/* * Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "crypto/poly1305.h" size_t Poly1305_ctx_size(void) { return sizeof(struct poly1305_context); } /* pick 32-bit unsigned integer in little endian order */ static unsigned int U8TOU32(const unsigned char *p) { return (((unsigned int)(p[0] & 0xff)) | ((unsigned int)(p[1] & 0xff) << 8) | ((unsigned int)(p[2] & 0xff) << 16) | ((unsigned int)(p[3] & 0xff) << 24)); } /* * Implementations can be classified by amount of significant bits in * words making up the multi-precision value, or in other words radix * or base of numerical representation, e.g. base 2^64, base 2^32, * base 2^26. Complementary characteristic is how wide is the result of * multiplication of pair of digits, e.g. it would take 128 bits to * accommodate multiplication result in base 2^64 case. These are used * interchangeably. To describe implementation that is. But interface * is designed to isolate this so that low-level primitives implemented * in assembly can be self-contained/self-coherent. */ #ifndef POLY1305_ASM /* * Even though there is __int128 reference implementation targeting * 64-bit platforms provided below, it's not obvious that it's optimal * choice for every one of them. Depending on instruction set overall * amount of instructions can be comparable to one in __int64 * implementation. Amount of multiplication instructions would be lower, * but not necessarily overall. And in out-of-order execution context, * it is the latter that can be crucial... * * On related note. Poly1305 author, D. J. Bernstein, discusses and * provides floating-point implementations of the algorithm in question. * It made a lot of sense by the time of introduction, because most * then-modern processors didn't have pipelined integer multiplier. * [Not to mention that some had non-constant timing for integer * multiplications.] Floating-point instructions on the other hand could * be issued every cycle, which allowed to achieve better performance. * Nowadays, with SIMD and/or out-or-order execution, shared or * even emulated FPU, it's more complicated, and floating-point * implementation is not necessarily optimal choice in every situation, * rather contrary... * * */ typedef unsigned int u32; /* * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks * of |inp| no longer than |len|. Behaviour for |len| not divisible by * block size is unspecified in general case, even though in reference * implementation the trailing chunk is simply ignored. Per algorithm * specification, every input block, complete or last partial, is to be * padded with a bit past most significant byte. The latter kind is then * padded with zeros till block size. This last partial block padding * is caller(*)'s responsibility, and because of this the last partial * block is always processed with separate call with |len| set to * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| * should be set to 1 to perform implicit padding with 128th bit. * poly1305_blocks does not actually check for this constraint though, * it's caller(*)'s responsibility to comply. * * (*) In the context "caller" is not application code, but higher * level Poly1305_* from this very module, so that quirks are * handled locally. */ static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); /* * Type-agnostic "rip-off" from constant_time.h */ # define CONSTANT_TIME_CARRY(a,b) ( \ (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ ) # if defined(INT64_MAX) && defined(INT128_MAX) typedef unsigned long u64; typedef uint128_t u128; typedef struct { u64 h[3]; u64 r[2]; } poly1305_internal; /* pick 32-bit unsigned integer in little endian order */ static u64 U8TOU64(const unsigned char *p) { return (((u64)(p[0] & 0xff)) | ((u64)(p[1] & 0xff) << 8) | ((u64)(p[2] & 0xff) << 16) | ((u64)(p[3] & 0xff) << 24) | ((u64)(p[4] & 0xff) << 32) | ((u64)(p[5] & 0xff) << 40) | ((u64)(p[6] & 0xff) << 48) | ((u64)(p[7] & 0xff) << 56)); } /* store a 32-bit unsigned integer in little endian */ static void U64TO8(unsigned char *p, u64 v) { p[0] = (unsigned char)((v) & 0xff); p[1] = (unsigned char)((v >> 8) & 0xff); p[2] = (unsigned char)((v >> 16) & 0xff); p[3] = (unsigned char)((v >> 24) & 0xff); p[4] = (unsigned char)((v >> 32) & 0xff); p[5] = (unsigned char)((v >> 40) & 0xff); p[6] = (unsigned char)((v >> 48) & 0xff); p[7] = (unsigned char)((v >> 56) & 0xff); } static void poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; } static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) { poly1305_internal *st = (poly1305_internal *)ctx; u64 r0, r1; u64 s1; u64 h0, h1, h2, c; u128 d0, d1; r0 = st->r[0]; r1 = st->r[1]; s1 = r1 + (r1 >> 2); h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; while (len >= POLY1305_BLOCK_SIZE) { /* h += m[i] */ h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); /* * padbit can be zero only when original len was * POLY1305_BLOCK_SIZE, but we don't check */ h2 += (u64)(d1 >> 64) + padbit; /* h *= r "%" p, where "%" stands for "partial remainder" */ d0 = ((u128)h0 * r0) + ((u128)h1 * s1); d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + (h2 * s1); h2 = (h2 * r0); /* last reduction step: */ /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ h0 = (u64)d0; h1 = (u64)(d1 += d0 >> 64); h2 += (u64)(d1 >> 64); /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ c = (h2 >> 2) + (h2 & ~3UL); h2 &= 3; h0 += c; h1 += (c = CONSTANT_TIME_CARRY(h0,c)); h2 += CONSTANT_TIME_CARRY(h1,c); /* * Occasional overflows to 3rd bit of h2 are taken care of * "naturally". If after this point we end up at the top of * this loop, then the overflow bit will be accounted for * in next iteration. If we end up in poly1305_emit, then * comparison to modulus below will still count as "carry * into 131st bit", so that properly reduced value will be * picked in conditional move. */ inp += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; } static void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u64 h0, h1, h2; u64 g0, g1, g2; u128 t; u64 mask; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; /* compare to modulus by computing h + -p */ g0 = (u64)(t = (u128)h0 + 5); g1 = (u64)(t = (u128)h1 + (t >> 64)); g2 = h2 + (u64)(t >> 64); /* if there was carry into 131st bit, h1:h0 = g1:g0 */ mask = 0 - (g2 >> 2); g0 &= mask; g1 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; /* mac = (h + nonce) % (2^128) */ h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); U64TO8(mac + 0, h0); U64TO8(mac + 8, h1); } # else # if defined(_WIN32) && !defined(__MINGW32__) typedef unsigned __int64 u64; # elif defined(__arch64__) typedef unsigned long u64; # else typedef unsigned long long u64; # endif typedef struct { u32 h[5]; u32 r[4]; } poly1305_internal; /* store a 32-bit unsigned integer in little endian */ static void U32TO8(unsigned char *p, unsigned int v) { p[0] = (unsigned char)((v) & 0xff); p[1] = (unsigned char)((v >> 8) & 0xff); p[2] = (unsigned char)((v >> 16) & 0xff); p[3] = (unsigned char)((v >> 24) & 0xff); } static void poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; st->h[3] = 0; st->h[4] = 0; /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; } static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) { poly1305_internal *st = (poly1305_internal *)ctx; u32 r0, r1, r2, r3; u32 s1, s2, s3; u32 h0, h1, h2, h3, h4, c; u64 d0, d1, d2, d3; r0 = st->r[0]; r1 = st->r[1]; r2 = st->r[2]; r3 = st->r[3]; s1 = r1 + (r1 >> 2); s2 = r2 + (r2 >> 2); s3 = r3 + (r3 >> 2); h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; while (len >= POLY1305_BLOCK_SIZE) { /* h += m[i] */ h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); h4 += (u32)(d3 >> 32) + padbit; /* h *= r "%" p, where "%" stands for "partial remainder" */ d0 = ((u64)h0 * r0) + ((u64)h1 * s3) + ((u64)h2 * s2) + ((u64)h3 * s1); d1 = ((u64)h0 * r1) + ((u64)h1 * r0) + ((u64)h2 * s3) + ((u64)h3 * s2) + (h4 * s1); d2 = ((u64)h0 * r2) + ((u64)h1 * r1) + ((u64)h2 * r0) + ((u64)h3 * s3) + (h4 * s2); d3 = ((u64)h0 * r3) + ((u64)h1 * r2) + ((u64)h2 * r1) + ((u64)h3 * r0) + (h4 * s3); h4 = (h4 * r0); /* last reduction step: */ /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ h0 = (u32)d0; h1 = (u32)(d1 += d0 >> 32); h2 = (u32)(d2 += d1 >> 32); h3 = (u32)(d3 += d2 >> 32); h4 += (u32)(d3 >> 32); /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ c = (h4 >> 2) + (h4 & ~3U); h4 &= 3; h0 += c; h1 += (c = CONSTANT_TIME_CARRY(h0,c)); h2 += (c = CONSTANT_TIME_CARRY(h1,c)); h3 += (c = CONSTANT_TIME_CARRY(h2,c)); h4 += CONSTANT_TIME_CARRY(h3,c); /* * Occasional overflows to 3rd bit of h4 are taken care of * "naturally". If after this point we end up at the top of * this loop, then the overflow bit will be accounted for * in next iteration. If we end up in poly1305_emit, then * comparison to modulus below will still count as "carry * into 131st bit", so that properly reduced value will be * picked in conditional move. */ inp += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; st->h[3] = h3; st->h[4] = h4; } static void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u32 h0, h1, h2, h3, h4; u32 g0, g1, g2, g3, g4; u64 t; u32 mask; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; /* compare to modulus by computing h + -p */ g0 = (u32)(t = (u64)h0 + 5); g1 = (u32)(t = (u64)h1 + (t >> 32)); g2 = (u32)(t = (u64)h2 + (t >> 32)); g3 = (u32)(t = (u64)h3 + (t >> 32)); g4 = h4 + (u32)(t >> 32); /* if there was carry into 131st bit, h3:h0 = g3:g0 */ mask = 0 - (g4 >> 2); g0 &= mask; g1 &= mask; g2 &= mask; g3 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; h2 = (h2 & mask) | g2; h3 = (h3 & mask) | g3; /* mac = (h + nonce) % (2^128) */ h0 = (u32)(t = (u64)h0 + nonce[0]); h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); U32TO8(mac + 0, h0); U32TO8(mac + 4, h1); U32TO8(mac + 8, h2); U32TO8(mac + 12, h3); } # endif #else int poly1305_init(void *ctx, const unsigned char key[16], void *func); void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, unsigned int padbit); void poly1305_emit(void *ctx, unsigned char mac[16], const unsigned int nonce[4]); #endif void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) { ctx->nonce[0] = U8TOU32(&key[16]); ctx->nonce[1] = U8TOU32(&key[20]); ctx->nonce[2] = U8TOU32(&key[24]); ctx->nonce[3] = U8TOU32(&key[28]); #ifndef POLY1305_ASM poly1305_init(ctx->opaque, key); #else /* * Unlike reference poly1305_init assembly counterpart is expected * to return a value: non-zero if it initializes ctx->func, and zero * otherwise. Latter is to simplify assembly in cases when there no * multiple code paths to switch between. */ if (!poly1305_init(ctx->opaque, key, &ctx->func)) { ctx->func.blocks = poly1305_blocks; ctx->func.emit = poly1305_emit; } #endif ctx->num = 0; } #ifdef POLY1305_ASM /* * This "eclipses" poly1305_blocks and poly1305_emit, but it's * conscious choice imposed by -Wshadow compiler warnings. */ # define poly1305_blocks (*poly1305_blocks_p) # define poly1305_emit (*poly1305_emit_p) #endif void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) { #ifdef POLY1305_ASM /* * As documented, poly1305_blocks is never called with input * longer than single block and padbit argument set to 0. This * property is fluently used in assembly modules to optimize * padbit handling on loop boundary. */ poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; #endif size_t rem, num; if ((num = ctx->num)) { rem = POLY1305_BLOCK_SIZE - num; if (len >= rem) { memcpy(ctx->data + num, inp, rem); poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); inp += rem; len -= rem; } else { /* Still not enough data to process a block. */ memcpy(ctx->data + num, inp, len); ctx->num = num + len; return; } } rem = len % POLY1305_BLOCK_SIZE; len -= rem; if (len >= POLY1305_BLOCK_SIZE) { poly1305_blocks(ctx->opaque, inp, len, 1); inp += len; } if (rem) memcpy(ctx->data, inp, rem); ctx->num = rem; } void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) { #ifdef POLY1305_ASM poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; poly1305_emit_f poly1305_emit_p = ctx->func.emit; #endif size_t num; if ((num = ctx->num)) { ctx->data[num++] = 1; /* pad bit */ while (num < POLY1305_BLOCK_SIZE) ctx->data[num++] = 0; poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); } poly1305_emit(ctx->opaque, mac, ctx->nonce); /* zero out the state */ OPENSSL_cleanse(ctx, sizeof(*ctx)); }