1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
/*
* Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "crypto/modes.h"
#ifndef OPENSSL_NO_OCB
/*
* Calculate the number of binary trailing zero's in any given number
*/
static u32 ocb_ntz(u64 n)
{
u32 cnt = 0;
/*
* We do a right-to-left simple sequential search. This is surprisingly
* efficient as the distribution of trailing zeros is not uniform,
* e.g. the number of possible inputs with no trailing zeros is equal to
* the number with 1 or more; the number with exactly 1 is equal to the
* number with 2 or more, etc. Checking the last two bits covers 75% of
* all numbers. Checking the last three covers 87.5%
*/
while (!(n & 1)) {
n >>= 1;
cnt++;
}
return cnt;
}
/*
* Shift a block of 16 bytes left by shift bits
*/
static void ocb_block_lshift(const unsigned char *in, size_t shift,
unsigned char *out)
{
int i;
unsigned char carry = 0, carry_next;
for (i = 15; i >= 0; i--) {
carry_next = in[i] >> (8 - shift);
out[i] = (in[i] << shift) | carry;
carry = carry_next;
}
}
/*
* Perform a "double" operation as per OCB spec
*/
static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
{
unsigned char mask;
/*
* Calculate the mask based on the most significant bit. There are more
* efficient ways to do this - but this way is constant time
*/
mask = in->c[0] & 0x80;
mask >>= 7;
mask = (0 - mask) & 0x87;
ocb_block_lshift(in->c, 1, out->c);
out->c[15] ^= mask;
}
/*
* Perform an xor on in1 and in2 - each of len bytes. Store result in out
*/
static void ocb_block_xor(const unsigned char *in1,
const unsigned char *in2, size_t len,
unsigned char *out)
{
size_t i;
for (i = 0; i < len; i++) {
out[i] = in1[i] ^ in2[i];
}
}
/*
* Lookup L_index in our lookup table. If we haven't already got it we need to
* calculate it
*/
static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
{
size_t l_index = ctx->l_index;
if (idx <= l_index) {
return ctx->l + idx;
}
/* We don't have it - so calculate it */
if (idx >= ctx->max_l_index) {
void *tmp_ptr;
/*
* Each additional entry allows to process almost double as
* much data, so that in linear world the table will need to
* be expanded with smaller and smaller increments. Originally
* it was doubling in size, which was a waste. Growing it
* linearly is not formally optimal, but is simpler to implement.
* We grow table by minimally required 4*n that would accommodate
* the index.
*/
ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
return NULL;
ctx->l = tmp_ptr;
}
while (l_index < idx) {
ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
l_index++;
}
ctx->l_index = l_index;
return ctx->l + idx;
}
/*
* Create a new OCB128_CONTEXT
*/
OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
block128_f encrypt, block128_f decrypt,
ocb128_f stream)
{
OCB128_CONTEXT *octx;
int ret;
if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
stream);
if (ret)
return octx;
OPENSSL_free(octx);
}
return NULL;
}
/*
* Initialise an existing OCB128_CONTEXT
*/
int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
block128_f encrypt, block128_f decrypt,
ocb128_f stream)
{
memset(ctx, 0, sizeof(*ctx));
ctx->l_index = 0;
ctx->max_l_index = 5;
if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
/*
* We set both the encryption and decryption key schedules - decryption
* needs both. Don't really need decryption schedule if only doing
* encryption - but it simplifies things to take it anyway
*/
ctx->encrypt = encrypt;
ctx->decrypt = decrypt;
ctx->stream = stream;
ctx->keyenc = keyenc;
ctx->keydec = keydec;
/* L_* = ENCIPHER(K, zeros(128)) */
ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
/* L_$ = double(L_*) */
ocb_double(&ctx->l_star, &ctx->l_dollar);
/* L_0 = double(L_$) */
ocb_double(&ctx->l_dollar, ctx->l);
/* L_{i} = double(L_{i-1}) */
ocb_double(ctx->l, ctx->l+1);
ocb_double(ctx->l+1, ctx->l+2);
ocb_double(ctx->l+2, ctx->l+3);
ocb_double(ctx->l+3, ctx->l+4);
ctx->l_index = 4; /* enough to process up to 496 bytes */
return 1;
}
/*
* Copy an OCB128_CONTEXT object
*/
int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
void *keyenc, void *keydec)
{
memcpy(dest, src, sizeof(OCB128_CONTEXT));
if (keyenc)
dest->keyenc = keyenc;
if (keydec)
dest->keydec = keydec;
if (src->l) {
if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(dest->l, src->l, (src->l_index + 1) * 16);
}
return 1;
}
/*
* Set the IV to be used for this operation. Must be 1 - 15 bytes.
*/
int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
size_t len, size_t taglen)
{
unsigned char ktop[16], tmp[16], mask;
unsigned char stretch[24], nonce[16];
size_t bottom, shift;
/*
* Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
* We don't support this at this stage
*/
if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
return -1;
}
/* Reset nonce-dependent variables */
memset(&ctx->sess, 0, sizeof(ctx->sess));
/* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
nonce[0] = ((taglen * 8) % 128) << 1;
memset(nonce + 1, 0, 15);
memcpy(nonce + 16 - len, iv, len);
nonce[15 - len] |= 1;
/* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
memcpy(tmp, nonce, 16);
tmp[15] &= 0xc0;
ctx->encrypt(tmp, ktop, ctx->keyenc);
/* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
memcpy(stretch, ktop, 16);
ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
/* bottom = str2num(Nonce[123..128]) */
bottom = nonce[15] & 0x3f;
/* Offset_0 = Stretch[1+bottom..128+bottom] */
shift = bottom % 8;
ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
mask = 0xff;
mask <<= 8 - shift;
ctx->sess.offset.c[15] |=
(*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
return 1;
}
/*
* Provide any AAD. This can be called multiple times. Only the final time can
* have a partial block
*/
int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
size_t len)
{
u64 i, all_num_blocks;
size_t num_blocks, last_len;
OCB_BLOCK tmp;
/* Calculate the number of blocks of AAD provided now, and so far */
num_blocks = len / 16;
all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
/* Loop through all full blocks of AAD */
for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
OCB_BLOCK *lookup;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
lookup = ocb_lookup_l(ctx, ocb_ntz(i));
if (lookup == NULL)
return 0;
ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
memcpy(tmp.c, aad, 16);
aad += 16;
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
}
/*
* Check if we have any partial blocks left over. This is only valid in the
* last call to this function
*/
last_len = len % 16;
if (last_len > 0) {
/* Offset_* = Offset_m xor L_* */
ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
&ctx->sess.offset_aad);
/* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
memset(tmp.c, 0, 16);
memcpy(tmp.c, aad, last_len);
tmp.c[last_len] = 0x80;
ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
/* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
}
ctx->sess.blocks_hashed = all_num_blocks;
return 1;
}
/*
* Provide any data to be encrypted. This can be called multiple times. Only
* the final time can have a partial block
*/
int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
const unsigned char *in, unsigned char *out,
size_t len)
{
u64 i, all_num_blocks;
size_t num_blocks, last_len;
/*
* Calculate the number of blocks of data to be encrypted provided now, and
* so far
*/
num_blocks = len / 16;
all_num_blocks = num_blocks + ctx->sess.blocks_processed;
if (num_blocks && all_num_blocks == (size_t)all_num_blocks
&& ctx->stream != NULL) {
size_t max_idx = 0, top = (size_t)all_num_blocks;
/*
* See how many L_{i} entries we need to process data at hand
* and pre-compute missing entries in the table [if any]...
*/
while (top >>= 1)
max_idx++;
if (ocb_lookup_l(ctx, max_idx) == NULL)
return 0;
ctx->stream(in, out, num_blocks, ctx->keyenc,
(size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
(const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
} else {
/* Loop through all full blocks to be encrypted */
for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
OCB_BLOCK *lookup;
OCB_BLOCK tmp;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
lookup = ocb_lookup_l(ctx, ocb_ntz(i));
if (lookup == NULL)
return 0;
ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
memcpy(tmp.c, in, 16);
in += 16;
/* Checksum_i = Checksum_{i-1} xor P_i */
ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
/* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
memcpy(out, tmp.c, 16);
out += 16;
}
}
/*
* Check if we have any partial blocks left over. This is only valid in the
* last call to this function
*/
last_len = len % 16;
if (last_len > 0) {
OCB_BLOCK pad;
/* Offset_* = Offset_m xor L_* */
ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
/* Pad = ENCIPHER(K, Offset_*) */
ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
/* C_* = P_* xor Pad[1..bitlen(P_*)] */
ocb_block_xor(in, pad.c, last_len, out);
/* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
memset(pad.c, 0, 16); /* borrow pad */
memcpy(pad.c, in, last_len);
pad.c[last_len] = 0x80;
ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
}
ctx->sess.blocks_processed = all_num_blocks;
return 1;
}
/*
* Provide any data to be decrypted. This can be called multiple times. Only
* the final time can have a partial block
*/
int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
const unsigned char *in, unsigned char *out,
size_t len)
{
u64 i, all_num_blocks;
size_t num_blocks, last_len;
/*
* Calculate the number of blocks of data to be decrypted provided now, and
* so far
*/
num_blocks = len / 16;
all_num_blocks = num_blocks + ctx->sess.blocks_processed;
if (num_blocks && all_num_blocks == (size_t)all_num_blocks
&& ctx->stream != NULL) {
size_t max_idx = 0, top = (size_t)all_num_blocks;
/*
* See how many L_{i} entries we need to process data at hand
* and pre-compute missing entries in the table [if any]...
*/
while (top >>= 1)
max_idx++;
if (ocb_lookup_l(ctx, max_idx) == NULL)
return 0;
ctx->stream(in, out, num_blocks, ctx->keydec,
(size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
(const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
} else {
OCB_BLOCK tmp;
/* Loop through all full blocks to be decrypted */
for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
if (lookup == NULL)
return 0;
ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
memcpy(tmp.c, in, 16);
in += 16;
/* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
/* Checksum_i = Checksum_{i-1} xor P_i */
ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
memcpy(out, tmp.c, 16);
out += 16;
}
}
/*
* Check if we have any partial blocks left over. This is only valid in the
* last call to this function
*/
last_len = len % 16;
if (last_len > 0) {
OCB_BLOCK pad;
/* Offset_* = Offset_m xor L_* */
ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
/* Pad = ENCIPHER(K, Offset_*) */
ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
/* P_* = C_* xor Pad[1..bitlen(C_*)] */
ocb_block_xor(in, pad.c, last_len, out);
/* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
memset(pad.c, 0, 16); /* borrow pad */
memcpy(pad.c, out, last_len);
pad.c[last_len] = 0x80;
ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
}
ctx->sess.blocks_processed = all_num_blocks;
return 1;
}
static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
int write)
{
OCB_BLOCK tmp;
if (len > 16 || len < 1) {
return -1;
}
/*
* Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
*/
ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
if (write) {
memcpy(tag, &tmp, len);
return 1;
} else {
return CRYPTO_memcmp(&tmp, tag, len);
}
}
/*
* Calculate the tag and verify it against the supplied tag
*/
int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
size_t len)
{
return ocb_finish(ctx, (unsigned char*)tag, len, 0);
}
/*
* Retrieve the calculated tag
*/
int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
{
return ocb_finish(ctx, tag, len, 1);
}
/*
* Release all resources
*/
void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
{
if (ctx) {
OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
OPENSSL_cleanse(ctx, sizeof(*ctx));
}
}
#endif /* OPENSSL_NO_OCB */
|