/* * * bn_mont2.c * * Montgomery Modular Arithmetic Functions. * * Copyright (C) Lenka Fibikova 2000 * * */ #include #include #include #include "bn_lcl.h" #include "bn_mont2.h" #define BN_mask_word(x, m) ((x->d[0]) & (m)) BN_MONTGOMERY *BN_mont_new() { BN_MONTGOMERY *ret; ret=(BN_MONTGOMERY *)malloc(sizeof(BN_MONTGOMERY)); if (ret == NULL) return NULL; if ((ret->p = BN_new()) == NULL) { free(ret); return NULL; } return ret; } void BN_mont_clear_free(BN_MONTGOMERY *mont) { if (mont == NULL) return; if (mont->p != NULL) BN_clear_free(mont->p); mont->p_num_bytes = 0; mont->R_num_bits = 0; mont->p_inv_b_neg = 0; } int BN_to_mont(BIGNUM *x, BN_MONTGOMERY *mont, BN_CTX *ctx) { assert(x != NULL); assert(mont != NULL); assert(mont->p != NULL); assert(ctx != NULL); if (!BN_lshift(x, x, mont->R_num_bits)) return 0; if (!BN_mod(x, x, mont->p, ctx)) return 0; return 1; } static BN_ULONG BN_mont_inv(BIGNUM *a, int e, BN_CTX *ctx) /* y = a^{-1} (mod 2^e) for an odd number a */ { BN_ULONG y, exp, mask; BIGNUM *x, *xy, *x_sh; int i; assert(a != NULL && ctx != NULL); assert(e <= BN_BITS2); assert(BN_is_odd(a)); assert(!BN_is_zero(a) && !a->neg); y = 1; exp = 2; mask = 3; if((x = BN_dup(a)) == NULL) return 0; if(!BN_mask_bits(x, e)) return 0; BN_CTX_start(ctx); xy = BN_CTX_get(ctx); x_sh = BN_CTX_get(ctx); if (x_sh == NULL) goto err; if (BN_copy(xy, x) == NULL) goto err; if (!BN_lshift1(x_sh, x)) goto err; for (i = 2; i <= e; i++) { if (exp < BN_mask_word(xy, mask)) { y = y + exp; if (!BN_add(xy, xy, x_sh)) goto err; } exp <<= 1; if (!BN_lshift1(x_sh, x_sh)) goto err; mask <<= 1; mask++; } #ifdef TEST if (xy->d[0] != 1) goto err; #endif if (x != NULL) BN_clear_free(x); BN_CTX_end(ctx); return y; err: if (x != NULL) BN_clear_free(x); BN_CTX_end(ctx); return 0; } int BN_mont_set(BIGNUM *p, BN_MONTGOMERY *mont, BN_CTX *ctx) { assert(p != NULL && ctx != NULL); assert(mont != NULL); assert(mont->p != NULL); assert(!BN_is_zero(p) && !p->neg); mont->p_num_bytes = p->top; mont->R_num_bits = (mont->p_num_bytes) * BN_BITS2; if (BN_copy(mont->p, p) == NULL); mont->p_inv_b_neg = BN_mont_inv(p, BN_BITS2, ctx); mont->p_inv_b_neg = 0 - mont->p_inv_b_neg; return 1; } #ifdef BN_LLONG #define cpy_mul_add(r, b, a, w, c) { \ BN_ULLONG t; \ t = (BN_ULLONG)w * (a) + (b) + (c); \ (r)= Lw(t); \ (c)= Hw(t); \ } BN_ULONG BN_mul_add_rshift(BN_ULONG *r, BN_ULONG *a, int num, BN_ULONG w) /* r = (r + a * w) >> BN_BITS2 */ { BN_ULONG c = 0; mul_add(r[0], a[0], w, c); if (--num == 0) return c; a++; for (;;) { cpy_mul_add(r[0], r[1], a[0], w, c); if (--num == 0) break; cpy_mul_add(r[1], r[2], a[1], w, c); if (--num == 0) break; cpy_mul_add(r[2], r[3], a[2], w, c); if (--num == 0) break; cpy_mul_add(r[3], r[4], a[3], w, c); if (--num == 0) break; a += 4; r += 4; } return c; } #else #define cpy_mul_add(r, b, a, bl, bh, c) { \ BN_ULONG l,h; \ \ h=(a); \ l=LBITS(h); \ h=HBITS(h); \ mul64(l,h,(bl),(bh)); \ \ /* non-multiply part */ \ l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ (c)=(b); \ l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ (c)=h&BN_MASK2; \ (r)=l; \ } static BN_ULONG BN_mul_add_rshift(BN_ULONG *r, BN_ULONG *a, int num, BN_ULONG w) /* ret = (ret + a * w) << shift * BN_BITS2 */ { BN_ULONG c = 0; BN_ULONG bl, bh; bl = LBITS(w); bh = HBITS(w); mul_add(r[0], a[0], bl, bh, c); if (--num == 0) return c; a++; for (;;) { cpy_mul_add(r[0], r[1], a[0], bl, bh, c); if (--num == 0) break; cpy_mul_add(r[1], r[2], a[1], bl, bh, c); if (--num == 0) break; cpy_mul_add(r[2], r[3], a[2], bl, bh, c); if (--num == 0) break; cpy_mul_add(r[3], r[4], a[3], bl, bh, c); if (--num == 0) break; a += 4; r += 4; } return c; } #endif /* BN_LLONG */ int BN_mont_red(BIGNUM *y, BN_MONTGOMERY *mont) /* yR^{-1} (mod p) */ { BIGNUM *p; BN_ULONG c; int i, max; assert(y != NULL && mont != NULL); assert(mont->p != NULL); assert(BN_cmp(y, mont->p) < 0); assert(!y->neg); if (BN_is_zero(y)) return 1; p = mont->p; max = mont->p_num_bytes; if (bn_wexpand(y, max) == NULL) return 0; for (i = y->top; i < max; i++) y->d[i] = 0; y->top = max; /* r = [r + (y_0 * p') * p] / b */ for (i = 0; i < max; i++) { c = BN_mul_add_rshift(y->d, p->d, max, ((y->d[0]) * mont->p_inv_b_neg) & BN_MASK2); y->d[max - 1] = c; } while (y->d[y->top - 1] == 0) y->top--; if (BN_cmp(y, p) >= 0) { if (!BN_sub(y, y, p)) return 0; } return 1; } int BN_mont_mod_mul(BIGNUM *r, BIGNUM *x, BIGNUM *y, BN_MONTGOMERY *mont) /* r = x * y mod p */ /* r != x && r! = y !!! */ { BN_ULONG c; BIGNUM *p; int i, j, max; assert(r != x && r != y); assert(r != NULL && x != NULL && y != NULL && mont != NULL); assert(mont->p != NULL); assert(BN_cmp(x, mont->p) < 0); assert(BN_cmp(y, mont->p) < 0); assert(!x->neg); assert(!y->neg); if (BN_is_zero(x) || BN_is_zero(y)) { if (!BN_zero(r)) return 0; return 1; } p = mont->p; max = mont->p_num_bytes; /* for multiplication we need at most max + 2 words the last one --- max + 3 --- is only as a backstop for incorrect input */ if (bn_wexpand(r, max + 3) == NULL) return 0; for (i = 0; i < max + 3; i++) r->d[i] = 0; r->top = max + 2; for (i = 0; i < x->top; i++) { /* r = r + (r_0 + x_i * y_0) * p' * p */ c = bn_mul_add_words(r->d, p->d, max, \ ((r->d[0] + x->d[i] * y->d[0]) * mont->p_inv_b_neg) & BN_MASK2); if (c) { if (((r->d[max] += c) & BN_MASK2) < c) if (((r->d[max + 1] ++) & BN_MASK2) == 0) return 0; } /* r = (r + x_i * y) / b */ c = BN_mul_add_rshift(r->d, y->d, y->top, x->d[i]); for(j = y->top; j <= max + 1; j++) r->d[j - 1] = r->d[j]; if (c) { if (((r->d[y->top - 1] += c) & BN_MASK2) < c) { j = y->top; while (((++ (r->d[j]) ) & BN_MASK2) == 0) j++; if (j > max) return 0; } } r->d[max + 1] = 0; } for (i = x->top; i < max; i++) { /* r = (r + r_0 * p' * p) / b */ c = BN_mul_add_rshift(r->d, p->d, max, ((r->d[0]) * mont->p_inv_b_neg) & BN_MASK2); j = max - 1; r->d[j] = c + r->d[max]; if (r->d[j++] < c) r->d[j] = r->d[++j] + 1; else r->d[j] = r->d[++j]; r->d[max + 1] = 0; } while (r->d[r->top - 1] == 0) r->top--; if (BN_cmp(r, mont->p) >= 0) { if (!BN_sub(r, r, mont->p)) return 0; } return 1; }