/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #undef SECONDS #define SECONDS 3 #define RSA_SECONDS 10 #define DSA_SECONDS 10 #define ECDSA_SECONDS 10 #define ECDH_SECONDS 10 #define EdDSA_SECONDS 10 #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #if !defined(OPENSSL_SYS_MSDOS) # include OPENSSL_UNISTD #endif #if defined(_WIN32) # include #endif #include #ifndef OPENSSL_NO_DES # include #endif #include #ifndef OPENSSL_NO_CAMELLIA # include #endif #ifndef OPENSSL_NO_MD2 # include #endif #ifndef OPENSSL_NO_MDC2 # include #endif #ifndef OPENSSL_NO_MD4 # include #endif #ifndef OPENSSL_NO_MD5 # include #endif #include #include #ifndef OPENSSL_NO_RMD160 # include #endif #ifndef OPENSSL_NO_WHIRLPOOL # include #endif #ifndef OPENSSL_NO_RC4 # include #endif #ifndef OPENSSL_NO_RC5 # include #endif #ifndef OPENSSL_NO_RC2 # include #endif #ifndef OPENSSL_NO_IDEA # include #endif #ifndef OPENSSL_NO_SEED # include #endif #ifndef OPENSSL_NO_BF # include #endif #ifndef OPENSSL_NO_CAST # include #endif #ifndef OPENSSL_NO_RSA # include # include "./testrsa.h" #endif #include #ifndef OPENSSL_NO_DSA # include # include "./testdsa.h" #endif #ifndef OPENSSL_NO_EC # include #endif #include #ifndef HAVE_FORK # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) # define HAVE_FORK 0 # else # define HAVE_FORK 1 # endif #endif #if HAVE_FORK # undef NO_FORK #else # define NO_FORK #endif #define MAX_MISALIGNMENT 63 #define MAX_ECDH_SIZE 256 #define MISALIGN 64 typedef struct openssl_speed_sec_st { int sym; int rsa; int dsa; int ecdsa; int ecdh; int eddsa; } openssl_speed_sec_t; static volatile int run = 0; static int mr = 0; static int usertime = 1; #ifndef OPENSSL_NO_MD2 static int EVP_Digest_MD2_loop(void *args); #endif #ifndef OPENSSL_NO_MDC2 static int EVP_Digest_MDC2_loop(void *args); #endif #ifndef OPENSSL_NO_MD4 static int EVP_Digest_MD4_loop(void *args); #endif #ifndef OPENSSL_NO_MD5 static int MD5_loop(void *args); static int HMAC_loop(void *args); #endif static int SHA1_loop(void *args); static int SHA256_loop(void *args); static int SHA512_loop(void *args); #ifndef OPENSSL_NO_WHIRLPOOL static int WHIRLPOOL_loop(void *args); #endif #ifndef OPENSSL_NO_RMD160 static int EVP_Digest_RMD160_loop(void *args); #endif #ifndef OPENSSL_NO_RC4 static int RC4_loop(void *args); #endif #ifndef OPENSSL_NO_DES static int DES_ncbc_encrypt_loop(void *args); static int DES_ede3_cbc_encrypt_loop(void *args); #endif static int AES_cbc_128_encrypt_loop(void *args); static int AES_cbc_192_encrypt_loop(void *args); static int AES_ige_128_encrypt_loop(void *args); static int AES_cbc_256_encrypt_loop(void *args); static int AES_ige_192_encrypt_loop(void *args); static int AES_ige_256_encrypt_loop(void *args); static int CRYPTO_gcm128_aad_loop(void *args); static int RAND_bytes_loop(void *args); static int EVP_Update_loop(void *args); static int EVP_Update_loop_ccm(void *args); static int EVP_Update_loop_aead(void *args); static int EVP_Digest_loop(void *args); #ifndef OPENSSL_NO_RSA static int RSA_sign_loop(void *args); static int RSA_verify_loop(void *args); #endif #ifndef OPENSSL_NO_DSA static int DSA_sign_loop(void *args); static int DSA_verify_loop(void *args); #endif #ifndef OPENSSL_NO_EC static int ECDSA_sign_loop(void *args); static int ECDSA_verify_loop(void *args); static int EdDSA_sign_loop(void *args); static int EdDSA_verify_loop(void *args); #endif static double Time_F(int s); static void print_message(const char *s, long num, int length, int tm); static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int sec); static void print_result(int alg, int run_no, int count, double time_used); #ifndef NO_FORK static int do_multi(int multi, int size_num); #endif static const int lengths_list[] = { 16, 64, 256, 1024, 8 * 1024, 16 * 1024 }; static const int *lengths = lengths_list; static const int aead_lengths_list[] = { 2, 31, 136, 1024, 8 * 1024, 16 * 1024 }; #define START 0 #define STOP 1 #ifdef SIGALRM static void alarmed(int sig) { signal(SIGALRM, alarmed); run = 0; } static double Time_F(int s) { double ret = app_tminterval(s, usertime); if (s == STOP) alarm(0); return ret; } #elif defined(_WIN32) # define SIGALRM -1 static unsigned int lapse; static volatile unsigned int schlock; static void alarm_win32(unsigned int secs) { lapse = secs * 1000; } # define alarm alarm_win32 static DWORD WINAPI sleepy(VOID * arg) { schlock = 1; Sleep(lapse); run = 0; return 0; } static double Time_F(int s) { double ret; static HANDLE thr; if (s == START) { schlock = 0; thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); if (thr == NULL) { DWORD err = GetLastError(); BIO_printf(bio_err, "unable to CreateThread (%lu)", err); ExitProcess(err); } while (!schlock) Sleep(0); /* scheduler spinlock */ ret = app_tminterval(s, usertime); } else { ret = app_tminterval(s, usertime); if (run) TerminateThread(thr, 0); CloseHandle(thr); } return ret; } #else static double Time_F(int s) { return app_tminterval(s, usertime); } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds); #define found(value, pairs, result)\ opt_found(value, result, pairs, OSSL_NELEM(pairs)) static int opt_found(const char *name, unsigned int *result, const OPT_PAIR pairs[], unsigned int nbelem) { unsigned int idx; for (idx = 0; idx < nbelem; ++idx, pairs++) if (strcmp(name, pairs->name) == 0) { *result = pairs->retval; return 1; } return 0; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD } OPTION_CHOICE; const OPTIONS speed_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, {"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"}, {"decrypt", OPT_DECRYPT, '-', "Time decryption instead of encryption (only EVP)"}, {"aead", OPT_AEAD, '-', "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, {"mb", OPT_MB, '-', "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, {"mr", OPT_MR, '-', "Produce machine readable output"}, #ifndef NO_FORK {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, #endif #ifndef OPENSSL_NO_ASYNC {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start specified number of jobs"}, #endif OPT_R_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"elapsed", OPT_ELAPSED, '-', "Use wall-clock time instead of CPU user time as divisor"}, {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, {"seconds", OPT_SECONDS, 'p', "Run benchmarks for specified amount of seconds"}, {"bytes", OPT_BYTES, 'p', "Run [non-PKI] benchmarks on custom-sized buffer"}, {"misalign", OPT_MISALIGN, 'p', "Use specified offset to mis-align buffers"}, {NULL} }; #define D_MD2 0 #define D_MDC2 1 #define D_MD4 2 #define D_MD5 3 #define D_HMAC 4 #define D_SHA1 5 #define D_RMD160 6 #define D_RC4 7 #define D_CBC_DES 8 #define D_EDE3_DES 9 #define D_CBC_IDEA 10 #define D_CBC_SEED 11 #define D_CBC_RC2 12 #define D_CBC_RC5 13 #define D_CBC_BF 14 #define D_CBC_CAST 15 #define D_CBC_128_AES 16 #define D_CBC_192_AES 17 #define D_CBC_256_AES 18 #define D_CBC_128_CML 19 #define D_CBC_192_CML 20 #define D_CBC_256_CML 21 #define D_EVP 22 #define D_SHA256 23 #define D_SHA512 24 #define D_WHIRLPOOL 25 #define D_IGE_128_AES 26 #define D_IGE_192_AES 27 #define D_IGE_256_AES 28 #define D_GHASH 29 #define D_RAND 30 #define D_EVP_HMAC 31 /* name of algorithms to test */ static const char *names[] = { "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", "des cbc", "des ede3", "idea cbc", "seed cbc", "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", "evp", "sha256", "sha512", "whirlpool", "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", "rand", "hmac" }; #define ALGOR_NUM OSSL_NELEM(names) /* list of configured algorithm (remaining) */ static const OPT_PAIR doit_choices[] = { #ifndef OPENSSL_NO_MD2 {"md2", D_MD2}, #endif #ifndef OPENSSL_NO_MDC2 {"mdc2", D_MDC2}, #endif #ifndef OPENSSL_NO_MD4 {"md4", D_MD4}, #endif #ifndef OPENSSL_NO_MD5 {"md5", D_MD5}, {"hmac", D_HMAC}, #endif {"sha1", D_SHA1}, {"sha256", D_SHA256}, {"sha512", D_SHA512}, #ifndef OPENSSL_NO_WHIRLPOOL {"whirlpool", D_WHIRLPOOL}, #endif #ifndef OPENSSL_NO_RMD160 {"ripemd", D_RMD160}, {"rmd160", D_RMD160}, {"ripemd160", D_RMD160}, #endif #ifndef OPENSSL_NO_RC4 {"rc4", D_RC4}, #endif #ifndef OPENSSL_NO_DES {"des-cbc", D_CBC_DES}, {"des-ede3", D_EDE3_DES}, #endif {"aes-128-cbc", D_CBC_128_AES}, {"aes-192-cbc", D_CBC_192_AES}, {"aes-256-cbc", D_CBC_256_AES}, {"aes-128-ige", D_IGE_128_AES}, {"aes-192-ige", D_IGE_192_AES}, {"aes-256-ige", D_IGE_256_AES}, #ifndef OPENSSL_NO_RC2 {"rc2-cbc", D_CBC_RC2}, {"rc2", D_CBC_RC2}, #endif #ifndef OPENSSL_NO_RC5 {"rc5-cbc", D_CBC_RC5}, {"rc5", D_CBC_RC5}, #endif #ifndef OPENSSL_NO_IDEA {"idea-cbc", D_CBC_IDEA}, {"idea", D_CBC_IDEA}, #endif #ifndef OPENSSL_NO_SEED {"seed-cbc", D_CBC_SEED}, {"seed", D_CBC_SEED}, #endif #ifndef OPENSSL_NO_BF {"bf-cbc", D_CBC_BF}, {"blowfish", D_CBC_BF}, {"bf", D_CBC_BF}, #endif #ifndef OPENSSL_NO_CAST {"cast-cbc", D_CBC_CAST}, {"cast", D_CBC_CAST}, {"cast5", D_CBC_CAST}, #endif {"ghash", D_GHASH}, {"rand", D_RAND} }; static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)]; #ifndef OPENSSL_NO_DSA # define R_DSA_512 0 # define R_DSA_1024 1 # define R_DSA_2048 2 static const OPT_PAIR dsa_choices[] = { {"dsa512", R_DSA_512}, {"dsa1024", R_DSA_1024}, {"dsa2048", R_DSA_2048} }; # define DSA_NUM OSSL_NELEM(dsa_choices) static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_DSA */ #define R_RSA_512 0 #define R_RSA_1024 1 #define R_RSA_2048 2 #define R_RSA_3072 3 #define R_RSA_4096 4 #define R_RSA_7680 5 #define R_RSA_15360 6 #ifndef OPENSSL_NO_RSA static const OPT_PAIR rsa_choices[] = { {"rsa512", R_RSA_512}, {"rsa1024", R_RSA_1024}, {"rsa2048", R_RSA_2048}, {"rsa3072", R_RSA_3072}, {"rsa4096", R_RSA_4096}, {"rsa7680", R_RSA_7680}, {"rsa15360", R_RSA_15360} }; # define RSA_NUM OSSL_NELEM(rsa_choices) static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_RSA */ #define R_EC_P160 0 #define R_EC_P192 1 #define R_EC_P224 2 #define R_EC_P256 3 #define R_EC_P384 4 #define R_EC_P521 5 #define R_EC_K163 6 #define R_EC_K233 7 #define R_EC_K283 8 #define R_EC_K409 9 #define R_EC_K571 10 #define R_EC_B163 11 #define R_EC_B233 12 #define R_EC_B283 13 #define R_EC_B409 14 #define R_EC_B571 15 #define R_EC_BRP256R1 16 #define R_EC_BRP256T1 17 #define R_EC_BRP384R1 18 #define R_EC_BRP384T1 19 #define R_EC_BRP512R1 20 #define R_EC_BRP512T1 21 #define R_EC_X25519 22 #define R_EC_X448 23 #ifndef OPENSSL_NO_EC static OPT_PAIR ecdsa_choices[] = { {"ecdsap160", R_EC_P160}, {"ecdsap192", R_EC_P192}, {"ecdsap224", R_EC_P224}, {"ecdsap256", R_EC_P256}, {"ecdsap384", R_EC_P384}, {"ecdsap521", R_EC_P521}, {"ecdsak163", R_EC_K163}, {"ecdsak233", R_EC_K233}, {"ecdsak283", R_EC_K283}, {"ecdsak409", R_EC_K409}, {"ecdsak571", R_EC_K571}, {"ecdsab163", R_EC_B163}, {"ecdsab233", R_EC_B233}, {"ecdsab283", R_EC_B283}, {"ecdsab409", R_EC_B409}, {"ecdsab571", R_EC_B571}, {"ecdsabrp256r1", R_EC_BRP256R1}, {"ecdsabrp256t1", R_EC_BRP256T1}, {"ecdsabrp384r1", R_EC_BRP384R1}, {"ecdsabrp384t1", R_EC_BRP384T1}, {"ecdsabrp512r1", R_EC_BRP512R1}, {"ecdsabrp512t1", R_EC_BRP512T1} }; # define ECDSA_NUM OSSL_NELEM(ecdsa_choices) static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */ static const OPT_PAIR ecdh_choices[] = { {"ecdhp160", R_EC_P160}, {"ecdhp192", R_EC_P192}, {"ecdhp224", R_EC_P224}, {"ecdhp256", R_EC_P256}, {"ecdhp384", R_EC_P384}, {"ecdhp521", R_EC_P521}, {"ecdhk163", R_EC_K163}, {"ecdhk233", R_EC_K233}, {"ecdhk283", R_EC_K283}, {"ecdhk409", R_EC_K409}, {"ecdhk571", R_EC_K571}, {"ecdhb163", R_EC_B163}, {"ecdhb233", R_EC_B233}, {"ecdhb283", R_EC_B283}, {"ecdhb409", R_EC_B409}, {"ecdhb571", R_EC_B571}, {"ecdhbrp256r1", R_EC_BRP256R1}, {"ecdhbrp256t1", R_EC_BRP256T1}, {"ecdhbrp384r1", R_EC_BRP384R1}, {"ecdhbrp384t1", R_EC_BRP384T1}, {"ecdhbrp512r1", R_EC_BRP512R1}, {"ecdhbrp512t1", R_EC_BRP512T1}, {"ecdhx25519", R_EC_X25519}, {"ecdhx448", R_EC_X448} }; # define EC_NUM OSSL_NELEM(ecdh_choices) static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */ #define R_EC_Ed25519 0 #define R_EC_Ed448 1 static OPT_PAIR eddsa_choices[] = { {"ed25519", R_EC_Ed25519}, {"ed448", R_EC_Ed448} }; # define EdDSA_NUM OSSL_NELEM(eddsa_choices) static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_EC */ #ifndef SIGALRM # define COND(d) (count < (d)) # define COUNT(d) (d) #else # define COND(unused_cond) (run && count<0x7fffffff) # define COUNT(d) (count) #endif /* SIGALRM */ typedef struct loopargs_st { ASYNC_JOB *inprogress_job; ASYNC_WAIT_CTX *wait_ctx; unsigned char *buf; unsigned char *buf2; unsigned char *buf_malloc; unsigned char *buf2_malloc; unsigned char *key; unsigned int siglen; size_t sigsize; #ifndef OPENSSL_NO_RSA RSA *rsa_key[RSA_NUM]; #endif #ifndef OPENSSL_NO_DSA DSA *dsa_key[DSA_NUM]; #endif #ifndef OPENSSL_NO_EC EC_KEY *ecdsa[ECDSA_NUM]; EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; unsigned char *secret_a; unsigned char *secret_b; size_t outlen[EC_NUM]; #endif EVP_CIPHER_CTX *ctx; HMAC_CTX *hctx; GCM128_CONTEXT *gcm_ctx; } loopargs_t; static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs); static unsigned int testnum; /* Nb of iterations to do per algorithm and key-size */ static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)]; #ifndef OPENSSL_NO_MD2 static int EVP_Digest_MD2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md2[MD2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MDC2 static int EVP_Digest_MDC2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char mdc2[MDC2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MDC2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MD4 static int EVP_Digest_MD4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md4[MD4_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD4][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MD5 static int MD5_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md5[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD5][testnum]); count++) MD5(buf, lengths[testnum], md5); return count; } static int HMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; HMAC_CTX *hctx = tempargs->hctx; unsigned char hmac[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_HMAC][testnum]); count++) { HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); HMAC_Update(hctx, buf, lengths[testnum]); HMAC_Final(hctx, hmac, NULL); } return count; } #endif static int SHA1_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha[SHA_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA1][testnum]); count++) SHA1(buf, lengths[testnum], sha); return count; } static int SHA256_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha256[SHA256_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA256][testnum]); count++) SHA256(buf, lengths[testnum], sha256); return count; } static int SHA512_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha512[SHA512_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA512][testnum]); count++) SHA512(buf, lengths[testnum], sha512); return count; } #ifndef OPENSSL_NO_WHIRLPOOL static int WHIRLPOOL_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) WHIRLPOOL(buf, lengths[testnum], whirlpool); return count; } #endif #ifndef OPENSSL_NO_RMD160 static int EVP_Digest_RMD160_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_RMD160][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), NULL, EVP_ripemd160(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_RC4 static RC4_KEY rc4_ks; static int RC4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RC4][testnum]); count++) RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); return count; } #endif #ifndef OPENSSL_NO_DES static unsigned char DES_iv[8]; static DES_key_schedule sch; static DES_key_schedule sch2; static DES_key_schedule sch3; static int DES_ncbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_DES][testnum]); count++) DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, &DES_iv, DES_ENCRYPT); return count; } static int DES_ede3_cbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); return count; } #endif #define MAX_BLOCK_SIZE 128 static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; static AES_KEY aes_ks1, aes_ks2, aes_ks3; static int AES_cbc_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_cbc_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_cbc_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int AES_ige_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_ige_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_ige_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int CRYPTO_gcm128_aad_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; int count; for (count = 0; COND(c[D_GHASH][testnum]); count++) CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); return count; } static int RAND_bytes_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RAND][testnum]); count++) RAND_bytes(buf, lengths[testnum]); return count; } static long save_count = 0; static int decrypt = 0; static int EVP_Update_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, rc; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } else { for (count = 0; COND(nb_iter); count++) { rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * CCM does not support streaming. For the purpose of performance measurement, * each message is encrypted using the same (key,iv)-pair. Do not use this * code in your application. */ static int EVP_Update_loop_ccm(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char tag[12]; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag); /* reset iv */ EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); /* counter is reset on every update */ EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } else { for (count = 0; COND(nb_iter); count++) { /* restore iv length field */ EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]); /* counter is reset on every update */ EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * To make AEAD benchmarking more relevant perform TLS-like operations, * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as * payload length is not actually limited by 16KB... */ static int EVP_Update_loop_aead(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char aad[13] = { 0xcc }; unsigned char faketag[16] = { 0xcc }; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(faketag), faketag); EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_DecryptFinal_ex(ctx, buf + outl, &outl); } } else { for (count = 0; COND(nb_iter); count++) { EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_EncryptFinal_ex(ctx, buf + outl, &outl); } } return count; } static const EVP_MD *evp_md = NULL; static int EVP_Digest_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md[EVP_MAX_MD_SIZE]; int count; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif for (count = 0; COND(nb_iter); count++) { if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) return -1; } return count; } static const EVP_MD *evp_hmac_md = NULL; static char *evp_hmac_name = NULL; static int EVP_HMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char no_key[32]; int count; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif for (count = 0; COND(nb_iter); count++) { if (HMAC(evp_hmac_md, no_key, sizeof(no_key), buf, lengths[testnum], NULL, NULL) == NULL) return -1; } return count; } #ifndef OPENSSL_NO_RSA static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ static int RSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int *rsa_num = &tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][0]); count++) { ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "RSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int rsa_num = tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][1]); count++) { ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "RSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #ifndef OPENSSL_NO_DSA static long dsa_c[DSA_NUM][2]; static int DSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int *siglen = &tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][0]); count++) { ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "DSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int DSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int siglen = tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][1]); count++) { ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "DSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #ifndef OPENSSL_NO_EC static long ecdsa_c[ECDSA_NUM][2]; static int ECDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int *ecdsasiglen = &tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][0]); count++) { ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret == 0) { BIO_printf(bio_err, "ECDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int ECDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int ecdsasiglen = tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][1]); count++) { ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret != 1) { BIO_printf(bio_err, "ECDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } /* ******************************************************************** */ static long ecdh_c[EC_NUM][1]; static int ECDH_EVP_derive_key_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; unsigned char *derived_secret = tempargs->secret_a; int count; size_t *outlen = &(tempargs->outlen[testnum]); for (count = 0; COND(ecdh_c[testnum][0]); count++) EVP_PKEY_derive(ctx, derived_secret, outlen); return count; } static long eddsa_c[EdDSA_NUM][2]; static int EdDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t *eddsasigsize = &tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][0]); count++) { ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "EdDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int EdDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t eddsasigsize = tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][1]); count++) { ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "EdDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif /* OPENSSL_NO_EC */ static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs) { int job_op_count = 0; int total_op_count = 0; int num_inprogress = 0; int error = 0, i = 0, ret = 0; OSSL_ASYNC_FD job_fd = 0; size_t num_job_fds = 0; run = 1; if (async_jobs == 0) { return loop_function((void *)&loopargs); } for (i = 0; i < async_jobs && !error; i++) { loopargs_t *looparg_item = loopargs + i; /* Copy pointer content (looparg_t item address) into async context */ ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)&looparg_item, sizeof(looparg_item)); switch (ret) { case ASYNC_PAUSE: ++num_inprogress; break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } break; case ASYNC_NO_JOBS: case ASYNC_ERR: BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } while (num_inprogress > 0) { #if defined(OPENSSL_SYS_WINDOWS) DWORD avail = 0; #elif defined(OPENSSL_SYS_UNIX) int select_result = 0; OSSL_ASYNC_FD max_fd = 0; fd_set waitfdset; FD_ZERO(&waitfdset); for (i = 0; i < async_jobs && num_inprogress > 0; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); FD_SET(job_fd, &waitfdset); if (job_fd > max_fd) max_fd = job_fd; } if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { BIO_printf(bio_err, "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " "Decrease the value of async_jobs\n", max_fd, FD_SETSIZE); ERR_print_errors(bio_err); error = 1; break; } select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); if (select_result == -1 && errno == EINTR) continue; if (select_result == -1) { BIO_printf(bio_err, "Failure in the select\n"); ERR_print_errors(bio_err); error = 1; break; } if (select_result == 0) continue; #endif for (i = 0; i < async_jobs; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); #if defined(OPENSSL_SYS_UNIX) if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) continue; #elif defined(OPENSSL_SYS_WINDOWS) if (num_job_fds == 1 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) continue; #endif ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)(loopargs + i), sizeof(loopargs_t)); switch (ret) { case ASYNC_PAUSE: break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } --num_inprogress; loopargs[i].inprogress_job = NULL; break; case ASYNC_NO_JOBS: case ASYNC_ERR: --num_inprogress; loopargs[i].inprogress_job = NULL; BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } } return error ? -1 : total_op_count; } int speed_main(int argc, char **argv) { ENGINE *e = NULL; loopargs_t *loopargs = NULL; const char *prog; const char *engine_id = NULL; const EVP_CIPHER *evp_cipher = NULL; double d = 0.0; OPTION_CHOICE o; int async_init = 0, multiblock = 0, pr_header = 0; int doit[ALGOR_NUM] = { 0 }; int ret = 1, misalign = 0, lengths_single = 0, aead = 0; long count = 0; unsigned int size_num = OSSL_NELEM(lengths_list); unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0; int keylen; int buflen; #ifndef NO_FORK int multi = 0; #endif #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ || !defined(OPENSSL_NO_EC) long rsa_count = 1; #endif openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, ECDSA_SECONDS, ECDH_SECONDS, EdDSA_SECONDS }; /* What follows are the buffers and key material. */ #ifndef OPENSSL_NO_RC5 RC5_32_KEY rc5_ks; #endif #ifndef OPENSSL_NO_RC2 RC2_KEY rc2_ks; #endif #ifndef OPENSSL_NO_IDEA IDEA_KEY_SCHEDULE idea_ks; #endif #ifndef OPENSSL_NO_SEED SEED_KEY_SCHEDULE seed_ks; #endif #ifndef OPENSSL_NO_BF BF_KEY bf_ks; #endif #ifndef OPENSSL_NO_CAST CAST_KEY cast_ks; #endif static const unsigned char key16[16] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; static const unsigned char key24[24] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; static const unsigned char key32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; #ifndef OPENSSL_NO_CAMELLIA static const unsigned char ckey24[24] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; static const unsigned char ckey32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; #endif #ifndef OPENSSL_NO_DES static DES_cblock key = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }; static DES_cblock key2 = { 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; static DES_cblock key3 = { 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; #endif #ifndef OPENSSL_NO_RSA static const unsigned int rsa_bits[RSA_NUM] = { 512, 1024, 2048, 3072, 4096, 7680, 15360 }; static const unsigned char *rsa_data[RSA_NUM] = { test512, test1024, test2048, test3072, test4096, test7680, test15360 }; static const int rsa_data_length[RSA_NUM] = { sizeof(test512), sizeof(test1024), sizeof(test2048), sizeof(test3072), sizeof(test4096), sizeof(test7680), sizeof(test15360) }; int rsa_doit[RSA_NUM] = { 0 }; int primes = RSA_DEFAULT_PRIME_NUM; #endif #ifndef OPENSSL_NO_DSA static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; int dsa_doit[DSA_NUM] = { 0 }; #endif #ifndef OPENSSL_NO_EC /* * We only test over the following curves as they are representative, To * add tests over more curves, simply add the curve NID and curve name to * the following arrays and increase the |ecdh_choices| list accordingly. */ static const struct { const char *name; unsigned int nid; unsigned int bits; } test_curves[] = { /* Prime Curves */ {"secp160r1", NID_secp160r1, 160}, {"nistp192", NID_X9_62_prime192v1, 192}, {"nistp224", NID_secp224r1, 224}, {"nistp256", NID_X9_62_prime256v1, 256}, {"nistp384", NID_secp384r1, 384}, {"nistp521", NID_secp521r1, 521}, /* Binary Curves */ {"nistk163", NID_sect163k1, 163}, {"nistk233", NID_sect233k1, 233}, {"nistk283", NID_sect283k1, 283}, {"nistk409", NID_sect409k1, 409}, {"nistk571", NID_sect571k1, 571}, {"nistb163", NID_sect163r2, 163}, {"nistb233", NID_sect233r1, 233}, {"nistb283", NID_sect283r1, 283}, {"nistb409", NID_sect409r1, 409}, {"nistb571", NID_sect571r1, 571}, {"brainpoolP256r1", NID_brainpoolP256r1, 256}, {"brainpoolP256t1", NID_brainpoolP256t1, 256}, {"brainpoolP384r1", NID_brainpoolP384r1, 384}, {"brainpoolP384t1", NID_brainpoolP384t1, 384}, {"brainpoolP512r1", NID_brainpoolP512r1, 512}, {"brainpoolP512t1", NID_brainpoolP512t1, 512}, /* Other and ECDH only ones */ {"X25519", NID_X25519, 253}, {"X448", NID_X448, 448} }; static const struct { const char *name; unsigned int nid; unsigned int bits; size_t sigsize; } test_ed_curves[] = { /* EdDSA */ {"Ed25519", NID_ED25519, 253, 64}, {"Ed448", NID_ED448, 456, 114} }; int ecdsa_doit[ECDSA_NUM] = { 0 }; int ecdh_doit[EC_NUM] = { 0 }; int eddsa_doit[EdDSA_NUM] = { 0 }; OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM); OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM); #endif /* ndef OPENSSL_NO_EC */ prog = opt_init(argc, argv, speed_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opterr: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(speed_options); ret = 0; goto end; case OPT_ELAPSED: usertime = 0; break; case OPT_EVP: evp_md = NULL; evp_cipher = EVP_get_cipherbyname(opt_arg()); if (evp_cipher == NULL) evp_md = EVP_get_digestbyname(opt_arg()); if (evp_cipher == NULL && evp_md == NULL) { BIO_printf(bio_err, "%s: %s is an unknown cipher or digest\n", prog, opt_arg()); goto end; } doit[D_EVP] = 1; break; case OPT_HMAC: evp_hmac_md = EVP_get_digestbyname(opt_arg()); if (evp_hmac_md == NULL) { BIO_printf(bio_err, "%s: %s is an unknown digest\n", prog, opt_arg()); goto end; } doit[D_EVP_HMAC] = 1; break; case OPT_DECRYPT: decrypt = 1; break; case OPT_ENGINE: /* * In a forked execution, an engine might need to be * initialised by each child process, not by the parent. * So store the name here and run setup_engine() later on. */ engine_id = opt_arg(); break; case OPT_MULTI: #ifndef NO_FORK multi = atoi(opt_arg()); #endif break; case OPT_ASYNCJOBS: #ifndef OPENSSL_NO_ASYNC async_jobs = atoi(opt_arg()); if (!ASYNC_is_capable()) { BIO_printf(bio_err, "%s: async_jobs specified but async not supported\n", prog); goto opterr; } if (async_jobs > 99999) { BIO_printf(bio_err, "%s: too many async_jobs\n", prog); goto opterr; } #endif break; case OPT_MISALIGN: if (!opt_int(opt_arg(), &misalign)) goto end; if (misalign > MISALIGN) { BIO_printf(bio_err, "%s: Maximum offset is %d\n", prog, MISALIGN); goto opterr; } break; case OPT_MR: mr = 1; break; case OPT_MB: multiblock = 1; #ifdef OPENSSL_NO_MULTIBLOCK BIO_printf(bio_err, "%s: -mb specified but multi-block support is disabled\n", prog); goto end; #endif break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PRIMES: if (!opt_int(opt_arg(), &primes)) goto end; break; case OPT_SECONDS: seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa = seconds.ecdh = seconds.eddsa = atoi(opt_arg()); break; case OPT_BYTES: lengths_single = atoi(opt_arg()); lengths = &lengths_single; size_num = 1; break; case OPT_AEAD: aead = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); /* Remaining arguments are algorithms. */ for (; *argv; argv++) { if (found(*argv, doit_choices, &i)) { doit[i] = 1; continue; } #ifndef OPENSSL_NO_DES if (strcmp(*argv, "des") == 0) { doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; continue; } #endif if (strcmp(*argv, "sha") == 0) { doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; continue; } #ifndef OPENSSL_NO_RSA if (strcmp(*argv, "openssl") == 0) continue; if (strcmp(*argv, "rsa") == 0) { for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++) rsa_doit[loop] = 1; continue; } if (found(*argv, rsa_choices, &i)) { rsa_doit[i] = 1; continue; } #endif #ifndef OPENSSL_NO_DSA if (strcmp(*argv, "dsa") == 0) { dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = dsa_doit[R_DSA_2048] = 1; continue; } if (found(*argv, dsa_choices, &i)) { dsa_doit[i] = 2; continue; } #endif if (strcmp(*argv, "aes") == 0) { doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; continue; } #ifndef OPENSSL_NO_CAMELLIA if (strcmp(*argv, "camellia") == 0) { doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; continue; } #endif #ifndef OPENSSL_NO_EC if (strcmp(*argv, "ecdsa") == 0) { for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) ecdsa_doit[loop] = 1; continue; } if (found(*argv, ecdsa_choices, &i)) { ecdsa_doit[i] = 2; continue; } if (strcmp(*argv, "ecdh") == 0) { for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) ecdh_doit[loop] = 1; continue; } if (found(*argv, ecdh_choices, &i)) { ecdh_doit[i] = 2; continue; } if (strcmp(*argv, "eddsa") == 0) { for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) eddsa_doit[loop] = 1; continue; } if (found(*argv, eddsa_choices, &i)) { eddsa_doit[i] = 2; continue; } #endif BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); goto end; } /* Sanity checks */ if (aead) { if (evp_cipher == NULL) { BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { BIO_printf(bio_err, "%s is not an AEAD cipher\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } } if (multiblock) { if (evp_cipher == NULL) { BIO_printf(bio_err,"-mb can be used only with a multi-block" " capable cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { BIO_printf(bio_err, "%s is not a multi-block capable\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } else if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with -mb"); goto end; } } /* Initialize the job pool if async mode is enabled */ if (async_jobs > 0) { async_init = ASYNC_init_thread(async_jobs, async_jobs); if (!async_init) { BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); goto end; } } loopargs_len = (async_jobs == 0 ? 1 : async_jobs); loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); for (i = 0; i < loopargs_len; i++) { if (async_jobs > 0) { loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); if (loopargs[i].wait_ctx == NULL) { BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); goto end; } } buflen = lengths[size_num - 1]; if (buflen < 36) /* size of random vector in RSA bencmark */ buflen = 36; buflen += MAX_MISALIGNMENT + 1; loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); memset(loopargs[i].buf_malloc, 0, buflen); memset(loopargs[i].buf2_malloc, 0, buflen); /* Align the start of buffers on a 64 byte boundary */ loopargs[i].buf = loopargs[i].buf_malloc + misalign; loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; #ifndef OPENSSL_NO_EC loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); #endif } #ifndef NO_FORK if (multi && do_multi(multi, size_num)) goto show_res; #endif /* Initialize the engine after the fork */ e = setup_engine(engine_id, 0); /* No parameters; turn on everything. */ if (argc == 0 && !doit[D_EVP] && !doit[D_EVP_HMAC]) { for (i = 0; i < ALGOR_NUM; i++) if (i != D_EVP && i != D_EVP_HMAC) doit[i] = 1; #ifndef OPENSSL_NO_RSA for (i = 0; i < RSA_NUM; i++) rsa_doit[i] = 1; #endif #ifndef OPENSSL_NO_DSA for (i = 0; i < DSA_NUM; i++) dsa_doit[i] = 1; #endif #ifndef OPENSSL_NO_EC for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) ecdsa_doit[loop] = 1; for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) ecdh_doit[loop] = 1; for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) eddsa_doit[loop] = 1; #endif } for (i = 0; i < ALGOR_NUM; i++) if (doit[i]) pr_header++; if (usertime == 0 && !mr) BIO_printf(bio_err, "You have chosen to measure elapsed time " "instead of user CPU time.\n"); #ifndef OPENSSL_NO_RSA for (i = 0; i < loopargs_len; i++) { if (primes > RSA_DEFAULT_PRIME_NUM) { /* for multi-prime RSA, skip this */ break; } for (k = 0; k < RSA_NUM; k++) { const unsigned char *p; p = rsa_data[k]; loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); if (loopargs[i].rsa_key[k] == NULL) { BIO_printf(bio_err, "internal error loading RSA key number %d\n", k); goto end; } } } #endif #ifndef OPENSSL_NO_DSA for (i = 0; i < loopargs_len; i++) { loopargs[i].dsa_key[0] = get_dsa(512); loopargs[i].dsa_key[1] = get_dsa(1024); loopargs[i].dsa_key[2] = get_dsa(2048); } #endif #ifndef OPENSSL_NO_DES DES_set_key_unchecked(&key, &sch); DES_set_key_unchecked(&key2, &sch2); DES_set_key_unchecked(&key3, &sch3); #endif AES_set_encrypt_key(key16, 128, &aes_ks1); AES_set_encrypt_key(key24, 192, &aes_ks2); AES_set_encrypt_key(key32, 256, &aes_ks3); #ifndef OPENSSL_NO_CAMELLIA Camellia_set_key(key16, 128, &camellia_ks1); Camellia_set_key(ckey24, 192, &camellia_ks2); Camellia_set_key(ckey32, 256, &camellia_ks3); #endif #ifndef OPENSSL_NO_IDEA IDEA_set_encrypt_key(key16, &idea_ks); #endif #ifndef OPENSSL_NO_SEED SEED_set_key(key16, &seed_ks); #endif #ifndef OPENSSL_NO_RC4 RC4_set_key(&rc4_ks, 16, key16); #endif #ifndef OPENSSL_NO_RC2 RC2_set_key(&rc2_ks, 16, key16, 128); #endif #ifndef OPENSSL_NO_RC5 RC5_32_set_key(&rc5_ks, 16, key16, 12); #endif #ifndef OPENSSL_NO_BF BF_set_key(&bf_ks, 16, key16); #endif #ifndef OPENSSL_NO_CAST CAST_set_key(&cast_ks, 16, key16); #endif #ifndef SIGALRM # ifndef OPENSSL_NO_DES BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); count = 10; do { long it; count *= 2; Time_F(START); for (it = count; it; it--) DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); d = Time_F(STOP); } while (d < 3); save_count = count; c[D_MD2][0] = count / 10; c[D_MDC2][0] = count / 10; c[D_MD4][0] = count; c[D_MD5][0] = count; c[D_HMAC][0] = count; c[D_SHA1][0] = count; c[D_RMD160][0] = count; c[D_RC4][0] = count * 5; c[D_CBC_DES][0] = count; c[D_EDE3_DES][0] = count / 3; c[D_CBC_IDEA][0] = count; c[D_CBC_SEED][0] = count; c[D_CBC_RC2][0] = count; c[D_CBC_RC5][0] = count; c[D_CBC_BF][0] = count; c[D_CBC_CAST][0] = count; c[D_CBC_128_AES][0] = count; c[D_CBC_192_AES][0] = count; c[D_CBC_256_AES][0] = count; c[D_CBC_128_CML][0] = count; c[D_CBC_192_CML][0] = count; c[D_CBC_256_CML][0] = count; c[D_SHA256][0] = count; c[D_SHA512][0] = count; c[D_WHIRLPOOL][0] = count; c[D_IGE_128_AES][0] = count; c[D_IGE_192_AES][0] = count; c[D_IGE_256_AES][0] = count; c[D_GHASH][0] = count; c[D_RAND][0] = count; for (i = 1; i < size_num; i++) { long l0, l1; l0 = (long)lengths[0]; l1 = (long)lengths[i]; c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1; l0 = (long)lengths[i - 1]; c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; } # ifndef OPENSSL_NO_RSA rsa_c[R_RSA_512][0] = count / 2000; rsa_c[R_RSA_512][1] = count / 400; for (i = 1; i < RSA_NUM; i++) { rsa_c[i][0] = rsa_c[i - 1][0] / 8; rsa_c[i][1] = rsa_c[i - 1][1] / 4; if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) rsa_doit[i] = 0; else { if (rsa_c[i][0] == 0) { rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ rsa_c[i][1] = 20; } } } # endif # ifndef OPENSSL_NO_DSA dsa_c[R_DSA_512][0] = count / 1000; dsa_c[R_DSA_512][1] = count / 1000 / 2; for (i = 1; i < DSA_NUM; i++) { dsa_c[i][0] = dsa_c[i - 1][0] / 4; dsa_c[i][1] = dsa_c[i - 1][1] / 4; if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) dsa_doit[i] = 0; else { if (dsa_c[i][0] == 0) { dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ dsa_c[i][1] = 1; } } } # endif # ifndef OPENSSL_NO_EC ecdsa_c[R_EC_P160][0] = count / 1000; ecdsa_c[R_EC_P160][1] = count / 1000 / 2; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } ecdsa_c[R_EC_K163][0] = count / 1000; ecdsa_c[R_EC_K163][1] = count / 1000 / 2; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } ecdsa_c[R_EC_B163][0] = count / 1000; ecdsa_c[R_EC_B163][1] = count / 1000 / 2; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } ecdh_c[R_EC_P160][0] = count / 1000; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_K163][0] = count / 1000; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_B163][0] = count / 1000; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } /* repeated code good to factorize */ ecdh_c[R_EC_BRP256R1][0] = count / 1000; for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_BRP256T1][0] = count / 1000; for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } /* default iteration count for the last two EC Curves */ ecdh_c[R_EC_X25519][0] = count / 1800; ecdh_c[R_EC_X448][0] = count / 7200; eddsa_c[R_EC_Ed25519][0] = count / 1800; eddsa_c[R_EC_Ed448][0] = count / 7200; # endif # else /* not worth fixing */ # error "You cannot disable DES on systems without SIGALRM." # endif /* OPENSSL_NO_DES */ #elif SIGALRM > 0 signal(SIGALRM, alarmed); #endif /* SIGALRM */ #ifndef OPENSSL_NO_MD2 if (doit[D_MD2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); d = Time_F(STOP); print_result(D_MD2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MDC2 if (doit[D_MDC2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); d = Time_F(STOP); print_result(D_MDC2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MD4 if (doit[D_MD4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); d = Time_F(STOP); print_result(D_MD4, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MD5 if (doit[D_MD5]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, MD5_loop, loopargs); d = Time_F(STOP); print_result(D_MD5, testnum, count, d); } } if (doit[D_HMAC]) { static const char hmac_key[] = "This is a key..."; int len = strlen(hmac_key); for (i = 0; i < loopargs_len; i++) { loopargs[i].hctx = HMAC_CTX_new(); if (loopargs[i].hctx == NULL) { BIO_printf(bio_err, "HMAC malloc failure, exiting..."); exit(1); } HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_HMAC, testnum, count, d); } for (i = 0; i < loopargs_len; i++) { HMAC_CTX_free(loopargs[i].hctx); } } #endif if (doit[D_SHA1]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA1_loop, loopargs); d = Time_F(STOP); print_result(D_SHA1, testnum, count, d); } } if (doit[D_SHA256]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA256_loop, loopargs); d = Time_F(STOP); print_result(D_SHA256, testnum, count, d); } } if (doit[D_SHA512]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA512_loop, loopargs); d = Time_F(STOP); print_result(D_SHA512, testnum, count, d); } } #ifndef OPENSSL_NO_WHIRLPOOL if (doit[D_WHIRLPOOL]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); d = Time_F(STOP); print_result(D_WHIRLPOOL, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RMD160 if (doit[D_RMD160]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); d = Time_F(STOP); print_result(D_RMD160, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC4 if (doit[D_RC4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RC4_loop, loopargs); d = Time_F(STOP); print_result(D_RC4, testnum, count, d); } } #endif #ifndef OPENSSL_NO_DES if (doit[D_CBC_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_DES, testnum, count, d); } } if (doit[D_EDE3_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_EDE3_DES, testnum, count, d); } } #endif if (doit[D_CBC_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_128_AES, testnum, count, d); } } if (doit[D_CBC_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_192_AES, testnum, count, d); } } if (doit[D_CBC_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_256_AES, testnum, count, d); } } if (doit[D_IGE_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_128_AES, testnum, count, d); } } if (doit[D_IGE_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_192_AES, testnum, count, d); } } if (doit[D_IGE_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_256_AES, testnum, count, d); } } if (doit[D_GHASH]) { for (i = 0; i < loopargs_len; i++) { loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); d = Time_F(STOP); print_result(D_GHASH, testnum, count, d); } for (i = 0; i < loopargs_len; i++) CRYPTO_gcm128_release(loopargs[i].gcm_ctx); } #ifndef OPENSSL_NO_CAMELLIA if (doit[D_CBC_128_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_128_CML]); doit[D_CBC_128_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks1, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_128_CML, testnum, count, d); } } if (doit[D_CBC_192_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_192_CML]); doit[D_CBC_192_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks2, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_192_CML, testnum, count, d); } } if (doit[D_CBC_256_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_256_CML]); doit[D_CBC_256_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks3, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_256_CML, testnum, count, d); } } #endif #ifndef OPENSSL_NO_IDEA if (doit[D_CBC_IDEA]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_IDEA]); doit[D_CBC_IDEA] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++) IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &idea_ks, iv, IDEA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_IDEA, testnum, count, d); } } #endif #ifndef OPENSSL_NO_SEED if (doit[D_CBC_SEED]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_SEED]); doit[D_CBC_SEED] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++) SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &seed_ks, iv, 1); d = Time_F(STOP); print_result(D_CBC_SEED, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC2 if (doit[D_CBC_RC2]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC2]); doit[D_CBC_RC2] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++) RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc2_ks, iv, RC2_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC5 if (doit[D_CBC_RC5]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC5]); doit[D_CBC_RC5] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++) RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc5_ks, iv, RC5_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC5, testnum, count, d); } } #endif #ifndef OPENSSL_NO_BF if (doit[D_CBC_BF]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_BF]); doit[D_CBC_BF] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++) BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &bf_ks, iv, BF_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_BF, testnum, count, d); } } #endif #ifndef OPENSSL_NO_CAST if (doit[D_CBC_CAST]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_CAST]); doit[D_CBC_CAST] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++) CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &cast_ks, iv, CAST_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_CAST, testnum, count, d); } } #endif if (doit[D_RAND]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); d = Time_F(STOP); print_result(D_RAND, testnum, count, d); } } if (doit[D_EVP]) { if (evp_cipher != NULL) { int (*loopfunc)(void *args) = EVP_Update_loop; if (multiblock && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { multiblock_speed(evp_cipher, lengths_single, &seconds); ret = 0; goto end; } names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { loopfunc = EVP_Update_loop_ccm; } else if (aead && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { loopfunc = EVP_Update_loop_aead; if (lengths == lengths_list) { lengths = aead_lengths_list; size_num = OSSL_NELEM(aead_lengths_list); } } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], save_count, lengths[testnum], seconds.sym); for (k = 0; k < loopargs_len; k++) { loopargs[k].ctx = EVP_CIPHER_CTX_new(); EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL, iv, decrypt ? 0 : 1); EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx); loopargs[k].key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, loopargs[k].key, NULL, -1); OPENSSL_clear_free(loopargs[k].key, keylen); /* SIV mode only allows for a single Update operation */ if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_SIV_MODE) EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_SET_SPEED, 1, NULL); } Time_F(START); count = run_benchmark(async_jobs, loopfunc, loopargs); d = Time_F(STOP); for (k = 0; k < loopargs_len; k++) { EVP_CIPHER_CTX_free(loopargs[k].ctx); } print_result(D_EVP, testnum, count, d); } } else if (evp_md != NULL) { names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], save_count, lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); d = Time_F(STOP); print_result(D_EVP, testnum, count, d); } } } if (doit[D_EVP_HMAC]) { if (evp_hmac_md != NULL) { const char *md_name = OBJ_nid2ln(EVP_MD_type(evp_hmac_md)); evp_hmac_name = app_malloc(sizeof("HMAC()") + strlen(md_name), "HMAC name"); sprintf(evp_hmac_name, "HMAC(%s)", md_name); names[D_EVP_HMAC] = evp_hmac_name; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP_HMAC], save_count, lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_EVP_HMAC, testnum, count, d); } } } for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #ifndef OPENSSL_NO_RSA for (testnum = 0; testnum < RSA_NUM; testnum++) { int st = 0; if (!rsa_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { if (primes > 2) { /* we haven't set keys yet, generate multi-prime RSA keys */ BIGNUM *bn = BN_new(); if (bn == NULL) goto end; if (!BN_set_word(bn, RSA_F4)) { BN_free(bn); goto end; } BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n", rsa_choices[testnum].name); loopargs[i].rsa_key[testnum] = RSA_new(); if (loopargs[i].rsa_key[testnum] == NULL) { BN_free(bn); goto end; } if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum], rsa_bits[testnum], primes, bn, NULL)) { BN_free(bn); goto end; } BN_free(bn); } st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "RSA sign failure. No RSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("private", "rsa", rsa_c[testnum][0], rsa_bits[testnum], seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" : "%ld %u bits private RSA's in %.2fs\n", count, rsa_bits[testnum], d); rsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "RSA verify failure. No RSA verify will be done.\n"); ERR_print_errors(bio_err); rsa_doit[testnum] = 0; } else { pkey_print_message("public", "rsa", rsa_c[testnum][1], rsa_bits[testnum], seconds.rsa); Time_F(START); count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" : "%ld %u bits public RSA's in %.2fs\n", count, rsa_bits[testnum], d); rsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < RSA_NUM; testnum++) rsa_doit[testnum] = 0; } } #endif /* OPENSSL_NO_RSA */ for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #ifndef OPENSSL_NO_DSA for (testnum = 0; testnum < DSA_NUM; testnum++) { int st = 0; if (!dsa_doit[testnum]) continue; /* DSA_generate_key(dsa_key[testnum]); */ /* DSA_sign_setup(dsa_key[testnum],NULL); */ for (i = 0; i < loopargs_len; i++) { st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "DSA sign failure. No DSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "dsa", dsa_c[testnum][0], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R3:%ld:%u:%.2f\n" : "%ld %u bits DSA signs in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "DSA verify failure. No DSA verify will be done.\n"); ERR_print_errors(bio_err); dsa_doit[testnum] = 0; } else { pkey_print_message("verify", "dsa", dsa_c[testnum][1], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R4:%ld:%u:%.2f\n" : "%ld %u bits DSA verify in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < DSA_NUM; testnum++) dsa_doit[testnum] = 0; } } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_EC for (testnum = 0; testnum < ECDSA_NUM; testnum++) { int st = 1; if (!ecdsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum].nid); if (loopargs[i].ecdsa[testnum] == NULL) { st = 0; break; } } if (st == 0) { BIO_printf(bio_err, "ECDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); /* Perform ECDSA signature test */ EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "ECDSA sign failure. No ECDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "ecdsa", ecdsa_c[testnum][0], test_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R5:%ld:%u:%.2f\n" : "%ld %u bits ECDSA signs in %.2fs \n", count, test_curves[testnum].bits, d); ecdsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform ECDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "ECDSA verify failure. No ECDSA verify will be done.\n"); ERR_print_errors(bio_err); ecdsa_doit[testnum] = 0; } else { pkey_print_message("verify", "ecdsa", ecdsa_c[testnum][1], test_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R6:%ld:%u:%.2f\n" : "%ld %u bits ECDSA verify in %.2fs\n", count, test_curves[testnum].bits, d); ecdsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < ECDSA_NUM; testnum++) ecdsa_doit[testnum] = 0; } } } for (testnum = 0; testnum < EC_NUM; testnum++) { int ecdh_checks = 1; if (!ecdh_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *kctx = NULL; EVP_PKEY_CTX *test_ctx = NULL; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *key_A = NULL; EVP_PKEY *key_B = NULL; size_t outlen; size_t test_outlen; /* Ensure that the error queue is empty */ if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } /* Let's try to create a ctx directly from the NID: this works for * curves like Curve25519 that are not implemented through the low * level EC interface. * If this fails we try creating a EVP_PKEY_EC generic param ctx, * then we set the curve by NID before deriving the actual keygen * ctx for that specific curve. */ kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */ if (!kctx) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *params = NULL; /* If we reach this code EVP_PKEY_CTX_new_id() failed and a * "int_ctx_new:unsupported algorithm" error was added to the * error queue. * We remove it from the error queue as we are handling it. */ unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ if (error == ERR_peek_last_error() && /* oldest and latest errors match */ /* check that the error origin matches */ ERR_GET_LIB(error) == ERR_LIB_EVP && ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW && ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) ERR_get_error(); /* pop error from queue */ if (ERR_peek_error()) { BIO_printf(bio_err, "Unhandled error in the error queue during ECDH init.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } if ( /* Create the context for parameter generation */ !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || /* Initialise the parameter generation */ !EVP_PKEY_paramgen_init(pctx) || /* Set the curve by NID */ !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, test_curves [testnum].nid) || /* Create the parameter object params */ !EVP_PKEY_paramgen(pctx, ¶ms)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH EC params init failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Create the context for the key generation */ kctx = EVP_PKEY_CTX_new(params, NULL); EVP_PKEY_free(params); params = NULL; EVP_PKEY_CTX_free(pctx); pctx = NULL; } if (kctx == NULL || /* keygen ctx is not null */ !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH keygen failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */ !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */ !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */ !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */ !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */ outlen == 0 || /* ensure outlen is a valid size */ outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH key generation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Here we perform a test run, comparing the output of a*B and b*A; * we try this here and assume that further EVP_PKEY_derive calls * never fail, so we can skip checks in the actually benchmarked * code, for maximum performance. */ if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ test_outlen != outlen /* compare output length */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ if (CRYPTO_memcmp(loopargs[i].secret_a, loopargs[i].secret_b, outlen)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computations don't match.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } loopargs[i].ecdh_ctx[testnum] = ctx; loopargs[i].outlen[testnum] = outlen; EVP_PKEY_free(key_A); EVP_PKEY_free(key_B); EVP_PKEY_CTX_free(kctx); kctx = NULL; EVP_PKEY_CTX_free(test_ctx); test_ctx = NULL; } if (ecdh_checks != 0) { pkey_print_message("", "ecdh", ecdh_c[testnum][0], test_curves[testnum].bits, seconds.ecdh); Time_F(START); count = run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R7:%ld:%d:%.2f\n" : "%ld %u-bits ECDH ops in %.2fs\n", count, test_curves[testnum].bits, d); ecdh_results[testnum][0] = (double)count / d; rsa_count = count; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++) ecdh_doit[testnum] = 0; } } for (testnum = 0; testnum < EdDSA_NUM; testnum++) { int st = 1; EVP_PKEY *ed_pkey = NULL; EVP_PKEY_CTX *ed_pctx = NULL; if (!eddsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].eddsa_ctx[testnum] == NULL) { st = 0; break; } if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL)) == NULL || !EVP_PKEY_keygen_init(ed_pctx) || !EVP_PKEY_keygen(ed_pctx, &ed_pkey)) { st = 0; EVP_PKEY_CTX_free(ed_pctx); break; } EVP_PKEY_CTX_free(ed_pctx); if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, NULL, ed_pkey)) { st = 0; EVP_PKEY_free(ed_pkey); break; } EVP_PKEY_free(ed_pkey); } if (st == 0) { BIO_printf(bio_err, "EdDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { /* Perform EdDSA signature test */ loopargs[i].sigsize = test_ed_curves[testnum].sigsize; st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "EdDSA sign failure. No EdDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", test_ed_curves[testnum].name, eddsa_c[testnum][0], test_ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R8:%ld:%u:%s:%.2f\n" : "%ld %u bits %s signs in %.2fs \n", count, test_ed_curves[testnum].bits, test_ed_curves[testnum].name, d); eddsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform EdDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "EdDSA verify failure. No EdDSA verify will be done.\n"); ERR_print_errors(bio_err); eddsa_doit[testnum] = 0; } else { pkey_print_message("verify", test_ed_curves[testnum].name, eddsa_c[testnum][1], test_ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R9:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify in %.2fs\n", count, test_ed_curves[testnum].bits, test_ed_curves[testnum].name, d); eddsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < EdDSA_NUM; testnum++) eddsa_doit[testnum] = 0; } } } #endif /* OPENSSL_NO_EC */ #ifndef NO_FORK show_res: #endif if (!mr) { printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING)); printf("built on: %s\n", OpenSSL_version(OPENSSL_BUILT_ON)); printf("options:"); printf("%s ", BN_options()); #ifndef OPENSSL_NO_MD2 printf("%s ", MD2_options()); #endif #ifndef OPENSSL_NO_RC4 printf("%s ", RC4_options()); #endif #ifndef OPENSSL_NO_DES printf("%s ", DES_options()); #endif printf("%s ", AES_options()); #ifndef OPENSSL_NO_IDEA printf("%s ", IDEA_options()); #endif #ifndef OPENSSL_NO_BF printf("%s ", BF_options()); #endif printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); } if (pr_header) { if (mr) printf("+H"); else { printf ("The 'numbers' are in 1000s of bytes per second processed.\n"); printf("type "); } for (testnum = 0; testnum < size_num; testnum++) printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); printf("\n"); } for (k = 0; k < ALGOR_NUM; k++) { if (!doit[k]) continue; if (mr) printf("+F:%u:%s", k, names[k]); else printf("%-13s", names[k]); for (testnum = 0; testnum < size_num; testnum++) { if (results[k][testnum] > 10000 && !mr) printf(" %11.2fk", results[k][testnum] / 1e3); else printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); } printf("\n"); } #ifndef OPENSSL_NO_RSA testnum = 1; for (k = 0; k < RSA_NUM; k++) { if (!rsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F2:%u:%u:%f:%f\n", k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); else printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], rsa_results[k][0], rsa_results[k][1]); } #endif #ifndef OPENSSL_NO_DSA testnum = 1; for (k = 0; k < DSA_NUM; k++) { if (!dsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F3:%u:%u:%f:%f\n", k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); else printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], dsa_results[k][0], dsa_results[k][1]); } #endif #ifndef OPENSSL_NO_EC testnum = 1; for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { if (!ecdsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F4:%u:%u:%f:%f\n", k, test_curves[k].bits, ecdsa_results[k][0], ecdsa_results[k][1]); else printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", test_curves[k].bits, test_curves[k].name, 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], ecdsa_results[k][0], ecdsa_results[k][1]); } testnum = 1; for (k = 0; k < EC_NUM; k++) { if (!ecdh_doit[k]) continue; if (testnum && !mr) { printf("%30sop op/s\n", " "); testnum = 0; } if (mr) printf("+F5:%u:%u:%f:%f\n", k, test_curves[k].bits, ecdh_results[k][0], 1.0 / ecdh_results[k][0]); else printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", test_curves[k].bits, test_curves[k].name, 1.0 / ecdh_results[k][0], ecdh_results[k][0]); } testnum = 1; for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { if (!eddsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F6:%u:%u:%s:%f:%f\n", k, test_ed_curves[k].bits, test_ed_curves[k].name, eddsa_results[k][0], eddsa_results[k][1]); else printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", test_ed_curves[k].bits, test_ed_curves[k].name, 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], eddsa_results[k][0], eddsa_results[k][1]); } #endif ret = 0; end: ERR_print_errors(bio_err); for (i = 0; i < loopargs_len; i++) { OPENSSL_free(loopargs[i].buf_malloc); OPENSSL_free(loopargs[i].buf2_malloc); #ifndef OPENSSL_NO_RSA for (k = 0; k < RSA_NUM; k++) RSA_free(loopargs[i].rsa_key[k]); #endif #ifndef OPENSSL_NO_DSA for (k = 0; k < DSA_NUM; k++) DSA_free(loopargs[i].dsa_key[k]); #endif #ifndef OPENSSL_NO_EC for (k = 0; k < ECDSA_NUM; k++) EC_KEY_free(loopargs[i].ecdsa[k]); for (k = 0; k < EC_NUM; k++) EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); for (k = 0; k < EdDSA_NUM; k++) EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); OPENSSL_free(loopargs[i].secret_a); OPENSSL_free(loopargs[i].secret_b); #endif } OPENSSL_free(evp_hmac_name); if (async_jobs > 0) { for (i = 0; i < loopargs_len; i++) ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); } if (async_init) { ASYNC_cleanup_thread(); } OPENSSL_free(loopargs); release_engine(e); return ret; } static void print_message(const char *s, long num, int length, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" : "Doing %s for %ds on %d size blocks: ", s, tm, length); (void)BIO_flush(bio_err); alarm(tm); #else BIO_printf(bio_err, mr ? "+DN:%s:%ld:%d\n" : "Doing %s %ld times on %d size blocks: ", s, num, length); (void)BIO_flush(bio_err); #endif } static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm); (void)BIO_flush(bio_err); alarm(tm); #else BIO_printf(bio_err, mr ? "+DNP:%ld:%d:%s:%s\n" : "Doing %ld %u bits %s %s's: ", num, bits, str, str2); (void)BIO_flush(bio_err); #endif } static void print_result(int alg, int run_no, int count, double time_used) { if (count == -1) { BIO_puts(bio_err, "EVP error!\n"); exit(1); } BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, names[alg], time_used); results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; } #ifndef NO_FORK static char *sstrsep(char **string, const char *delim) { char isdelim[256]; char *token = *string; if (**string == 0) return NULL; memset(isdelim, 0, sizeof(isdelim)); isdelim[0] = 1; while (*delim) { isdelim[(unsigned char)(*delim)] = 1; delim++; } while (!isdelim[(unsigned char)(**string)]) { (*string)++; } if (**string) { **string = 0; (*string)++; } return token; } static int do_multi(int multi, int size_num) { int n; int fd[2]; int *fds; static char sep[] = ":"; fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); for (n = 0; n < multi; ++n) { if (pipe(fd) == -1) { BIO_printf(bio_err, "pipe failure\n"); exit(1); } fflush(stdout); (void)BIO_flush(bio_err); if (fork()) { close(fd[1]); fds[n] = fd[0]; } else { close(fd[0]); close(1); if (dup(fd[1]) == -1) { BIO_printf(bio_err, "dup failed\n"); exit(1); } close(fd[1]); mr = 1; usertime = 0; free(fds); return 0; } printf("Forked child %d\n", n); } /* for now, assume the pipe is long enough to take all the output */ for (n = 0; n < multi; ++n) { FILE *f; char buf[1024]; char *p; f = fdopen(fds[n], "r"); while (fgets(buf, sizeof(buf), f)) { p = strchr(buf, '\n'); if (p) *p = '\0'; if (buf[0] != '+') { BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", buf, n); continue; } printf("Got: %s from %d\n", buf, n); if (strncmp(buf, "+F:", 3) == 0) { int alg; int j; p = buf + 3; alg = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); for (j = 0; j < size_num; ++j) results[alg][j] += atof(sstrsep(&p, sep)); } else if (strncmp(buf, "+F2:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); rsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][1] += d; } # ifndef OPENSSL_NO_DSA else if (strncmp(buf, "+F3:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); dsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); dsa_results[k][1] += d; } # endif # ifndef OPENSSL_NO_EC else if (strncmp(buf, "+F4:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); ecdsa_results[k][1] += d; } else if (strncmp(buf, "+F5:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdh_results[k][0] += d; } else if (strncmp(buf, "+F6:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); eddsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); eddsa_results[k][1] += d; } # endif else if (strncmp(buf, "+H:", 3) == 0) { ; } else BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); } fclose(f); } free(fds); return 1; } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds) { static const int mblengths_list[] = { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; const int *mblengths = mblengths_list; int j, count, keylen, num = OSSL_NELEM(mblengths_list); const char *alg_name; unsigned char *inp, *out, *key, no_key[32], no_iv[16]; EVP_CIPHER_CTX *ctx; double d = 0.0; if (lengths_single) { mblengths = &lengths_single; num = 1; } inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv); keylen = EVP_CIPHER_CTX_key_length(ctx); key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(ctx, key); EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); OPENSSL_clear_free(key, keylen); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); for (j = 0; j < num; j++) { print_message(alg_name, 0, mblengths[j], seconds->sym); Time_F(START); for (count = 0, run = 1; run && count < 0x7fffffff; count++) { unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; size_t len = mblengths[j]; int packlen; memset(aad, 0, 8); /* avoid uninitialized values */ aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ aad[9] = 3; /* version */ aad[10] = 2; aad[11] = 0; /* length */ aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = len; mb_param.interleave = 8; packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); if (packlen > 0) { mb_param.out = out; mb_param.inp = inp; mb_param.len = len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param); } else { int pad; RAND_bytes(out, 16); len += 16; aad[11] = (unsigned char)(len >> 8); aad[12] = (unsigned char)(len); pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, aad); EVP_Cipher(ctx, out, inp, len + pad); } } d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, "evp", d); results[D_EVP][j] = ((double)count) / d * mblengths[j]; } if (mr) { fprintf(stdout, "+H"); for (j = 0; j < num; j++) fprintf(stdout, ":%d", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); for (j = 0; j < num; j++) fprintf(stdout, ":%.2f", results[D_EVP][j]); fprintf(stdout, "\n"); } else { fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n"); fprintf(stdout, "type "); for (j = 0; j < num; j++) fprintf(stdout, "%7d bytes", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "%-24s", alg_name); for (j = 0; j < num; j++) { if (results[D_EVP][j] > 10000) fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); else fprintf(stdout, " %11.2f ", results[D_EVP][j]); } fprintf(stdout, "\n"); } OPENSSL_free(inp); OPENSSL_free(out); EVP_CIPHER_CTX_free(ctx); }