summaryrefslogtreecommitdiffstats
path: root/crypto/rsa/rsa_sp800_56b_check.c
blob: 10e264e5914b2a2cc30e5c5f4e27f8b1642e9abd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/err.h>
#include <openssl/bn.h>
#include "internal/bn_int.h"
#include "rsa_locl.h"

/*
 * Part of the RSA keypair test.
 * Check the Chinese Remainder Theorem components are valid.
 *
 * See SP800-5bBr1
 *   6.4.1.2.3: rsakpv1-crt Step 7
 *   6.4.1.3.3: rsakpv2-crt Step 7
 */
int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;

    /* check if only some of the crt components are set */
    if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
        if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
            return 0;
        return 1; /* return ok if all components are NULL */
    }

    BN_CTX_start(ctx);
    r = BN_CTX_get(ctx);
    p1 = BN_CTX_get(ctx);
    q1 = BN_CTX_get(ctx);
    ret = (q1 != NULL)
          /* p1 = p -1 */
          && (BN_copy(p1, rsa->p) != NULL)
          && BN_sub_word(p1, 1)
          /* q1 = q - 1 */
          && (BN_copy(q1, rsa->q) != NULL)
          && BN_sub_word(q1, 1)
          /* (a) 1 < dP < (p – 1). */
          && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
          && (BN_cmp(rsa->dmp1, p1) < 0)
          /* (b) 1 < dQ < (q - 1). */
          && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
          && (BN_cmp(rsa->dmq1, q1) < 0)
          /* (c) 1 < qInv < p */
          && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
          && (BN_cmp(rsa->iqmp, rsa->p) < 0)
          /* (d) 1 = (dP . e) mod (p - 1)*/
          && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
          && BN_is_one(r)
          /* (e) 1 = (dQ . e) mod (q - 1) */
          && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
          && BN_is_one(r)
          /* (f) 1 = (qInv . q) mod p */
          && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
          && BN_is_one(r);
    BN_clear(p1);
    BN_clear(q1);
    BN_CTX_end(ctx);
    return ret;
}

/*
 * Part of the RSA keypair test.
 * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
 *
 * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
 *
 * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
 * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
 * 0.B504F334 gives an approximation to 11 decimal places.
 * The range is then from
 *   0xB504F334_0000.......................000 to
 *   0xFFFFFFFF_FFFF.......................FFF
 */
int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *tmp, *low;

    nbits >>= 1;

    /* Upper bound check */
    if (BN_num_bits(p) != nbits)
        return 0;

    BN_CTX_start(ctx);
    tmp = BN_CTX_get(ctx);
    low = BN_CTX_get(ctx);

    /* set low = (√2)(2^(nbits/2 - 1) */
    if (low == NULL || !BN_set_word(tmp, 0xB504F334))
        goto err;

    if (nbits >= 32) {
        if (!BN_lshift(low, tmp, nbits - 32))
            goto err;
    } else if (!BN_rshift(low, tmp, 32 - nbits)) {
        goto err;
    }
    if (BN_cmp(p, low) < 0)
        goto err;
    ret = 1;
err:
    BN_CTX_end(ctx);
    return ret;
}

/*
 * Part of the RSA keypair test.
 * Check the prime factor (for either p or q)
 * i.e: p is prime AND GCD(p - 1, e) = 1
 *
 * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
 */
int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
{
    int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
    int ret = 0;
    BIGNUM *p1 = NULL, *gcd = NULL;

    /* (Steps 5 a-b) prime test */
    if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
            /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
            || rsa_check_prime_factor_range(p, nbits, ctx) != 1)
        return 0;

    BN_CTX_start(ctx);
    p1 = BN_CTX_get(ctx);
    gcd = BN_CTX_get(ctx);
    ret = (gcd != NULL)
          /* (Step 5d) GCD(p-1, e) = 1 */
          && (BN_copy(p1, p) != NULL)
          && BN_sub_word(p1, 1)
          && BN_gcd(gcd, p1, e, ctx)
          && BN_is_one(gcd);

    BN_clear(p1);
    BN_CTX_end(ctx);
    return ret;
}

/*
 * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
 * satisfies:
 *     (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
 *     (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
 */
int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
{
    int ret;
    BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;

    /* (Step 6a) 2^(nbits/2) < d */
    if (BN_num_bits(rsa->d) <= (nbits >> 1))
        return 0;

    BN_CTX_start(ctx);
    r = BN_CTX_get(ctx);
    p1 = BN_CTX_get(ctx);
    q1 = BN_CTX_get(ctx);
    lcm = BN_CTX_get(ctx);
    p1q1 = BN_CTX_get(ctx);
    gcd = BN_CTX_get(ctx);
    ret = (gcd != NULL
          /* LCM(p - 1, q - 1) */
          && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
          /* (Step 6a) d < LCM(p - 1, q - 1) */
          && (BN_cmp(rsa->d, lcm) < 0)
          /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
          && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
          && BN_is_one(r));

    BN_clear(p1);
    BN_clear(q1);
    BN_clear(lcm);
    BN_clear(gcd);
    BN_CTX_end(ctx);
    return ret;
}

/* Check exponent is odd, and has a bitlen ranging from [17..256] */
int rsa_check_public_exponent(const BIGNUM *e)
{
    int bitlen = BN_num_bits(e);

    return (BN_is_odd(e) &&  bitlen > 16 && bitlen < 257);
}

/*
 * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
 * i.e- numbits(p-q-1) > (nbits/2 -100)
 */
int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
                           int nbits)
{
    int bitlen = (nbits >> 1) - 100;

    if (!BN_sub(diff, p, q))
        return -1;
    BN_set_negative(diff, 0);

    if (BN_is_zero(diff))
        return 0;

    if (!BN_sub_word(diff, 1))
        return -1;
    return (BN_num_bits(diff) > bitlen);
}

/* return LCM(p-1, q-1) */
int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
                BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
                BIGNUM *p1q1)
{
    return BN_sub(p1, p, BN_value_one())    /* p-1 */
           && BN_sub(q1, q, BN_value_one()) /* q-1 */
           && BN_mul(p1q1, p1, q1, ctx)     /* (p-1)(q-1) */
           && BN_gcd(gcd, p1, q1, ctx)
           && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
}

/*
 * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
 * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
 * caveat is that the modulus must be as specified in SP800-56Br1
 */
int rsa_sp800_56b_check_public(const RSA *rsa)
{
    int ret = 0, nbits, iterations, status;
    BN_CTX *ctx = NULL;
    BIGNUM *gcd = NULL;

    if (rsa->n == NULL || rsa->e == NULL)
        return 0;

    /*
     * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
     * NOTE: changed to allow keys >= 2048
     */
    nbits = BN_num_bits(rsa->n);
    if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
        return 0;
    }
    if (!BN_is_odd(rsa->n)) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
        return 0;
    }

    /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
    if (!rsa_check_public_exponent(rsa->e)) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
               RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
        return 0;
    }

    ctx = BN_CTX_new();
    gcd = BN_new();
    if (ctx == NULL || gcd == NULL)
        goto err;

    iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
    /* (Steps d-f):
     * The modulus is composite, but not a power of a prime.
     * The modulus has no factors smaller than 752.
     */
    if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
        goto err;
    }

    ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
    if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
        ret = 0;
        goto err;
    }

    ret = 1;
err:
    BN_free(gcd);
    BN_CTX_free(ctx);
    return ret;
}

/*
 * Perform validation of the RSA private key to check that 0 < D < N.
 */
int rsa_sp800_56b_check_private(const RSA *rsa)
{
    if (rsa->d == NULL || rsa->n == NULL)
        return 0;
    return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
}

/*
 * RSA key pair validation.
 *
 * SP800-56Br1.
 *    6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
 *    6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
 *
 * It uses:
 *     6.4.1.2.3 "rsakpv1 - crt"
 *     6.4.1.3.3 "rsakpv2 - crt"
 */
int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
                                int strength, int nbits)
{
    int ret = 0;
    BN_CTX *ctx = NULL;
    BIGNUM *r = NULL;

    if (rsa->p == NULL
            || rsa->q == NULL
            || rsa->e == NULL
            || rsa->d == NULL
            || rsa->n == NULL) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
        return 0;
    }
    /* (Step 1): Check Ranges */
    if (!rsa_sp800_56b_validate_strength(nbits, strength))
        return 0;

    /* If the exponent is known */
    if (efixed != NULL) {
        /* (2): Check fixed exponent matches public exponent. */
        if (BN_cmp(efixed, rsa->e) != 0) {
            RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
            return 0;
        }
    }
    /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
    if (!rsa_check_public_exponent(rsa->e)) {
        /* exponent out of range */
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
               RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
        return 0;
    }
    /* (Step 3.b): check the modulus */
    if (nbits != BN_num_bits(rsa->n)) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
        return 0;
    }

    ctx = BN_CTX_new();
    if (ctx == NULL)
        return 0;

    BN_CTX_start(ctx);
    r = BN_CTX_get(ctx);
    if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
        goto err;
    /* (Step 4.c): Check n = pq */
    if (BN_cmp(rsa->n, r) != 0) {
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
        goto err;
    }

    /* (Step 5): check prime factors p & q */
    ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
          && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
          && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
          /* (Step 6): Check the private exponent d */
          && rsa_check_private_exponent(rsa, nbits, ctx)
          /* 6.4.1.2.3 (Step 7): Check the CRT components */
          && rsa_check_crt_components(rsa, ctx);
    if (ret != 1)
        RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);

err:
    BN_clear(r);
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    return ret;
}