1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include "internal/cryptlib.h"
#include "bn_lcl.h"
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
/*
* Here follows specialised variants of bn_add_words() and bn_sub_words().
* They have the property performing operations on arrays of different sizes.
* The sizes of those arrays is expressed through cl, which is the common
* length ( basically, min(len(a),len(b)) ), and dl, which is the delta
* between the two lengths, calculated as len(a)-len(b). All lengths are the
* number of BN_ULONGs... For the operations that require a result array as
* parameter, it must have the length cl+abs(dl). These functions should
* probably end up in bn_asm.c as soon as there are assembler counterparts
* for the systems that use assembler files.
*/
BN_ULONG bn_sub_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, t;
assert(cl >= 0);
c = bn_sub_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0) {
for (;;) {
t = b[0];
r[0] = (0 - t - c) & BN_MASK2;
if (t != 0)
c = 1;
if (++dl >= 0)
break;
t = b[1];
r[1] = (0 - t - c) & BN_MASK2;
if (t != 0)
c = 1;
if (++dl >= 0)
break;
t = b[2];
r[2] = (0 - t - c) & BN_MASK2;
if (t != 0)
c = 1;
if (++dl >= 0)
break;
t = b[3];
r[3] = (0 - t - c) & BN_MASK2;
if (t != 0)
c = 1;
if (++dl >= 0)
break;
b += 4;
r += 4;
}
} else {
int save_dl = dl;
while (c) {
t = a[0];
r[0] = (t - c) & BN_MASK2;
if (t != 0)
c = 0;
if (--dl <= 0)
break;
t = a[1];
r[1] = (t - c) & BN_MASK2;
if (t != 0)
c = 0;
if (--dl <= 0)
break;
t = a[2];
r[2] = (t - c) & BN_MASK2;
if (t != 0)
c = 0;
if (--dl <= 0)
break;
t = a[3];
r[3] = (t - c) & BN_MASK2;
if (t != 0)
c = 0;
if (--dl <= 0)
break;
save_dl = dl;
a += 4;
r += 4;
}
if (dl > 0) {
if (save_dl > dl) {
switch (save_dl - dl) {
case 1:
r[1] = a[1];
if (--dl <= 0)
break;
/* fall thru */
case 2:
r[2] = a[2];
if (--dl <= 0)
break;
/* fall thru */
case 3:
r[3] = a[3];
if (--dl <= 0)
break;
}
a += 4;
r += 4;
}
}
if (dl > 0) {
for (;;) {
r[0] = a[0];
if (--dl <= 0)
break;
r[1] = a[1];
if (--dl <= 0)
break;
r[2] = a[2];
if (--dl <= 0)
break;
r[3] = a[3];
if (--dl <= 0)
break;
a += 4;
r += 4;
}
}
}
return c;
}
#endif
#ifdef BN_RECURSION
/*
* Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
* Computer Programming, Vol. 2)
*/
/*-
* r is 2*n2 words in size,
* a and b are both n2 words in size.
* n2 must be a power of 2.
* We multiply and return the result.
* t must be 2*n2 words in size
* We calculate
* a[0]*b[0]
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
* a[1]*b[1]
*/
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t)
{
int n = n2 / 2, c1, c2;
int tna = n + dna, tnb = n + dnb;
unsigned int neg, zero;
BN_ULONG ln, lo, *p;
# ifdef BN_MUL_COMBA
# if 0
if (n2 == 4) {
bn_mul_comba4(r, a, b);
return;
}
# endif
/*
* Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
* [steve]
*/
if (n2 == 8 && dna == 0 && dnb == 0) {
bn_mul_comba8(r, a, b);
return;
}
# endif /* BN_MUL_COMBA */
/* Else do normal multiply */
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
if ((dna + dnb) < 0)
memset(&r[2 * n2 + dna + dnb], 0,
sizeof(BN_ULONG) * -(dna + dnb));
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
zero = neg = 0;
switch (c1 * 3 + c2) {
case -4:
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
break;
case -3:
zero = 1;
break;
case -2:
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
neg = 1;
break;
case -1:
case 0:
case 1:
zero = 1;
break;
case 2:
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
neg = 1;
break;
case 3:
zero = 1;
break;
case 4:
bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
break;
}
# ifdef BN_MUL_COMBA
if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
* extra args to do this well */
if (!zero)
bn_mul_comba4(&(t[n2]), t, &(t[n]));
else
memset(&t[n2], 0, sizeof(*t) * 8);
bn_mul_comba4(r, a, b);
bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
} else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
* take extra args to do
* this well */
if (!zero)
bn_mul_comba8(&(t[n2]), t, &(t[n]));
else
memset(&t[n2], 0, sizeof(*t) * 16);
bn_mul_comba8(r, a, b);
bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
} else
# endif /* BN_MUL_COMBA */
{
p = &(t[n2 * 2]);
if (!zero)
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
else
memset(&t[n2], 0, sizeof(*t) * n2);
bn_mul_recursive(r, a, b, n, 0, 0, p);
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
}
/*-
* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
if (neg) { /* if t[32] is negative */
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
} else {
/* Might have a carry */
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
}
/*-
* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
* c1 holds the carry bits
*/
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
if (c1) {
p = &(r[n + n2]);
lo = *p;
ln = (lo + c1) & BN_MASK2;
*p = ln;
/*
* The overflow will stop before we over write words we should not
* overwrite
*/
if (ln < (BN_ULONG)c1) {
do {
p++;
lo = *p;
ln = (lo + 1) & BN_MASK2;
*p = ln;
} while (ln == 0);
}
}
}
/*
* n+tn is the word length t needs to be n*4 is size, as does r
*/
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
int tna, int tnb, BN_ULONG *t)
{
int i, j, n2 = n * 2;
int c1, c2, neg;
BN_ULONG ln, lo, *p;
if (n < 8) {
bn_mul_normal(r, a, n + tna, b, n + tnb);
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
neg = 0;
switch (c1 * 3 + c2) {
case -4:
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
break;
case -3:
case -2:
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
neg = 1;
break;
case -1:
case 0:
case 1:
case 2:
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
neg = 1;
break;
case 3:
case 4:
bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
break;
}
/*
* The zero case isn't yet implemented here. The speedup would probably
* be negligible.
*/
# if 0
if (n == 4) {
bn_mul_comba4(&(t[n2]), t, &(t[n]));
bn_mul_comba4(r, a, b);
bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
} else
# endif
if (n == 8) {
bn_mul_comba8(&(t[n2]), t, &(t[n]));
bn_mul_comba8(r, a, b);
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
} else {
p = &(t[n2 * 2]);
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
bn_mul_recursive(r, a, b, n, 0, 0, p);
i = n / 2;
/*
* If there is only a bottom half to the number, just do it
*/
if (tna > tnb)
j = tna - i;
else
j = tnb - i;
if (j == 0) {
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
i, tna - i, tnb - i, p);
memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
} else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
i, tna - i, tnb - i, p);
memset(&(r[n2 + tna + tnb]), 0,
sizeof(BN_ULONG) * (n2 - tna - tnb));
} else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
memset(&r[n2], 0, sizeof(*r) * n2);
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
} else {
for (;;) {
i /= 2;
/*
* these simplified conditions work exclusively because
* difference between tna and tnb is 1 or 0
*/
if (i < tna || i < tnb) {
bn_mul_part_recursive(&(r[n2]),
&(a[n]), &(b[n]),
i, tna - i, tnb - i, p);
break;
} else if (i == tna || i == tnb) {
bn_mul_recursive(&(r[n2]),
&(a[n]), &(b[n]),
i, tna - i, tnb - i, p);
break;
}
}
}
}
}
/*-
* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
if (neg) { /* if t[32] is negative */
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
} else {
/* Might have a carry */
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
}
/*-
* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
* c1 holds the carry bits
*/
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
if (c1) {
p = &(r[n + n2]);
lo = *p;
ln = (lo + c1) & BN_MASK2;
*p = ln;
/*
* The overflow will stop before we over write words we should not
* overwrite
*/
if (ln < (BN_ULONG)c1) {
do {
p++;
lo = *p;
ln = (lo + 1) & BN_MASK2;
*p = ln;
} while (ln == 0);
}
}
}
/*-
* a and b must be the same size, which is n2.
* r needs to be n2 words and t needs to be n2*2
*/
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
BN_ULONG *t)
{
int n = n2 / 2;
bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
} else {
bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
}
}
#endif /* BN_RECURSION */
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = bn_mul_fixed_top(r, a, b, ctx);
bn_correct_top(r);
bn_check_top(r);
return ret;
}
int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
int top, al, bl;
BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
int i;
#endif
#ifdef BN_RECURSION
BIGNUM *t = NULL;
int j = 0, k;
#endif
bn_check_top(a);
bn_check_top(b);
bn_check_top(r);
al = a->top;
bl = b->top;
if ((al == 0) || (bl == 0)) {
BN_zero(r);
return 1;
}
top = al + bl;
BN_CTX_start(ctx);
if ((r == a) || (r == b)) {
if ((rr = BN_CTX_get(ctx)) == NULL)
goto err;
} else
rr = r;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
i = al - bl;
#endif
#ifdef BN_MUL_COMBA
if (i == 0) {
# if 0
if (al == 4) {
if (bn_wexpand(rr, 8) == NULL)
goto err;
rr->top = 8;
bn_mul_comba4(rr->d, a->d, b->d);
goto end;
}
# endif
if (al == 8) {
if (bn_wexpand(rr, 16) == NULL)
goto err;
rr->top = 16;
bn_mul_comba8(rr->d, a->d, b->d);
goto end;
}
}
#endif /* BN_MUL_COMBA */
#ifdef BN_RECURSION
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
if (i >= -1 && i <= 1) {
/*
* Find out the power of two lower or equal to the longest of the
* two numbers
*/
if (i >= 0) {
j = BN_num_bits_word((BN_ULONG)al);
}
if (i == -1) {
j = BN_num_bits_word((BN_ULONG)bl);
}
j = 1 << (j - 1);
assert(j <= al || j <= bl);
k = j + j;
t = BN_CTX_get(ctx);
if (t == NULL)
goto err;
if (al > j || bl > j) {
if (bn_wexpand(t, k * 4) == NULL)
goto err;
if (bn_wexpand(rr, k * 4) == NULL)
goto err;
bn_mul_part_recursive(rr->d, a->d, b->d,
j, al - j, bl - j, t->d);
} else { /* al <= j || bl <= j */
if (bn_wexpand(t, k * 2) == NULL)
goto err;
if (bn_wexpand(rr, k * 2) == NULL)
goto err;
bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
}
rr->top = top;
goto end;
}
}
#endif /* BN_RECURSION */
if (bn_wexpand(rr, top) == NULL)
goto err;
rr->top = top;
bn_mul_normal(rr->d, a->d, al, b->d, bl);
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
end:
#endif
rr->neg = a->neg ^ b->neg;
rr->flags |= BN_FLG_FIXED_TOP;
if (r != rr && BN_copy(r, rr) == NULL)
goto err;
ret = 1;
err:
bn_check_top(r);
BN_CTX_end(ctx);
return ret;
}
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
{
BN_ULONG *rr;
if (na < nb) {
int itmp;
BN_ULONG *ltmp;
itmp = na;
na = nb;
nb = itmp;
ltmp = a;
a = b;
b = ltmp;
}
rr = &(r[na]);
if (nb <= 0) {
(void)bn_mul_words(r, a, na, 0);
return;
} else
rr[0] = bn_mul_words(r, a, na, b[0]);
for (;;) {
if (--nb <= 0)
return;
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
if (--nb <= 0)
return;
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
if (--nb <= 0)
return;
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
if (--nb <= 0)
return;
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
rr += 4;
r += 4;
b += 4;
}
}
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
{
bn_mul_words(r, a, n, b[0]);
for (;;) {
if (--n <= 0)
return;
bn_mul_add_words(&(r[1]), a, n, b[1]);
if (--n <= 0)
return;
bn_mul_add_words(&(r[2]), a, n, b[2]);
if (--n <= 0)
return;
bn_mul_add_words(&(r[3]), a, n, b[3]);
if (--n <= 0)
return;
bn_mul_add_words(&(r[4]), a, n, b[4]);
r += 4;
b += 4;
}
}
|