summaryrefslogtreecommitdiffstats
path: root/crypto/kdf/sskdf.c
blob: 916a06e5a1ebbbcc72b89d22c0cd9e6cb3619263 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
 * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2019, Oracle and/or its affiliates.  All rights reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
 * Section 4.1.
 *
 * The Single Step KDF algorithm is given by:
 *
 * Result(0) = empty bit string (i.e., the null string).
 * For i = 1 to reps, do the following:
 *   Increment counter by 1.
 *   Result(i) = Result(i - 1) || H(counter || Z || FixedInfo).
 * DKM = LeftmostBits(Result(reps), L))
 *
 * NOTES:
 *   Z is a shared secret required to produce the derived key material.
 *   counter is a 4 byte buffer.
 *   FixedInfo is a bit string containing context specific data.
 *   DKM is the output derived key material.
 *   L is the required size of the DKM.
 *   reps = [L / H_outputBits]
 *   H(x) is the auxiliary function that can be either a hash, HMAC or KMAC.
 *   H_outputBits is the length of the output of the auxiliary function H(x).
 *
 * Currently there is not a comprehensive list of test vectors for this
 * algorithm, especially for H(x) = HMAC and H(x) = KMAC.
 * Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests.
 */
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include "internal/cryptlib.h"
#include "internal/evp_int.h"
#include "kdf_local.h"

struct evp_kdf_impl_st {
    EVP_MAC *mac;       /* H(x) = HMAC_hash OR H(x) = KMAC */
    const EVP_MD *md;   /* H(x) = hash OR when H(x) = HMAC_hash */
    unsigned char *secret;
    size_t secret_len;
    unsigned char *info;
    size_t info_len;
    unsigned char *salt;
    size_t salt_len;
    size_t out_len; /* optional KMAC parameter */
};

#define SSKDF_MAX_INLEN (1<<30)
#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4)
#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4)

/* KMAC uses a Customisation string of 'KDF' */
static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 };

/*
 * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
 * Section 4. One-Step Key Derivation using H(x) = hash(x)
 * Note: X9.63 also uses this code with the only difference being that the
 * counter is appended to the secret 'z'.
 * i.e.
 *   result[i] = Hash(counter || z || info) for One Step OR
 *   result[i] = Hash(z || counter || info) for X9.63.
 */
static int SSKDF_hash_kdm(const EVP_MD *kdf_md,
                          const unsigned char *z, size_t z_len,
                          const unsigned char *info, size_t info_len,
                          unsigned int append_ctr,
                          unsigned char *derived_key, size_t derived_key_len)
{
    int ret = 0, hlen;
    size_t counter, out_len, len = derived_key_len;
    unsigned char c[4];
    unsigned char mac[EVP_MAX_MD_SIZE];
    unsigned char *out = derived_key;
    EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;

    if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
            || derived_key_len > SSKDF_MAX_INLEN
            || derived_key_len == 0)
        return 0;

    hlen = EVP_MD_size(kdf_md);
    if (hlen <= 0)
        return 0;
    out_len = (size_t)hlen;

    ctx = EVP_MD_CTX_create();
    ctx_init = EVP_MD_CTX_create();
    if (ctx == NULL || ctx_init == NULL)
        goto end;

    if (!EVP_DigestInit(ctx_init, kdf_md))
        goto end;

    for (counter = 1;; counter++) {
        c[0] = (unsigned char)((counter >> 24) & 0xff);
        c[1] = (unsigned char)((counter >> 16) & 0xff);
        c[2] = (unsigned char)((counter >> 8) & 0xff);
        c[3] = (unsigned char)(counter & 0xff);

        if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init)
                && (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
                && EVP_DigestUpdate(ctx, z, z_len)
                && (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
                && EVP_DigestUpdate(ctx, info, info_len)))
            goto end;
        if (len >= out_len) {
            if (!EVP_DigestFinal_ex(ctx, out, NULL))
                goto end;
            out += out_len;
            len -= out_len;
            if (len == 0)
                break;
        } else {
            if (!EVP_DigestFinal_ex(ctx, mac, NULL))
                goto end;
            memcpy(out, mac, len);
            break;
        }
    }
    ret = 1;
end:
    EVP_MD_CTX_destroy(ctx);
    EVP_MD_CTX_destroy(ctx_init);
    OPENSSL_cleanse(mac, sizeof(mac));
    return ret;
}

static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom,
                     size_t custom_len, size_t kmac_out_len,
                     size_t derived_key_len, unsigned char **out)
{
    OSSL_PARAM params[2];

    /* Only KMAC has custom data - so return if not KMAC */
    if (custom == NULL)
        return 1;

    params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
                                                  (void *)custom, custom_len);
    params[1] = OSSL_PARAM_construct_end();

    if (!EVP_MAC_CTX_set_params(ctx, params))
        return 0;

    /* By default only do one iteration if kmac_out_len is not specified */
    if (kmac_out_len == 0)
        kmac_out_len = derived_key_len;
    /* otherwise check the size is valid */
    else if (!(kmac_out_len == derived_key_len
            || kmac_out_len == 20
            || kmac_out_len == 28
            || kmac_out_len == 32
            || kmac_out_len == 48
            || kmac_out_len == 64))
        return 0;

    params[0] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE,
                                            &kmac_out_len);

    if (EVP_MAC_CTX_set_params(ctx, params) <= 0)
        return 0;

    /*
     * For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so
     * alloc a buffer for this case.
     */
    if (kmac_out_len > EVP_MAX_MD_SIZE) {
        *out = OPENSSL_zalloc(kmac_out_len);
        if (*out == NULL)
            return 0;
    }
    return 1;
}

/*
 * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
 * Section 4. One-Step Key Derivation using MAC: i.e either
 *     H(x) = HMAC-hash(salt, x) OR
 *     H(x) = KMAC#(salt, x, outbits, CustomString='KDF')
 */
static int SSKDF_mac_kdm(EVP_MAC *kdf_mac, const EVP_MD *hmac_md,
                         const unsigned char *kmac_custom,
                         size_t kmac_custom_len, size_t kmac_out_len,
                         const unsigned char *salt, size_t salt_len,
                         const unsigned char *z, size_t z_len,
                         const unsigned char *info, size_t info_len,
                         unsigned char *derived_key, size_t derived_key_len)
{
    int ret = 0;
    size_t counter, out_len, len;
    unsigned char c[4];
    unsigned char mac_buf[EVP_MAX_MD_SIZE];
    unsigned char *out = derived_key;
    EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL;
    unsigned char *mac = mac_buf, *kmac_buffer = NULL;
    OSSL_PARAM params[3];
    size_t params_n = 0;

    if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
            || derived_key_len > SSKDF_MAX_INLEN
            || derived_key_len == 0)
        return 0;

    ctx_init = EVP_MAC_CTX_new(kdf_mac);
    if (ctx_init == NULL)
        goto end;

    if (hmac_md != NULL) {
        const char *mdname = EVP_MD_name(hmac_md);
        params[params_n++] =
            OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
                                             (char *)mdname,
                                             strlen(mdname) + 1);
    }
    params[params_n++] =
        OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)salt,
                                          salt_len);
    params[params_n] = OSSL_PARAM_construct_end();

    if (!EVP_MAC_CTX_set_params(ctx_init, params))
        goto end;

    if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len,
                   derived_key_len, &kmac_buffer))
        goto end;
    if (kmac_buffer != NULL)
        mac = kmac_buffer;

    if (!EVP_MAC_init(ctx_init))
        goto end;

    out_len = EVP_MAC_size(ctx_init); /* output size */
    if (out_len <= 0)
        goto end;
    len = derived_key_len;

    for (counter = 1;; counter++) {
        c[0] = (unsigned char)((counter >> 24) & 0xff);
        c[1] = (unsigned char)((counter >> 16) & 0xff);
        c[2] = (unsigned char)((counter >> 8) & 0xff);
        c[3] = (unsigned char)(counter & 0xff);

        ctx = EVP_MAC_CTX_dup(ctx_init);
        if (!(ctx != NULL
                && EVP_MAC_update(ctx, c, sizeof(c))
                && EVP_MAC_update(ctx, z, z_len)
                && EVP_MAC_update(ctx, info, info_len)))
            goto end;
        if (len >= out_len) {
            if (!EVP_MAC_final(ctx, out, NULL, len))
                goto end;
            out += out_len;
            len -= out_len;
            if (len == 0)
                break;
        } else {
            if (!EVP_MAC_final(ctx, mac, NULL, len))
                goto end;
            memcpy(out, mac, len);
            break;
        }
        EVP_MAC_CTX_free(ctx);
        ctx = NULL;
    }
    ret = 1;
end:
    if (kmac_buffer != NULL)
        OPENSSL_clear_free(kmac_buffer, kmac_out_len);
    else
        OPENSSL_cleanse(mac_buf, sizeof(mac_buf));

    EVP_MAC_CTX_free(ctx);
    EVP_MAC_CTX_free(ctx_init);
    return ret;
}

static EVP_KDF_IMPL *sskdf_new(void)
{
    EVP_KDF_IMPL *impl;

    if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
        KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE);
    return impl;
}

static void sskdf_reset(EVP_KDF_IMPL *impl)
{
    OPENSSL_clear_free(impl->secret, impl->secret_len);
    OPENSSL_clear_free(impl->info, impl->info_len);
    OPENSSL_clear_free(impl->salt, impl->salt_len);
    EVP_MAC_free(impl->mac);
#if 0                    /* TODO(3.0) When we switch to fetched MDs */
    EVP_MD_meth_free(impl->md);
#endif
    memset(impl, 0, sizeof(*impl));
}

static void sskdf_free(EVP_KDF_IMPL *impl)
{
    sskdf_reset(impl);
    OPENSSL_free(impl);
}

static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
{
    const unsigned char *p;
    size_t len;

    p = va_arg(args, const unsigned char *);
    len = va_arg(args, size_t);
    if (len == 0 || p == NULL)
        return 1;

    OPENSSL_free(*out);
    *out = OPENSSL_memdup(p, len);
    if (*out == NULL)
        return 0;

    *out_len = len;
    return 1;
}

static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
{
    const EVP_MD *md;

    switch (cmd) {
    case EVP_KDF_CTRL_SET_KEY:
        return sskdf_set_buffer(args, &impl->secret, &impl->secret_len);

    case EVP_KDF_CTRL_SET_SSKDF_INFO:
        return sskdf_set_buffer(args, &impl->info, &impl->info_len);

    case EVP_KDF_CTRL_SET_MD:
        md = va_arg(args, const EVP_MD *);
        if (md == NULL)
            return 0;

#if 0                    /* TODO(3.0) When we switch to fetched MDs */
        EVP_MD_meth_free(impl->md);
#endif
        impl->md = md;
        return 1;

    case EVP_KDF_CTRL_SET_MAC:
        {
            const char *name;
            EVP_MAC *mac;

            name = va_arg(args, const char *);
            if (name == NULL)
                return 0;

            EVP_MAC_free(impl->mac);
            impl->mac = NULL;

            /*
             * TODO(3.0) add support for OPENSSL_CTX and properties in KDFs
             */
            mac = EVP_MAC_fetch(NULL, name, NULL);
            if (mac == NULL)
                return 0;

            impl->mac = mac;
            return 1;
        }
    case EVP_KDF_CTRL_SET_SALT:
        return sskdf_set_buffer(args, &impl->salt, &impl->salt_len);

    case EVP_KDF_CTRL_SET_MAC_SIZE:
        impl->out_len = va_arg(args, size_t);
        return 1;

    default:
        return -2;
    }
}

static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
                          const char *value)
{
    if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
         return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
                             value);

    if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
        return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
                            value);

    if (strcmp(type, "info") == 0)
        return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
                            value);

    if (strcmp(type, "hexinfo") == 0)
        return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
                            value);

    if (strcmp(type, "digest") == 0)
        return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value);

    if (strcmp(type, "mac") == 0)
        return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value);

    if (strcmp(type, "salt") == 0)
        return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);

    if (strcmp(type, "hexsalt") == 0)
        return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);


    if (strcmp(type, "maclen") == 0) {
        int val = atoi(value);
        if (val < 0) {
            KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR);
            return 0;
        }
        return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE,
                         (size_t)val);
    }
    return -2;
}

static size_t sskdf_size(EVP_KDF_IMPL *impl)
{
    int len;

    if (impl->md == NULL) {
        KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
        return 0;
    }
    len = EVP_MD_size(impl->md);
    return (len <= 0) ? 0 : (size_t)len;
}

static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
{
    if (impl->secret == NULL) {
        KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET);
        return 0;
    }

    if (impl->mac != NULL) {
        /* H(x) = KMAC or H(x) = HMAC */
        int ret;
        const unsigned char *custom = NULL;
        size_t custom_len = 0;
        const char *macname;
        int default_salt_len;

        /*
         * TODO(3.0) investigate the necessity to have all these controls.
         * Why does KMAC require a salt length that's shorter than the MD
         * block size?
         */
        macname = EVP_MAC_name(impl->mac);
        if (strcmp(macname, OSSL_MAC_NAME_HMAC) == 0) {
            /* H(x) = HMAC(x, salt, hash) */
            if (impl->md == NULL) {
                KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
                return 0;
            }
            default_salt_len = EVP_MD_block_size(impl->md);
            if (default_salt_len <= 0)
                return 0;
        } else if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0
                   || strcmp(macname, OSSL_MAC_NAME_KMAC256) == 0) {
            /* H(x) = KMACzzz(x, salt, custom) */
            custom = kmac_custom_str;
            custom_len = sizeof(kmac_custom_str);
            if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0)
                default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE;
            else
                default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE;
        } else {
            KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE);
            return 0;
        }
        /* If no salt is set then use a default_salt of zeros */
        if (impl->salt == NULL || impl->salt_len <= 0) {
            impl->salt = OPENSSL_zalloc(default_salt_len);
            if (impl->salt == NULL) {
                KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE);
                return 0;
            }
            impl->salt_len = default_salt_len;
        }
        ret = SSKDF_mac_kdm(impl->mac, impl->md,
                            custom, custom_len, impl->out_len,
                            impl->salt, impl->salt_len,
                            impl->secret, impl->secret_len,
                            impl->info, impl->info_len, key, keylen);
        return ret;
    } else {
        /* H(x) = hash */
        if (impl->md == NULL) {
            KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
            return 0;
        }
        return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
                              impl->info, impl->info_len, 0, key, keylen);
    }
}

static int x963kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
{
    if (impl->secret == NULL) {
        KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_SECRET);
        return 0;
    }

    if (impl->mac != NULL) {
        KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_NOT_SUPPORTED);
        return 0;
    } else {
        /* H(x) = hash */
        if (impl->md == NULL) {
            KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
            return 0;
        }
        return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
                              impl->info, impl->info_len, 1, key, keylen);
    }
}

const EVP_KDF ss_kdf_meth = {
    EVP_KDF_SS,
    sskdf_new,
    sskdf_free,
    sskdf_reset,
    sskdf_ctrl,
    sskdf_ctrl_str,
    sskdf_size,
    sskdf_derive
};

const EVP_KDF x963_kdf_meth = {
    EVP_KDF_X963,
    sskdf_new,
    sskdf_free,
    sskdf_reset,
    sskdf_ctrl,
    sskdf_ctrl_str,
    sskdf_size,
    x963kdf_derive
};