM *e, BN_CTX *ctx, + BN_GENCB *cb); + +int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, + const BIGNUM *r1, const BIGNUM *r2, int nlen, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); + +#ifdef __cplusplus +} +#endif + #endif diff --git a/crypto/rsa/build.info b/crypto/rsa/build.info index 87f924922f..70864170ed 100644 --- a/crypto/rsa/build.info +++ b/crypto/rsa/build.info @@ -3,4 +3,5 @@ SOURCE[../../libcrypto]=\ rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \ rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \ rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \ - rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c + rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c \ + rsa_sp800_56b_gen.c rsa_sp800_56b_check.c diff --git a/crypto/rsa/rsa_chk.c b/crypto/rsa/rsa_chk.c index 805f998ff2..4f65dfa64b 100644 --- a/crypto/rsa/rsa_chk.c +++ b/crypto/rsa/rsa_chk.c @@ -16,8 +16,21 @@ int RSA_check_key(const RSA *key) return RSA_check_key_ex(key, NULL); } +/* + * NOTE: Key validation requires separate checks to be able to be accessed + * individually. These should be visible from the PKEY API.. + * See rsa_sp800_56b_check_public, rsa_sp800_56b_check_private and + * rsa_sp800_56b_check_keypair. + */ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb) { +#ifdef FIPS_MODE + if (!(rsa_sp800_56b_check_public(key) + && rsa_sp800_56b_check_private(key) + && rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key)) + return 0; + +#else BIGNUM *i, *j, *k, *l, *m; BN_CTX *ctx; int ret = 1, ex_primes = 0, idx; @@ -225,4 +238,5 @@ int RSA_check_key_ex(const RSA *key, BN_GENCB *cb) BN_free(m); BN_CTX_free(ctx); return ret; +#endif /* FIPS_MODE */ } diff --git a/crypto/rsa/rsa_gen.c b/crypto/rsa/rsa_gen.c index 1d38ec993a..4bfe3c3a96 100644 --- a/crypto/rsa/rsa_gen.c +++ b/crypto/rsa/rsa_gen.c @@ -41,6 +41,7 @@ int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { +#ifndef FIPS_MODE /* multi-prime is only supported with the builtin key generation */ if (rsa->meth->rsa_multi_prime_keygen != NULL) { return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, @@ -57,13 +58,18 @@ int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, else return 0; } - +#endif /* FIPS_MODE */ return rsa_builtin_keygen(rsa, bits, primes, e_value, cb); } static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { +#ifdef FIPS_MODE + if (primes != 2) + return 0; + return rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); +#else BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; @@ -391,4 +397,5 @@ static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; +#endif /* FIPS_MODE */ } diff --git a/crypto/rsa/rsa_lib.c b/crypto/rsa/rsa_lib.c index 0848936b2d..f337a0df08 100644 --- a/crypto/rsa/rsa_lib.c +++ b/crypto/rsa/rsa_lib.c @@ -253,7 +253,7 @@ static uint32_t ilog_e(uint64_t v) * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} * The two cube roots are merged together here. */ -static uint16_t rsa_compute_security_bits(int n) +uint16_t rsa_compute_security_bits(int n) { uint64_t x; uint32_t lx; diff --git a/crypto/rsa/rsa_locl.h b/crypto/rsa/rsa_locl.h index 44a2a2df39..5dcd6eab7b 100644 --- a/crypto/rsa/rsa_locl.h +++ b/crypto/rsa/rsa_locl.h @@ -7,6 +7,9 @@ * https://www.openssl.org/source/license.html */ +#ifndef RSA_LOCAL_HEADER_H +#define RSA_LOCAL_HEADER_H + #include <openssl/rsa.h> #include "internal/refcount.h" @@ -130,3 +133,38 @@ void rsa_multip_info_free(RSA_PRIME_INFO *pinfo); RSA_PRIME_INFO *rsa_multip_info_new(void); int rsa_multip_calc_product(RSA *rsa); int rsa_multip_cap(int bits); + +uint16_t rsa_compute_security_bits(int n); + +int rsa_sp800_56b_validate_strength(int nbits, int strength); +int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, + int nbits); +int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, + BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, + BIGNUM *p1q1); + +int rsa_check_public_exponent(const BIGNUM *e); +int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx); +int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx); +int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx); +int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx); + +int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx); +int rsa_sp800_56b_check_public(const RSA *rsa); +int rsa_sp800_56b_check_private(const RSA *rsa); +int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, + int strength, int nbits); +int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed, + BN_GENCB *cb); + +int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits, + const BIGNUM *e, BN_CTX *ctx); +int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2, + BIGNUM *Xpout, const BIGNUM *Xp, + const BIGNUM *Xp1, const BIGNUM *Xp2, + BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout, + const BIGNUM *Xq, const BIGNUM *Xq1, + const BIGNUM *Xq2, int nbits, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); + +#endif /* RSA_LOCAL_HEADER_H */ diff --git a/crypto/rsa/rsa_sp800_56b_check.c b/crypto/rsa/rsa_sp800_56b_check.c new file mode 100644 index 0000000000..10e264e591 --- /dev/null +++ b/crypto/rsa/rsa_sp800_56b_check.c @@ -0,0 +1,386 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/err.h> +#include <openssl/bn.h> +#include "internal/bn_int.h" +#include "rsa_locl.h" + +/* + * Part of the RSA keypair test. + * Check the Chinese Remainder Theorem components are valid. + * + * See SP800-5bBr1 + * 6.4.1.2.3: rsakpv1-crt Step 7 + * 6.4.1.3.3: rsakpv2-crt Step 7 + */ +int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; + + /* check if only some of the crt components are set */ + if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { + if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) + return 0; + return 1; /* return ok if all components are NULL */ + } + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + ret = (q1 != NULL) + /* p1 = p -1 */ + && (BN_copy(p1, rsa->p) != NULL) + && BN_sub_word(p1, 1) + /* q1 = q - 1 */ + && (BN_copy(q1, rsa->q) != NULL) + && BN_sub_word(q1, 1) + /* (a) 1 < dP < (p – 1). */ + && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) + && (BN_cmp(rsa->dmp1, p1) < 0) + /* (b) 1 < dQ < (q - 1). */ + && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) + && (BN_cmp(rsa->dmq1, q1) < 0) + /* (c) 1 < qInv < p */ + && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) + && (BN_cmp(rsa->iqmp, rsa->p) < 0) + /* (d) 1 = (dP . e) mod (p - 1)*/ + && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) + && BN_is_one(r) + /* (e) 1 = (dQ . e) mod (q - 1) */ + && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) + && BN_is_one(r) + /* (f) 1 = (qInv . q) mod p */ + && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) + && BN_is_one(r); + BN_clear(p1); + BN_clear(q1); + BN_CTX_end(ctx); + return ret; +} + +/* + * Part of the RSA keypair test. + * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 + * + * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. + * + * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) + * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8 + * 0.B504F334 gives an approximation to 11 decimal places. + * The range is then from + * 0xB504F334_0000.......................000 to + * 0xFFFFFFFF_FFFF.......................FFF + */ +int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *tmp, *low; + + nbits >>= 1; + + /* Upper bound check */ + if (BN_num_bits(p) != nbits) + return 0; + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + low = BN_CTX_get(ctx); + + /* set low = (√2)(2^(nbits/2 - 1) */ + if (low == NULL || !BN_set_word(tmp, 0xB504F334)) + goto err; + + if (nbits >= 32) { + if (!BN_lshift(low, tmp, nbits - 32)) + goto err; + } else if (!BN_rshift(low, tmp, 32 - nbits)) { + goto err; + } + if (BN_cmp(p, low) < 0) + goto err; + ret = 1; +err: + BN_CTX_end(ctx); + return ret; +} + +/* + * Part of the RSA keypair test. + * Check the prime factor (for either p or q) + * i.e: p is prime AND GCD(p - 1, e) = 1 + * + * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h). + */ +int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) +{ + int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits); + int ret = 0; + BIGNUM *p1 = NULL, *gcd = NULL; + + /* (Steps 5 a-b) prime test */ + if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1 + /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ + || rsa_check_prime_factor_range(p, nbits, ctx) != 1) + return 0; + + BN_CTX_start(ctx); + p1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + ret = (gcd != NULL) + /* (Step 5d) GCD(p-1, e) = 1 */ + && (BN_copy(p1, p) != NULL) + && BN_sub_word(p1, 1) + && BN_gcd(gcd, p1, e, ctx) + && BN_is_one(gcd); + + BN_clear(p1); + BN_CTX_end(ctx); + return ret; +} + +/* + * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d + * satisfies: + * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). + * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) + */ +int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) +{ + int ret; + BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; + + /* (Step 6a) 2^(nbits/2) < d */ + if (BN_num_bits(rsa->d) <= (nbits >> 1)) + return 0; + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + lcm = BN_CTX_get(ctx); + p1q1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + ret = (gcd != NULL + /* LCM(p - 1, q - 1) */ + && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1) + /* (Step 6a) d < LCM(p - 1, q - 1) */ + && (BN_cmp(rsa->d, lcm) < 0) + /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ + && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) + && BN_is_one(r)); + + BN_clear(p1); + BN_clear(q1); + BN_clear(lcm); + BN_clear(gcd); + BN_CTX_end(ctx); + return ret; +} + +/* Check exponent is odd, and has a bitlen ranging from [17..256] */ +int rsa_check_public_exponent(const BIGNUM *e) +{ + int bitlen = BN_num_bits(e); + + return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); +} + +/* + * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) + * i.e- numbits(p-q-1) > (nbits/2 -100) + */ +int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, + int nbits) +{ + int bitlen = (nbits >> 1) - 100; + + if (!BN_sub(diff, p, q)) + return -1; + BN_set_negative(diff, 0); + + if (BN_is_zero(diff)) + return 0; + + if (!BN_sub_word(diff, 1)) + return -1; + return (BN_num_bits(diff) > bitlen); +} + +/* return LCM(p-1, q-1) */ +int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, + BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, + BIGNUM *p1q1) +{ + return BN_sub(p1, p, BN_value_one()) /* p-1 */ + && BN_sub(q1, q, BN_value_one()) /* q-1 */ + && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ + && BN_gcd(gcd, p1, q1, ctx) + && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ +} + +/* + * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to + * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA + * caveat is that the modulus must be as specified in SP800-56Br1 + */ +int rsa_sp800_56b_check_public(const RSA *rsa) +{ + int ret = 0, nbits, iterations, status; + BN_CTX *ctx = NULL; + BIGNUM *gcd = NULL; + + if (rsa->n == NULL || rsa->e == NULL) + return 0; + + /* + * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) + * NOTE: changed to allow keys >= 2048 + */ + nbits = BN_num_bits(rsa->n); + if (!rsa_sp800_56b_validate_strength(nbits, -1)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH); + return 0; + } + if (!BN_is_odd(rsa->n)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + return 0; + } + + /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ + if (!rsa_check_public_exponent(rsa->e)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + return 0; + } + + ctx = BN_CTX_new(); + gcd = BN_new(); + if (ctx == NULL || gcd == NULL) + goto err; + + iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits); + /* (Steps d-f): + * The modulus is composite, but not a power of a prime. + * The modulus has no factors smaller than 752. + */ + if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + goto err; + } + + ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status); + if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); + ret = 0; + goto err; + } + + ret = 1; +err: + BN_free(gcd); + BN_CTX_free(ctx); + return ret; +} + +/* + * Perform validation of the RSA private key to check that 0 < D < N. + */ +int rsa_sp800_56b_check_private(const RSA *rsa) +{ + if (rsa->d == NULL || rsa->n == NULL) + return 0; + return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; +} + +/* + * RSA key pair validation. + * + * SP800-56Br1. + * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" + * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" + * + * It uses: + * 6.4.1.2.3 "rsakpv1 - crt" + * 6.4.1.3.3 "rsakpv2 - crt" + */ +int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, + int strength, int nbits) +{ + int ret = 0; + BN_CTX *ctx = NULL; + BIGNUM *r = NULL; + + if (rsa->p == NULL + || rsa->q == NULL + || rsa->e == NULL + || rsa->d == NULL + || rsa->n == NULL) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + return 0; + } + /* (Step 1): Check Ranges */ + if (!rsa_sp800_56b_validate_strength(nbits, strength)) + return 0; + + /* If the exponent is known */ + if (efixed != NULL) { + /* (2): Check fixed exponent matches public exponent. */ + if (BN_cmp(efixed, rsa->e) != 0) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + return 0; + } + } + /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ + if (!rsa_check_public_exponent(rsa->e)) { + /* exponent out of range */ + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + return 0; + } + /* (Step 3.b): check the modulus */ + if (nbits != BN_num_bits(rsa->n)) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); + return 0; + } + + ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + + BN_CTX_start(ctx); + r = BN_CTX_get(ctx); + if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) + goto err; + /* (Step 4.c): Check n = pq */ + if (BN_cmp(rsa->n, r) != 0) { + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); + goto err; + } + + /* (Step 5): check prime factors p & q */ + ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) + && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) + && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) + /* (Step 6): Check the private exponent d */ + && rsa_check_private_exponent(rsa, nbits, ctx) + /* 6.4.1.2.3 (Step 7): Check the CRT components */ + && rsa_check_crt_components(rsa, ctx); + if (ret != 1) + RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); + +err: + BN_clear(r); + BN_CTX_end(ctx); + BN_CTX_free(ctx); + return ret; +} diff --git a/crypto/rsa/rsa_sp800_56b_gen.c b/crypto/rsa/rsa_sp800_56b_gen.c new file mode 100644 index 0000000000..221136bd0c --- /dev/null +++ b/crypto/rsa/rsa_sp800_56b_gen.c @@ -0,0 +1,362 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/err.h> +#include <openssl/bn.h> +#include "internal/bn_int.h" +#include "rsa_locl.h" + +#define RSA_FIPS1864_MIN_KEYGEN_KEYSIZE 2048 +#define RSA_FIPS1864_MIN_KEYGEN_STRENGTH 112 +#define RSA_FIPS1864_MAX_KEYGEN_STRENGTH 256 + +/* + * Generate probable primes 'p' & 'q'. See FIPS 186-4 Section B.3.6 + * "Generation of Probable Primes with Conditions Based on Auxiliary Probable + * Primes". + * + * Params: + * rsa Object used to store primes p & q. + * p1, p2 The returned auxiliary primes for p. If NULL they are not returned. + * Xpout An optionally returned random number used during generation of p. + * Xp An optional passed in value (that is random number used during + * generation of p). + * Xp1, Xp2 Optionally passed in randomly generated numbers from which + * auxiliary primes p1 & p2 are calculated. If NULL these values + * are generated internally. + * q1, q2 The returned auxiliary primes for q. If NULL they are not returned. + * Xqout An optionally returned random number used during generation of q. + * Xq An optional passed in value (that is random number used during + * generation of q). + * Xq1, Xq2 Optionally passed in randomly generated numbers from which + * auxiliary primes q1 & q2 are calculated. If NULL these values + * are generated internally. + * nbits The key size in bits (The size of the modulus n). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 if successful, or 0 otherwise. + * Notes: + * p1, p2, q1, q2, Xpout, Xqout are returned if they are not NULL. + * Xp, Xp1, Xp2, Xq, Xq1, Xq2 are optionally passed in. + * (Required for CAVS testing). + */ +int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2, + BIGNUM *Xpout, const BIGNUM *Xp, + const BIGNUM *Xp1, const BIGNUM *Xp2, + BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout, + const BIGNUM *Xq, const BIGNUM *Xq1, + const BIGNUM *Xq2, int nbits, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0, ok; + BIGNUM *Xpo = NULL, *Xqo = NULL, *tmp = NULL; + + /* (Step 1) Check key length + * NOTE: SP800-131A Rev1 Disallows key lengths of < 2048 bits for RSA + * Signature Generation and Key Agree/Transport. + */ + if (nbits < RSA_FIPS1864_MIN_KEYGEN_KEYSIZE) { + RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, RSA_R_INVALID_KEY_LENGTH); + return 0; + } + + if (!rsa_check_public_exponent(e)) { + RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, + RSA_R_PUB_EXPONENT_OUT_OF_RANGE); + goto err; + } + + /* (Step 3) Determine strength and check rand generator strength is ok - + * this step is redundant because the generator always returns a higher + * strength than is required. + */ + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + Xpo = (Xpout != NULL) ? Xpout : BN_CTX_get(ctx); + Xqo = (Xqout != NULL) ? Xqout : BN_CTX_get(ctx); + if (tmp == NULL || Xpo == NULL || Xqo == NULL) + goto err; + + if (rsa->p == NULL) + rsa->p = BN_secure_new(); + if (rsa->q == NULL) + rsa->q = BN_secure_new(); + if (rsa->p == NULL || rsa->q == NULL) + goto err; + + /* (Step 4) Generate p, Xp */ + if (!bn_rsa_fips186_4_gen_prob_primes(rsa->p, Xpo, p1, p2, Xp, Xp1, Xp2, + nbits, e, ctx, cb)) + goto err; + for(;;) { + /* (Step 5) Generate q, Xq*/ + if (!bn_rsa_fips186_4_gen_prob_primes(rsa->q, Xqo, q1, q2, Xq, Xq1, + Xq2, nbits, e, ctx, cb)) + goto err; + + /* (Step 6) |Xp - Xq| > 2^(nbitlen/2 - 100) */ + ok = rsa_check_pminusq_diff(tmp, Xpo, Xqo, nbits); + if (ok < 0) + goto err; + if (ok == 0) + continue; + + /* (Step 6) |p - q| > 2^(nbitlen/2 - 100) */ + ok = rsa_check_pminusq_diff(tmp, rsa->p, rsa->q, nbits); + if (ok < 0) + goto err; + if (ok == 0) + continue; + break; /* successfully finished */ + } + ret = 1; +err: + /* Zeroize any internally generated values that are not returned */ + if (Xpo != Xpout) + BN_clear(Xpo); + if (Xqo != Xqout) + BN_clear(Xqo); + BN_clear(tmp); + + BN_CTX_end(ctx); + return ret; +} + +/* + * Validates the RSA key size based on the target strength. + * See SP800-56Br1 6.3.1.1 (Steps 1a-1b) + * + * Params: + * nbits The key size in bits. + * strength The target strength in bits. -1 means the target + * strength is unknown. + * Returns: 1 if the key size matches the target strength, or 0 otherwise. + */ +int rsa_sp800_56b_validate_strength(int nbits, int strength) +{ + int s = (int)rsa_compute_security_bits(nbits); + + if (s < RSA_FIPS1864_MIN_KEYGEN_STRENGTH + || s > RSA_FIPS1864_MAX_KEYGEN_STRENGTH) { + RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_MODULUS); + return 0; + } + if (strength != -1 && s != strength) { + RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_STRENGTH); + return 0; + } + return 1; +} + +/* + * + * Using p & q, calculate other required parameters such as n, d. + * as well as the CRT parameters dP, dQ, qInv. + * + * See SP800-56Br1 + * 6.3.1.1 rsakpg1 - basic (Steps 3-4) + * 6.3.1.3 rsakpg1 - crt (Step 5) + * + * Params: + * rsa An rsa object. + * nbits The key size. + * e The public exponent. + * ctx A BN_CTX object. + * Notes: + * There is a small chance that the generated d will be too small. + * Returns: -1 = error, + * 0 = d is too small, + * 1 = success. + */ +int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits, + const BIGNUM *e, BN_CTX *ctx) +{ + int ret = -1; + BIGNUM *p1, *q1, *lcm, *p1q1, *gcd; + + BN_CTX_start(ctx); + p1 = BN_CTX_get(ctx); + q1 = BN_CTX_get(ctx); + lcm = BN_CTX_get(ctx); + p1q1 = BN_CTX_get(ctx); + gcd = BN_CTX_get(ctx); + if (gcd == NULL) + goto err; + + /* LCM((p-1, q-1)) */ + if (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) != 1) + goto err; + + /* copy e */ + BN_free(rsa->e); + rsa->e = BN_dup(e); + if (rsa->e == NULL) + goto err; + + BN_clear_free(rsa->d); + /* (Step 3) d = (e^-1) mod (LCM(p-1, q-1)) */ + rsa->d = BN_secure_new(); + if (rsa->d == NULL || BN_mod_inverse(rsa->d, e, lcm, ctx) == NULL) + goto err; + + /* (Step 3) return an error if d is too small */ + if (BN_num_bits(rsa->d) <= (nbits >> 1)) { + ret = 0; + goto err; + } + + /* (Step 4) n = pq */ + if (rsa->n == NULL) + rsa->n = BN_new(); + if (rsa->n == NULL || !BN_mul(rsa->n, rsa->p, rsa->q, ctx)) + goto err; + + /* (Step 5a) dP = d mod (p-1) */ + if (rsa->dmp1 == NULL) + rsa->dmp1 = BN_new(); + if (rsa->dmp1 == NULL || !BN_mod(rsa->dmp1, rsa->d, p1, ctx)) + goto err; + + /* (Step 5b) dQ = d mod (q-1) */ + if (rsa->dmq1 == NULL) + rsa->dmq1 = BN_secure_new(); + if (rsa->dmq1 == NULL || !BN_mod(rsa->dmq1, rsa->d, q1, ctx)) + goto err; + + /* (Step 5c) qInv = (inverse of q) mod p */ + BN_free(rsa->iqmp); + rsa->iqmp = BN_secure_new(); + if (rsa->iqmp == NULL + || BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx) == NULL) + goto err; + + ret = 1; +err: + if (ret != 1) { + BN_free(rsa->e); + rsa->e = NULL; + BN_free(rsa->d); + rsa->d = NULL; + BN_free(rsa->n); + rsa->n = NULL; + BN_free(rsa->iqmp); + rsa->iqmp = NULL; + BN_free(rsa->dmq1); + rsa->dmq1 = NULL; + BN_free(rsa->dmp1); + rsa->dmp1 = NULL; + } + BN_clear(p1); + BN_clear(q1); + BN_clear(lcm); + BN_clear(p1q1); + BN_clear(gcd); + + BN_CTX_end(ctx); + return ret; +} + +/* + * Generate a SP800-56B RSA key. + * + * See SP800-56Br1 6.3.1 "RSA Key-Pair Generation with a Fixed Public Exponent" + * 6.3.1.1 rsakpg1 - basic + * 6.3.1.3 rsakpg1 - crt + * + * See also FIPS 186-4 Section B.3.6 + * "Generation of Probable Primes with Conditions Based on Auxiliary + * Probable Primes." + * + * Params: + * rsa The rsa object. + * nbits The intended key size in bits. + * efixed The public exponent. If NULL a default of 65537 is used. + * cb An optional BIGNUM callback. + * Returns: 1 if successfully generated otherwise it returns 0. + */ +int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed, + BN_GENCB *cb) +{ + int ret = 0; + int ok; + BN_CTX *ctx = NULL; + BIGNUM *e = NULL; + + /* (Steps 1a-1b) : Currently ignores the strength check */ + if (!rsa_sp800_56b_validate_strength(nbits, -1)) + return 0; + + ctx = BN_CTX_new(); + if (ctx == NULL) + return 0; + + /* Set default if e is not passed in */ + if (efixed == NULL) { + e = BN_new(); + if (e == NULL || !BN_set_word(e, 65537)) + goto err; + } else { + e = (BIGNUM *)efixed; + } + /* (Step 1c) fixed exponent is checked later . */ + + for (;;) { + /* (Step 2) Generate prime factors */ + if (!rsa_fips186_4_gen_prob_primes(rsa, NULL, NULL, NULL, NULL, NULL, + NULL, NULL, NULL, NULL, NULL, NULL, + NULL, nbits, e, ctx, cb)) + goto err; + /* (Steps 3-5) Compute params d, n, dP, dQ, qInv */ + ok = rsa_sp800_56b_derive_params_from_pq(rsa, nbits, e, ctx); + if (ok < 0) + goto err; + if (ok > 0) + break; + /* Gets here if computed d is too small - so try again */ + } + + /* (Step 6) Do pairwise test - optional validity test has been omitted */ + ret = rsa_sp800_56b_pairwise_test(rsa, ctx); +err: + if (efixed == NULL) + BN_free(e); + BN_CTX_free(ctx); + return ret; +} + +/* + * See SP800-56Br1 6.3.1.3 (Step 6) Perform a pair-wise consistency test by + * verifying that: k = (k^e)^d mod n for some integer k where 1 < k < n-1. + * + * Returns 1 if the RSA key passes the pairwise test or 0 it it fails. + */ +int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx) +{ + int ret = 0; + BIGNUM *k, *tmp; + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + k = BN_CTX_get(ctx); + if (k == NULL) + goto err; + + ret = (BN_set_word(k, 2) + && BN_mod_exp(tmp, k, rsa->e, rsa->n, ctx) + && BN_mod_exp(tmp, tmp, rsa->d, rsa->n, ctx) + && BN_cmp(k, tmp) == 0); + if (ret == 0) + RSAerr(RSA_F_RSA_SP800_56B_PAIRWISE_TEST, RSA_R_PAIRWISE_TEST_FAILURE); +err: + BN_CTX_end(ctx); + return ret; +} |