#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Hardware SPARC T4 support by David S. Miller . # ==================================================================== # MD5 for SPARCv9, 6.9 cycles per byte on UltraSPARC, >40% faster than # code generated by Sun C 5.2. # SPARC T4 MD5 hardware achieves 3.20 cycles per byte, which is 2.1x # faster than software. Multi-process benchmark saturates at 12x # single-process result on 8-core processor, or ~11GBps per 2.85GHz # socket. $output=pop; open STDOUT,">$output"; use integer; ($ctx,$inp,$len)=("%i0","%i1","%i2"); # input arguments # 64-bit values @X=("%o0","%o1","%o2","%o3","%o4","%o5","%o7","%g1","%g2"); $tx="%g3"; ($AB,$CD)=("%g4","%g5"); # 32-bit values @V=($A,$B,$C,$D)=map("%l$_",(0..3)); ($t1,$t2,$t3,$saved_asi)=map("%l$_",(4..7)); ($shr,$shl1,$shl2)=("%i3","%i4","%i5"); my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee, 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501, 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be, 0x6b901122,0xfd987193,0xa679438e,0x49b40821, 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa, 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8, 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed, 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a, 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c, 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70, 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05, 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665, 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039, 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1, 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1, 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391, 0 ); sub R0 { my ($i,$a,$b,$c,$d) = @_; my $rot = (7,12,17,22)[$i%4]; my $j = ($i+1)/2; if ($i&1) { $code.=<<___; srlx @X[$j],$shr,@X[$j] ! align X[`$i+1`] and $b,$t1,$t1 ! round $i sllx @X[$j+1],$shl1,$tx add $t2,$a,$a sllx $tx,$shl2,$tx xor $d,$t1,$t1 or $tx,@X[$j],@X[$j] sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add @X[$j],$t2,$t2 ! X[`$i+1`]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } else { $code.=<<___; srlx @X[$j],32,$tx ! extract X[`2*$j+1`] and $b,$t1,$t1 ! round $i add $t2,$a,$a xor $d,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $tx,$t2,$t2 ! X[`2*$j+1`]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } } sub R0_1 { my ($i,$a,$b,$c,$d) = @_; my $rot = (7,12,17,22)[$i%4]; $code.=<<___; srlx @X[0],32,$tx ! extract X[1] and $b,$t1,$t1 ! round $i add $t2,$a,$a xor $d,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $tx,$t2,$t2 ! X[1]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 andn $b,$c,$t1 add $t3,$a,$a ___ } sub R1 { my ($i,$a,$b,$c,$d) = @_; my $rot = (5,9,14,20)[$i%4]; my $j = $i<31 ? (1+5*($i+1))%16 : (5+3*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; and $b,$d,$t3 ! round $i add $t2,$a,$a or $t3,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 `$i<31?"andn":"xor"` $b,$c,$t1 add $t3,$a,$a ___ } sub R2 { my ($i,$a,$b,$c,$d) = @_; my $rot = (4,11,16,23)[$i%4]; my $j = $i<47 ? (5+3*($i+1))%16 : (0+7*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; add $t2,$a,$a ! round $i xor $b,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } sub R3 { my ($i,$a,$b,$c,$d) = @_; my $rot = (6,10,15,21)[$i%4]; my $j = (0+7*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___; add $t2,$a,$a ! round $i ___ $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; orn $b,$d,$t1 sethi %hi(@K[$i+1]),$t2 xor $c,$t1,$t1 or $t2,%lo(@K[$i+1]),$t2 add $t1,$a,$a sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 add $t3,$a,$a ___ } $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl md5_block_asm_data_order .align 32 md5_block_asm_data_order: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] andcc %g1, CFR_MD5, %g0 be .Lsoftware nop mov 4, %g1 andcc %o1, 0x7, %g0 lda [%o0 + %g0]0x88, %f0 ! load context lda [%o0 + %g1]0x88, %f1 add %o0, 8, %o0 lda [%o0 + %g0]0x88, %f2 lda [%o0 + %g1]0x88, %f3 bne,pn %icc, .Lhwunaligned sub %o0, 8, %o0 .Lhw_loop: ldd [%o1 + 0x00], %f8 ldd [%o1 + 0x08], %f10 ldd [%o1 + 0x10], %f12 ldd [%o1 + 0x18], %f14 ldd [%o1 + 0x20], %f16 ldd [%o1 + 0x28], %f18 ldd [%o1 + 0x30], %f20 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x38], %f22 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 .word 0x81b02800 ! MD5 bne,pt SIZE_T_CC, .Lhw_loop nop .Lhwfinish: sta %f0, [%o0 + %g0]0x88 ! store context sta %f1, [%o0 + %g1]0x88 add %o0, 8, %o0 sta %f2, [%o0 + %g0]0x88 sta %f3, [%o0 + %g1]0x88 retl nop .align 8 .Lhwunaligned: alignaddr %o1, %g0, %o1 ldd [%o1 + 0x00], %f10 .Lhwunaligned_loop: ldd [%o1 + 0x08], %f12 ldd [%o1 + 0x10], %f14 ldd [%o1 + 0x18], %f16 ldd [%o1 + 0x20], %f18 ldd [%o1 + 0x28], %f20 ldd [%o1 + 0x30], %f22 ldd [%o1 + 0x38], %f24 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x40], %f26 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 faligndata %f10, %f12, %f8 faligndata %f12, %f14, %f10 faligndata %f14, %f16, %f12 faligndata %f16, %f18, %f14 faligndata %f18, %f20, %f16 faligndata %f20, %f22, %f18 faligndata %f22, %f24, %f20 faligndata %f24, %f26, %f22 .word 0x81b02800 ! MD5 bne,pt SIZE_T_CC, .Lhwunaligned_loop for %f26, %f26, %f10 ! %f10=%f26 ba .Lhwfinish nop .align 16 .Lsoftware: save %sp,-STACK_FRAME,%sp rd %asi,$saved_asi wr %g0,0x88,%asi ! ASI_PRIMARY_LITTLE and $inp,7,$shr andn $inp,7,$inp sll $shr,3,$shr ! *=8 mov 56,$shl2 ld [$ctx+0],$A sub $shl2,$shr,$shl2 ld [$ctx+4],$B and $shl2,32,$shl1 add $shl2,8,$shl2 ld [$ctx+8],$C sub $shl2,$shl1,$shl2 ! shr+shl1+shl2==64 ld [$ctx+12],$D nop .Loop: cmp $shr,0 ! was inp aligned? ldxa [$inp+0]%asi,@X[0] ! load little-endian input ldxa [$inp+8]%asi,@X[1] ldxa [$inp+16]%asi,@X[2] ldxa [$inp+24]%asi,@X[3] ldxa [$inp+32]%asi,@X[4] sllx $A,32,$AB ! pack A,B ldxa [$inp+40]%asi,@X[5] sllx $C,32,$CD ! pack C,D ldxa [$inp+48]%asi,@X[6] or $B,$AB,$AB ldxa [$inp+56]%asi,@X[7] or $D,$CD,$CD bnz,a,pn %icc,.+8 ldxa [$inp+64]%asi,@X[8] srlx @X[0],$shr,@X[0] ! align X[0] sllx @X[1],$shl1,$tx sethi %hi(@K[0]),$t2 sllx $tx,$shl2,$tx or $t2,%lo(@K[0]),$t2 or $tx,@X[0],@X[0] xor $C,$D,$t1 add @X[0],$t2,$t2 ! X[0]+K[0] ___ for ($i=0;$i<15;$i++) { &R0($i,@V); unshift(@V,pop(@V)); } for (;$i<16;$i++) { &R0_1($i,@V); unshift(@V,pop(@V)); } for (;$i<32;$i++) { &R1($i,@V); unshift(@V,pop(@V)); } for (;$i<48;$i++) { &R2($i,@V); unshift(@V,pop(@V)); } for (;$i<64;$i++) { &R3($i,@V); unshift(@V,pop(@V)); } $code.=<<___; srlx $AB,32,$t1 ! unpack A,B,C,D and accumulate add $inp,64,$inp ! advance inp srlx $CD,32,$t2 add $t1,$A,$A subcc $len,1,$len ! done yet? add $AB,$B,$B add $t2,$C,$C add $CD,$D,$D srl $B,0,$B ! clruw $B bne SIZE_T_CC,.Loop srl $D,0,$D ! clruw $D st $A,[$ctx+0] ! write out ctx st $B,[$ctx+4] st $C,[$ctx+8] st $D,[$ctx+12] wr %g0,$saved_asi,%asi ret restore .type md5_block_asm_data_order,#function .size md5_block_asm_data_order,(.-md5_block_asm_data_order) .asciz "MD5 block transform for SPARCv9, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my $ref,$opf; my %visopf = ( "faligndata" => 0x048, "for" => 0x07c ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge; s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT;