summaryrefslogtreecommitdiffstats
path: root/crypto/bn/bn_prime.c
blob: 579a386fbf83b034a7104ece9960be684cd8e908 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include "bn_local.h"

/*
 * The quick sieve algorithm approach to weeding out primes is Philip
 * Zimmermann's, as implemented in PGP.  I have had a read of his comments
 * and implemented my own version.
 */
#include "bn_prime.h"

static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
                          BN_CTX *ctx);
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
                             const BIGNUM *add, const BIGNUM *rem,
                             BN_CTX *ctx);
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
                           int do_trial_division, BN_GENCB *cb);

#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))

#if BN_BITS2 == 64
# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
#else
# define BN_DEF(lo, hi) lo, hi
#endif

/*
 * See SP800 89 5.3.3 (Step f)
 * The product of the set of primes ranging from 3 to 751
 * Generated using process in test/bn_internal_test.c test_bn_small_factors().
 * This includes 751 (which is not currently included in SP 800-89).
 */
static const BN_ULONG small_prime_factors[] = {
    BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
    BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
    BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
    BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
    BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
    BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
    BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
    BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
    (BN_ULONG)0x000017b1
};

#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
static const BIGNUM _bignum_small_prime_factors = {
    (BN_ULONG *)small_prime_factors,
    BN_SMALL_PRIME_FACTORS_TOP,
    BN_SMALL_PRIME_FACTORS_TOP,
    0,
    BN_FLG_STATIC_DATA
};

const BIGNUM *bn_get0_small_factors(void)
{
    return &_bignum_small_prime_factors;
}

/*
 * Calculate the number of trial divisions that gives the best speed in
 * combination with Miller-Rabin prime test, based on the sized of the prime.
 */
static int calc_trial_divisions(int bits)
{
    if (bits <= 512)
        return 64;
    else if (bits <= 1024)
        return 128;
    else if (bits <= 2048)
        return 384;
    else if (bits <= 4096)
        return 1024;
    return NUMPRIMES;
}

/*
 * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
 * positive rate of 2^-128. If the size of the prime is larger than 2048
 * the user probably wants a higher security level than 128, so switch
 * to 128 rounds giving a false positive rate of 2^-256.
 * Returns the number of rounds.
 */
static int bn_mr_min_checks(int bits)
{
    if (bits > 2048)
        return 128;
    return 64;
}

int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
    /* No callback means continue */
    if (!cb)
        return 1;
    switch (cb->ver) {
    case 1:
        /* Deprecated-style callbacks */
        if (!cb->cb.cb_1)
            return 1;
        cb->cb.cb_1(a, b, cb->arg);
        return 1;
    case 2:
        /* New-style callbacks */
        return cb->cb.cb_2(a, b, cb);
    default:
        break;
    }
    /* Unrecognised callback type */
    return 0;
}

int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
                          const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
                          BN_CTX *ctx)
{
    BIGNUM *t;
    int found = 0;
    int i, j, c1 = 0;
    prime_t *mods = NULL;
    int checks = bn_mr_min_checks(bits);

    if (bits < 2) {
        /* There are no prime numbers this small. */
        BNerr(BN_F_BN_GENERATE_PRIME_EX2, BN_R_BITS_TOO_SMALL);
        return 0;
    } else if (add == NULL && safe && bits < 6 && bits != 3) {
        /*
         * The smallest safe prime (7) is three bits.
         * But the following two safe primes with less than 6 bits (11, 23)
         * are unreachable for BN_rand with BN_RAND_TOP_TWO.
         */
        BNerr(BN_F_BN_GENERATE_PRIME_EX2, BN_R_BITS_TOO_SMALL);
        return 0;
    }

    mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
    if (mods == NULL)
        goto err;

    BN_CTX_start(ctx);
    t = BN_CTX_get(ctx);
    if (t == NULL)
        goto err;
 loop:
    /* make a random number and set the top and bottom bits */
    if (add == NULL) {
        if (!probable_prime(ret, bits, safe, mods, ctx))
            goto err;
    } else {
        if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
            goto err;
    }

    if (!BN_GENCB_call(cb, 0, c1++))
        /* aborted */
        goto err;

    if (!safe) {
        i = bn_is_prime_int(ret, checks, ctx, 0, cb);
        if (i == -1)
            goto err;
        if (i == 0)
            goto loop;
    } else {
        /*
         * for "safe prime" generation, check that (p-1)/2 is prime. Since a
         * prime is odd, We just need to divide by 2
         */
        if (!BN_rshift1(t, ret))
            goto err;

        for (i = 0; i < checks; i++) {
            j = bn_is_prime_int(ret, 1, ctx, 0, cb);
            if (j == -1)
                goto err;
            if (j == 0)
                goto loop;

            j = bn_is_prime_int(t, 1, ctx, 0, cb);
            if (j == -1)
                goto err;
            if (j == 0)
                goto loop;

            if (!BN_GENCB_call(cb, 2, c1 - 1))
                goto err;
            /* We have a safe prime test pass */
        }
    }
    /* we have a prime :-) */
    found = 1;
 err:
    OPENSSL_free(mods);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return found;
}

#ifndef FIPS_MODULE
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
                         const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
{
    BN_CTX *ctx = BN_CTX_new();
    int retval;

    if (ctx == NULL)
        return 0;

    retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);

    BN_CTX_free(ctx);
    return retval;
}
#endif

#ifndef OPENSSL_NO_DEPRECATED_3_0
int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
                   BN_GENCB *cb)
{
    return bn_check_prime_int(a, checks, ctx_passed, 0, cb);
}

int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
                            int do_trial_division, BN_GENCB *cb)
{
    return bn_check_prime_int(w, checks, ctx, do_trial_division, cb);
}
#endif

/* Wrapper around bn_is_prime_int that sets the minimum number of checks */
int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
                       int do_trial_division, BN_GENCB *cb)
{
    int min_checks = bn_mr_min_checks(BN_num_bits(w));

    if (checks < min_checks)
        checks = min_checks;

    return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
}

int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
{
    return bn_check_prime_int(p, 0, ctx, 1, cb);
}

/*
 * Tests that |w| is probably prime
 * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
 *
 * Returns 0 when composite, 1 when probable prime, -1 on error.
 */
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
                           int do_trial_division, BN_GENCB *cb)
{
    int i, status, ret = -1;
#ifndef FIPS_MODULE
    BN_CTX *ctxlocal = NULL;
#else

    if (ctx == NULL)
        return -1;
#endif

    /* w must be bigger than 1 */
    if (BN_cmp(w, BN_value_one()) <= 0)
        return 0;

    /* w must be odd */
    if (BN_is_odd(w)) {
        /* Take care of the really small prime 3 */
        if (BN_is_word(w, 3))
            return 1;
    } else {
        /* 2 is the only even prime */
        return BN_is_word(w, 2);
    }

    /* first look for small factors */
    if (do_trial_division) {
        int trial_divisions = calc_trial_divisions(BN_num_bits(w));

        for (i = 1; i < trial_divisions; i++) {
            BN_ULONG mod = BN_mod_word(w, primes[i]);
            if (mod == (BN_ULONG)-1)
                return -1;
            if (mod == 0)
                return BN_is_word(w, primes[i]);
        }
        if (!BN_GENCB_call(cb, 1, -1))
            return -1;
    }
#ifndef FIPS_MODULE
    if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
        goto err;
#endif

    ret = bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status);
    if (!ret)
        goto err;
    ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
err:
#ifndef FIPS_MODULE
    BN_CTX_free(ctxlocal);
#endif
    return ret;
}

/*
 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
 * The Step numbers listed in the code refer to the enhanced case.
 *
 * if enhanced is set, then status returns one of the following:
 *     BN_PRIMETEST_PROBABLY_PRIME
 *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
 *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
 * if enhanced is zero, then status returns either
 *     BN_PRIMETEST_PROBABLY_PRIME or
 *     BN_PRIMETEST_COMPOSITE
 *
 * returns 0 if there was an error, otherwise it returns 1.
 */
int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
                             BN_GENCB *cb, int enhanced, int *status)
{
    int i, j, a, ret = 0;
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
    BN_MONT_CTX *mont = NULL;

    /* w must be odd */
    if (!BN_is_odd(w))
        return 0;

    BN_CTX_start(ctx);
    g = BN_CTX_get(ctx);
    w1 = BN_CTX_get(ctx);
    w3 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    m = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);

    if (!(b != NULL
            /* w1 := w - 1 */
            && BN_copy(w1, w)
            && BN_sub_word(w1, 1)
            /* w3 := w - 3 */
            && BN_copy(w3, w)
            && BN_sub_word(w3, 3)))
        goto err;

    /* check w is larger than 3, otherwise the random b will be too small */
    if (BN_is_zero(w3) || BN_is_negative(w3))
        goto err;

    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
    a = 1;
    while (!BN_is_bit_set(w1, a))
        a++;
    /* (Step 2) m = (w-1) / 2^a */
    if (!BN_rshift(m, w1, a))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
        goto err;

    if (iterations == 0)
        iterations = bn_mr_min_checks(BN_num_bits(w));

    /* (Step 4) */
    for (i = 0; i < iterations; ++i) {
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
        if (!BN_priv_rand_range_ex(b, w3, ctx)
                || !BN_add_word(b, 2)) /* 1 < b < w-1 */
            goto err;

        if (enhanced) {
            /* (Step 4.3) */
            if (!BN_gcd(g, b, w, ctx))
                goto err;
            /* (Step 4.4) */
            if (!BN_is_one(g)) {
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
                ret = 1;
                goto err;
            }
        }
        /* (Step 4.5) z = b^m mod w */
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
            goto err;
        /* (Step 4.6) if (z = 1 or z = w-1) */
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
            goto outer_loop;
        /* (Step 4.7) for j = 1 to a-1 */
        for (j = 1; j < a ; ++j) {
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
                goto err;
            /* (Step 4.7.3) */
            if (BN_cmp(z, w1) == 0)
                goto outer_loop;
            /* (Step 4.7.4) */
            if (BN_is_one(z))
                goto composite;
        }
        /* At this point z = b^((w-1)/2) mod w */
        /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
        if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
            goto err;
        /* (Step 4.10) */
        if (BN_is_one(z))
            goto composite;
        /* (Step 4.11) x = b^(w-1) mod w */
        if (!BN_copy(x, z))
            goto err;
composite:
        if (enhanced) {
            /* (Step 4.1.2) g = GCD(x-1, w) */
            if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
                goto err;
            /* (Steps 4.1.3 - 4.1.4) */
            if (BN_is_one(g))
                *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
            else
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
        } else {
            *status = BN_PRIMETEST_COMPOSITE;
        }
        ret = 1;
        goto err;
outer_loop: ;
        /* (Step 4.1.5) */
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    /* (Step 5) */
    *status = BN_PRIMETEST_PROBABLY_PRIME;
    ret = 1;
err:
    BN_clear(g);
    BN_clear(w1);
    BN_clear(w3);
    BN_clear(x);
    BN_clear(m);
    BN_clear(z);
    BN_clear(b);
    BN_CTX_end(ctx);
    BN_MONT_CTX_free(mont);
    return ret;
}

/*
 * Generate a random number of |bits| bits that is probably prime by sieving.
 * If |safe| != 0, it generates a safe prime.
 * |mods| is a preallocated array that gets reused when called again.
 *
 * The probably prime is saved in |rnd|.
 *
 * Returns 1 on success and 0 on error.
 */
static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
                          BN_CTX *ctx)
{
    int i;
    BN_ULONG delta;
    int trial_divisions = calc_trial_divisions(bits);
    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];

 again:
    /* TODO: Not all primes are private */
    if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, ctx))
        return 0;
    if (safe && !BN_set_bit(rnd, 1))
        return 0;
    /* we now have a random number 'rnd' to test. */
    for (i = 1; i < trial_divisions; i++) {
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
        if (mod == (BN_ULONG)-1)
            return 0;
        mods[i] = (prime_t) mod;
    }
    delta = 0;
 loop:
    for (i = 1; i < trial_divisions; i++) {
        /*
         * check that rnd is a prime and also that
         * gcd(rnd-1,primes) == 1 (except for 2)
         * do the second check only if we are interested in safe primes
         * in the case that the candidate prime is a single word then
         * we check only the primes up to sqrt(rnd)
         */
        if (bits <= 31 && delta <= 0x7fffffff
                && square(primes[i]) > BN_get_word(rnd) + delta)
            break;
        if (safe ? (mods[i] + delta) % primes[i] <= 1
                 : (mods[i] + delta) % primes[i] == 0) {
            delta += safe ? 4 : 2;
            if (delta > maxdelta)
                goto again;
            goto loop;
        }
    }
    if (!BN_add_word(rnd, delta))
        return 0;
    if (BN_num_bits(rnd) != bits)
        goto again;
    bn_check_top(rnd);
    return 1;
}

/*
 * Generate a random number |rnd| of |bits| bits that is probably prime
 * and satisfies |rnd| % |add| == |rem| by sieving.
 * If |safe| != 0, it generates a safe prime.
 * |mods| is a preallocated array that gets reused when called again.
 *
 * Returns 1 on success and 0 on error.
 */
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
                             const BIGNUM *add, const BIGNUM *rem,
                             BN_CTX *ctx)
{
    int i, ret = 0;
    BIGNUM *t1;
    BN_ULONG delta;
    int trial_divisions = calc_trial_divisions(bits);
    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];

    BN_CTX_start(ctx);
    if ((t1 = BN_CTX_get(ctx)) == NULL)
        goto err;

    if (maxdelta > BN_MASK2 - BN_get_word(add))
        maxdelta = BN_MASK2 - BN_get_word(add);

 again:
    if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, ctx))
        goto err;

    /* we need ((rnd-rem) % add) == 0 */

    if (!BN_mod(t1, rnd, add, ctx))
        goto err;
    if (!BN_sub(rnd, rnd, t1))
        goto err;
    if (rem == NULL) {
        if (!BN_add_word(rnd, safe ? 3u : 1u))
            goto err;
    } else {
        if (!BN_add(rnd, rnd, rem))
            goto err;
    }

    if (BN_num_bits(rnd) < bits
            || BN_get_word(rnd) < (safe ? 5u : 3u)) {
        if (!BN_add(rnd, rnd, add))
            goto err;
    }

    /* we now have a random number 'rnd' to test. */
    for (i = 1; i < trial_divisions; i++) {
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
        if (mod == (BN_ULONG)-1)
            goto err;
        mods[i] = (prime_t) mod;
    }
    delta = 0;
 loop:
    for (i = 1; i < trial_divisions; i++) {
        /* check that rnd is a prime */
        if (bits <= 31 && delta <= 0x7fffffff
                && square(primes[i]) > BN_get_word(rnd) + delta)
            break;
        /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
        if (safe ? (mods[i] + delta) % primes[i] <= 1
                 : (mods[i] + delta) % primes[i] == 0) {
            delta += BN_get_word(add);
            if (delta > maxdelta)
                goto again;
            goto loop;
        }
    }
    if (!BN_add_word(rnd, delta))
        goto err;
    ret = 1;

 err:
    BN_CTX_end(ctx);
    bn_check_top(rnd);
    return ret;
}