1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
/*
* Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2015-2016 Cryptography Research, Inc.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Mike Hamburg
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include "curve448_lcl.h"
#include "word.h"
#include "ed448.h"
#include "internal/numbers.h"
#define COFACTOR 4
static c448_error_t oneshot_hash(OPENSSL_CTX *ctx, uint8_t *out, size_t outlen,
const uint8_t *in, size_t inlen)
{
EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
EVP_MD *shake256 = NULL;
c448_error_t ret = C448_FAILURE;
if (hashctx == NULL)
return C448_FAILURE;
shake256 = EVP_MD_fetch(ctx, "SHAKE256", NULL);
if (shake256 == NULL)
goto err;
if (!EVP_DigestInit_ex(hashctx, shake256, NULL)
|| !EVP_DigestUpdate(hashctx, in, inlen)
|| !EVP_DigestFinalXOF(hashctx, out, outlen))
goto err;
ret = C448_SUCCESS;
err:
EVP_MD_CTX_free(hashctx);
EVP_MD_free(shake256);
return ret;
}
static void clamp(uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES])
{
secret_scalar_ser[0] &= -COFACTOR;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] = 0;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 2] |= 0x80;
}
static c448_error_t hash_init_with_dom(OPENSSL_CTX *ctx, EVP_MD_CTX *hashctx,
uint8_t prehashed,
uint8_t for_prehash,
const uint8_t *context,
size_t context_len)
{
const char *dom_s = "SigEd448";
uint8_t dom[2];
EVP_MD *shake256 = NULL;
if (context_len > UINT8_MAX)
return C448_FAILURE;
dom[0] = (uint8_t)(2 - (prehashed == 0 ? 1 : 0)
- (for_prehash == 0 ? 1 : 0));
dom[1] = (uint8_t)context_len;
shake256 = EVP_MD_fetch(ctx, "SHAKE256", NULL);
if (shake256 == NULL)
return C448_FAILURE;
if (!EVP_DigestInit_ex(hashctx, shake256, NULL)
|| !EVP_DigestUpdate(hashctx, dom_s, strlen(dom_s))
|| !EVP_DigestUpdate(hashctx, dom, sizeof(dom))
|| !EVP_DigestUpdate(hashctx, context, context_len)) {
EVP_MD_free(shake256);
return C448_FAILURE;
}
EVP_MD_free(shake256);
return C448_SUCCESS;
}
/* In this file because it uses the hash */
c448_error_t c448_ed448_convert_private_key_to_x448(
OPENSSL_CTX *ctx,
uint8_t x[X448_PRIVATE_BYTES],
const uint8_t ed [EDDSA_448_PRIVATE_BYTES])
{
/* pass the private key through oneshot_hash function */
/* and keep the first X448_PRIVATE_BYTES bytes */
return oneshot_hash(ctx, x, X448_PRIVATE_BYTES, ed,
EDDSA_448_PRIVATE_BYTES);
}
c448_error_t c448_ed448_derive_public_key(
OPENSSL_CTX *ctx,
uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES])
{
/* only this much used for keygen */
uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES];
curve448_scalar_t secret_scalar;
unsigned int c;
curve448_point_t p;
if (!oneshot_hash(ctx, secret_scalar_ser, sizeof(secret_scalar_ser),
privkey,
EDDSA_448_PRIVATE_BYTES))
return C448_FAILURE;
clamp(secret_scalar_ser);
curve448_scalar_decode_long(secret_scalar, secret_scalar_ser,
sizeof(secret_scalar_ser));
/*
* Since we are going to mul_by_cofactor during encoding, divide by it
* here. However, the EdDSA base point is not the same as the decaf base
* point if the sigma isogeny is in use: the EdDSA base point is on
* Etwist_d/(1-d) and the decaf base point is on Etwist_d, and when
* converted it effectively picks up a factor of 2 from the isogenies. So
* we might start at 2 instead of 1.
*/
for (c = 1; c < C448_EDDSA_ENCODE_RATIO; c <<= 1)
curve448_scalar_halve(secret_scalar, secret_scalar);
curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar);
curve448_point_mul_by_ratio_and_encode_like_eddsa(pubkey, p);
/* Cleanup */
curve448_scalar_destroy(secret_scalar);
curve448_point_destroy(p);
OPENSSL_cleanse(secret_scalar_ser, sizeof(secret_scalar_ser));
return C448_SUCCESS;
}
c448_error_t c448_ed448_sign(
OPENSSL_CTX *ctx,
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
size_t context_len)
{
curve448_scalar_t secret_scalar;
EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
c448_error_t ret = C448_FAILURE;
curve448_scalar_t nonce_scalar;
uint8_t nonce_point[EDDSA_448_PUBLIC_BYTES] = { 0 };
unsigned int c;
curve448_scalar_t challenge_scalar;
if (hashctx == NULL)
return C448_FAILURE;
{
/*
* Schedule the secret key, First EDDSA_448_PRIVATE_BYTES is serialised
* secret scalar,next EDDSA_448_PRIVATE_BYTES bytes is the seed.
*/
uint8_t expanded[EDDSA_448_PRIVATE_BYTES * 2];
if (!oneshot_hash(ctx, expanded, sizeof(expanded), privkey,
EDDSA_448_PRIVATE_BYTES))
goto err;
clamp(expanded);
curve448_scalar_decode_long(secret_scalar, expanded,
EDDSA_448_PRIVATE_BYTES);
/* Hash to create the nonce */
if (!hash_init_with_dom(ctx, hashctx, prehashed, 0, context,
context_len)
|| !EVP_DigestUpdate(hashctx,
expanded + EDDSA_448_PRIVATE_BYTES,
EDDSA_448_PRIVATE_BYTES)
|| !EVP_DigestUpdate(hashctx, message, message_len)) {
OPENSSL_cleanse(expanded, sizeof(expanded));
goto err;
}
OPENSSL_cleanse(expanded, sizeof(expanded));
}
/* Decode the nonce */
{
uint8_t nonce[2 * EDDSA_448_PRIVATE_BYTES];
if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce)))
goto err;
curve448_scalar_decode_long(nonce_scalar, nonce, sizeof(nonce));
OPENSSL_cleanse(nonce, sizeof(nonce));
}
{
/* Scalarmul to create the nonce-point */
curve448_scalar_t nonce_scalar_2;
curve448_point_t p;
curve448_scalar_halve(nonce_scalar_2, nonce_scalar);
for (c = 2; c < C448_EDDSA_ENCODE_RATIO; c <<= 1)
curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2);
curve448_precomputed_scalarmul(p, curve448_precomputed_base,
nonce_scalar_2);
curve448_point_mul_by_ratio_and_encode_like_eddsa(nonce_point, p);
curve448_point_destroy(p);
curve448_scalar_destroy(nonce_scalar_2);
}
{
uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES];
/* Compute the challenge */
if (!hash_init_with_dom(ctx, hashctx, prehashed, 0, context, context_len)
|| !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point))
|| !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, message, message_len)
|| !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge)))
goto err;
curve448_scalar_decode_long(challenge_scalar, challenge,
sizeof(challenge));
OPENSSL_cleanse(challenge, sizeof(challenge));
}
curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar);
curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar);
OPENSSL_cleanse(signature, EDDSA_448_SIGNATURE_BYTES);
memcpy(signature, nonce_point, sizeof(nonce_point));
curve448_scalar_encode(&signature[EDDSA_448_PUBLIC_BYTES],
challenge_scalar);
curve448_scalar_destroy(secret_scalar);
curve448_scalar_destroy(nonce_scalar);
curve448_scalar_destroy(challenge_scalar);
ret = C448_SUCCESS;
err:
EVP_MD_CTX_free(hashctx);
return ret;
}
c448_error_t c448_ed448_sign_prehash(
OPENSSL_CTX *ctx,
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64], const uint8_t *context,
size_t context_len)
{
return c448_ed448_sign(ctx, signature, privkey, pubkey, hash, 64, 1,
context, context_len);
}
c448_error_t c448_ed448_verify(
OPENSSL_CTX *ctx,
const uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
uint8_t context_len)
{
curve448_point_t pk_point, r_point;
c448_error_t error;
curve448_scalar_t challenge_scalar;
curve448_scalar_t response_scalar;
/* Order in little endian format */
static const uint8_t order[] = {
0xF3, 0x44, 0x58, 0xAB, 0x92, 0xC2, 0x78, 0x23, 0x55, 0x8F, 0xC5, 0x8D,
0x72, 0xC2, 0x6C, 0x21, 0x90, 0x36, 0xD6, 0xAE, 0x49, 0xDB, 0x4E, 0xC4,
0xE9, 0x23, 0xCA, 0x7C, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00
};
int i;
/*
* Check that s (second 57 bytes of the sig) is less than the order. Both
* s and the order are in little-endian format. This can be done in
* variable time, since if this is not the case the signature if publicly
* invalid.
*/
for (i = EDDSA_448_PUBLIC_BYTES - 1; i >= 0; i--) {
if (signature[i + EDDSA_448_PUBLIC_BYTES] > order[i])
return C448_FAILURE;
if (signature[i + EDDSA_448_PUBLIC_BYTES] < order[i])
break;
}
if (i < 0)
return C448_FAILURE;
error =
curve448_point_decode_like_eddsa_and_mul_by_ratio(pk_point, pubkey);
if (C448_SUCCESS != error)
return error;
error =
curve448_point_decode_like_eddsa_and_mul_by_ratio(r_point, signature);
if (C448_SUCCESS != error)
return error;
{
/* Compute the challenge */
EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES];
if (hashctx == NULL
|| !hash_init_with_dom(ctx, hashctx, prehashed, 0, context,
context_len)
|| !EVP_DigestUpdate(hashctx, signature, EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, message, message_len)
|| !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) {
EVP_MD_CTX_free(hashctx);
return C448_FAILURE;
}
EVP_MD_CTX_free(hashctx);
curve448_scalar_decode_long(challenge_scalar, challenge,
sizeof(challenge));
OPENSSL_cleanse(challenge, sizeof(challenge));
}
curve448_scalar_sub(challenge_scalar, curve448_scalar_zero,
challenge_scalar);
curve448_scalar_decode_long(response_scalar,
&signature[EDDSA_448_PUBLIC_BYTES],
EDDSA_448_PRIVATE_BYTES);
/* pk_point = -c(x(P)) + (cx + k)G = kG */
curve448_base_double_scalarmul_non_secret(pk_point,
response_scalar,
pk_point, challenge_scalar);
return c448_succeed_if(curve448_point_eq(pk_point, r_point));
}
c448_error_t c448_ed448_verify_prehash(
OPENSSL_CTX *ctx,
const uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64], const uint8_t *context,
uint8_t context_len)
{
return c448_ed448_verify(ctx, signature, pubkey, hash, 64, 1, context,
context_len);
}
int ED448_sign(OPENSSL_CTX *ctx, uint8_t *out_sig, const uint8_t *message,
size_t message_len, const uint8_t public_key[57],
const uint8_t private_key[57], const uint8_t *context,
size_t context_len)
{
return c448_ed448_sign(ctx, out_sig, private_key, public_key, message,
message_len, 0, context, context_len)
== C448_SUCCESS;
}
int ED448_verify(OPENSSL_CTX *ctx, const uint8_t *message, size_t message_len,
const uint8_t signature[114], const uint8_t public_key[57],
const uint8_t *context, size_t context_len)
{
return c448_ed448_verify(ctx, signature, public_key, message, message_len,
0, context, (uint8_t)context_len) == C448_SUCCESS;
}
int ED448ph_sign(OPENSSL_CTX *ctx, uint8_t *out_sig, const uint8_t hash[64],
const uint8_t public_key[57], const uint8_t private_key[57],
const uint8_t *context, size_t context_len)
{
return c448_ed448_sign_prehash(ctx, out_sig, private_key, public_key, hash,
context, context_len) == C448_SUCCESS;
}
int ED448ph_verify(OPENSSL_CTX *ctx, const uint8_t hash[64],
const uint8_t signature[114], const uint8_t public_key[57],
const uint8_t *context, size_t context_len)
{
return c448_ed448_verify_prehash(ctx, signature, public_key, hash, context,
(uint8_t)context_len) == C448_SUCCESS;
}
int ED448_public_from_private(OPENSSL_CTX *ctx, uint8_t out_public_key[57],
const uint8_t private_key[57])
{
return c448_ed448_derive_public_key(ctx, out_public_key, private_key)
== C448_SUCCESS;
}
|