summaryrefslogtreecommitdiffstats
path: root/doc/man3/OPENSSL_malloc.pod
blob: daacea98dedeee90d6b8b46189160ec88e703c4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
=pod

=head1 NAME

OPENSSL_malloc_init,
OPENSSL_malloc, OPENSSL_aligned_alloc, OPENSSL_zalloc, OPENSSL_realloc,
OPENSSL_free, OPENSSL_clear_realloc, OPENSSL_clear_free, OPENSSL_cleanse,
CRYPTO_malloc, CRYPTO_aligned_alloc, CRYPTO_zalloc, CRYPTO_realloc, CRYPTO_free,
OPENSSL_strdup, OPENSSL_strndup,
OPENSSL_memdup, OPENSSL_strlcpy, OPENSSL_strlcat, OPENSSL_strtoul,
CRYPTO_strdup, CRYPTO_strndup,
OPENSSL_mem_debug_push, OPENSSL_mem_debug_pop,
CRYPTO_mem_debug_push, CRYPTO_mem_debug_pop,
CRYPTO_clear_realloc, CRYPTO_clear_free,
CRYPTO_malloc_fn, CRYPTO_realloc_fn, CRYPTO_free_fn,
CRYPTO_get_mem_functions, CRYPTO_set_mem_functions,
CRYPTO_get_alloc_counts,
CRYPTO_set_mem_debug, CRYPTO_mem_ctrl,
CRYPTO_mem_leaks, CRYPTO_mem_leaks_fp, CRYPTO_mem_leaks_cb,
OPENSSL_MALLOC_FAILURES,
OPENSSL_MALLOC_FD
- Memory allocation functions

=head1 SYNOPSIS

 #include <openssl/crypto.h>

 int OPENSSL_malloc_init(void);

 void *OPENSSL_malloc(size_t num);
 void *OPENSSL_aligned_alloc(size_t num, size_t alignment, void **freeptr);
 void *OPENSSL_zalloc(size_t num);
 void *OPENSSL_realloc(void *addr, size_t num);
 void OPENSSL_free(void *addr);
 char *OPENSSL_strdup(const char *str);
 char *OPENSSL_strndup(const char *str, size_t s);
 size_t OPENSSL_strlcat(char *dst, const char *src, size_t size);
 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t size);
 int OPENSSL_strtoul(char *src, char **endptr, int base, unsigned long *num);
 void *OPENSSL_memdup(void *data, size_t s);
 void *OPENSSL_clear_realloc(void *p, size_t old_len, size_t num);
 void OPENSSL_clear_free(void *str, size_t num);
 void OPENSSL_cleanse(void *ptr, size_t len);

 void *CRYPTO_malloc(size_t num, const char *file, int line);
 void *CRYPTO_aligned_alloc(size_t num, size_t align, void **freeptr, 
                            const char *file, int line);
 void *CRYPTO_zalloc(size_t num, const char *file, int line);
 void *CRYPTO_realloc(void *p, size_t num, const char *file, int line);
 void CRYPTO_free(void *str, const char *, int);
 char *CRYPTO_strdup(const char *p, const char *file, int line);
 char *CRYPTO_strndup(const char *p, size_t num, const char *file, int line);
 void *CRYPTO_clear_realloc(void *p, size_t old_len, size_t num,
                            const char *file, int line);
 void CRYPTO_clear_free(void *str, size_t num, const char *, int);

 typedef void *(*CRYPTO_malloc_fn)(size_t num, const char *file, int line);
 typedef void *(*CRYPTO_realloc_fn)(void *addr, size_t num, const char *file,
                                    int line);
 typedef void (*CRYPTO_free_fn)(void *addr, const char *file, int line);
 void CRYPTO_get_mem_functions(CRYPTO_malloc_fn *malloc_fn,
                               CRYPTO_realloc_fn *realloc_fn,
                               CRYPTO_free_fn *free_fn);
 int CRYPTO_set_mem_functions(CRYPTO_malloc_fn malloc_fn,
                              CRYPTO_realloc_fn realloc_fn,
                              CRYPTO_free_fn free_fn);

 void CRYPTO_get_alloc_counts(int *mcount, int *rcount, int *fcount);

 env OPENSSL_MALLOC_FAILURES=... <application>
 env OPENSSL_MALLOC_FD=... <application>

The following functions have been deprecated since OpenSSL 3.0, and can be
hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
see L<openssl_user_macros(7)>:

 int CRYPTO_mem_leaks(BIO *b);
 int CRYPTO_mem_leaks_fp(FILE *fp);
 int CRYPTO_mem_leaks_cb(int (*cb)(const char *str, size_t len, void *u),
                         void *u);

 int CRYPTO_set_mem_debug(int onoff);
 int CRYPTO_mem_ctrl(int mode);
 int OPENSSL_mem_debug_push(const char *info);
 int OPENSSL_mem_debug_pop(void);
 int CRYPTO_mem_debug_push(const char *info, const char *file, int line);
 int CRYPTO_mem_debug_pop(void);

=head1 DESCRIPTION

OpenSSL memory allocation is handled by the B<OPENSSL_xxx> API. These are
generally macro's that add the standard C B<__FILE__> and B<__LINE__>
parameters and call a lower-level B<CRYPTO_xxx> API.
Some functions do not add those parameters, but exist for consistency.

OPENSSL_malloc_init() does nothing and does not need to be called. It is
included for compatibility with older versions of OpenSSL.

OPENSSL_malloc(), OPENSSL_realloc(), and OPENSSL_free() are like the
C malloc(), realloc(), and free() functions.
OPENSSL_zalloc() calls memset() to zero the memory before returning.

OPENSSL_aligned_alloc() operates just as OPENSSL_malloc does, but it
allows for the caller to specify an alignment value, for instances in
which the default alignment of malloc is insufficient for the callers
needs.  Note, the alignment value must be a power of 2, and the size
specified must be a multiple of the alignment.
NOTE: The call to OPENSSL_aligned_alloc() accepts a 3rd argument, I<freeptr>
which must point to a void pointer.  On some platforms, there is no available
library call to obtain memory allocations greater than what malloc provides.  In
this case, OPENSSL_aligned_alloc implements its own alignment routine,
allocating additional memory and offsetting the returned pointer to be on the
requested alignment boundary.  In order to safely free allocations made by this
method, the caller must return the value in the I<freeptr> variable, rather than
the returned pointer.

OPENSSL_clear_realloc() and OPENSSL_clear_free() should be used
when the buffer at B<addr> holds sensitive information.
The old buffer is filled with zero's by calling OPENSSL_cleanse()
before ultimately calling OPENSSL_free(). If the argument to OPENSSL_free() is
NULL, nothing is done.

OPENSSL_cleanse() fills B<ptr> of size B<len> with a string of 0's.
Use OPENSSL_cleanse() with care if the memory is a mapping of a file.
If the storage controller uses write compression, then it's possible
that sensitive tail bytes will survive zeroization because the block of
zeros will be compressed. If the storage controller uses wear leveling,
then the old sensitive data will not be overwritten; rather, a block of
0's will be written at a new physical location.

OPENSSL_strdup(), OPENSSL_strndup() and OPENSSL_memdup() are like the
equivalent C functions, except that memory is allocated by calling the
OPENSSL_malloc() and should be released by calling OPENSSL_free().

OPENSSL_strlcpy(),
OPENSSL_strlcat() and OPENSSL_strnlen() are equivalents of the common C
library functions and are provided for portability.

OPENSSL_strtoul() is a wrapper around the POSIX function strtoul, with the same
behaviors listed in the POSIX documentation, with the additional behavior that
it validates the input I<str> and I<num> parameters for not being NULL, and confirms
that at least a single byte of input has been consumed in the translation,
returning an error in the event that no bytes were consumed.

If no allocations have been done, it is possible to "swap out" the default
implementations for OPENSSL_malloc(), OPENSSL_realloc() and OPENSSL_free()
and replace them with alternate versions.
CRYPTO_get_mem_functions() function fills in the given arguments with the
function pointers for the current implementations.
With CRYPTO_set_mem_functions(), you can specify a different set of functions.
If any of B<malloc_fn>, B<realloc_fn>, or B<free_fn> are NULL, then
the function is not changed.
While it's permitted to swap out only a few and not all the functions
with CRYPTO_set_mem_functions(), it's recommended to swap them all out
at once.

If the library is built with the C<crypto-mdebug> option, then one
function, CRYPTO_get_alloc_counts(), and two additional environment
variables, B<OPENSSL_MALLOC_FAILURES> and B<OPENSSL_MALLOC_FD>,
are available.

The function CRYPTO_get_alloc_counts() fills in the number of times
each of CRYPTO_malloc(), CRYPTO_realloc(), and CRYPTO_free() have been
called, into the values pointed to by B<mcount>, B<rcount>, and B<fcount>,
respectively.  If a pointer is NULL, then the corresponding count is not stored.

The variable
B<OPENSSL_MALLOC_FAILURES> controls how often allocations should fail.
It is a set of fields separated by semicolons, which each field is a count
(defaulting to zero) and an optional atsign and percentage (defaulting
to 100).  If the count is zero, then it lasts forever.  For example,
C<100;@25> or C<100@0;0@25> means the first 100 allocations pass, then all
other allocations (until the program exits or crashes) have a 25% chance of
failing.

If the variable B<OPENSSL_MALLOC_FD> is parsed as a positive integer, then
it is taken as an open file descriptor. This is used in conjunction with
B<OPENSSL_MALLOC_FAILURES> described above. For every allocation it will log
details about how many allocations there have been so far, what percentage
chance there is for this allocation failing, and whether it has actually failed.
The following example in classic shell syntax shows how to use this (will not
work on all platforms):

  OPENSSL_MALLOC_FAILURES='200;@10'
  export OPENSSL_MALLOC_FAILURES
  OPENSSL_MALLOC_FD=3
  export OPENSSL_MALLOC_FD
  ...app invocation... 3>/tmp/log$$

=head1 RETURN VALUES

OPENSSL_malloc_init(), OPENSSL_free(), OPENSSL_clear_free()
CRYPTO_free(), CRYPTO_clear_free() and CRYPTO_get_mem_functions()
return no value.

OPENSSL_malloc(), OPENSSL_aligned_alloc(), OPENSSL_zalloc(), OPENSSL_realloc(),
OPENSSL_clear_realloc(),
CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_realloc(),
CRYPTO_clear_realloc(),
OPENSSL_strdup(), and OPENSSL_strndup()
return a pointer to allocated memory or NULL on error.

CRYPTO_set_mem_functions() returns 1 on success or 0 on failure (almost
always because allocations have already happened).

CRYPTO_mem_leaks(), CRYPTO_mem_leaks_fp(), CRYPTO_mem_leaks_cb(),
CRYPTO_set_mem_debug(), and CRYPTO_mem_ctrl() are deprecated and are no-ops that
always return -1.
OPENSSL_mem_debug_push(), OPENSSL_mem_debug_pop(),
CRYPTO_mem_debug_push(), and CRYPTO_mem_debug_pop()
are deprecated and are no-ops that always return 0.

OPENSSL_strtoul() returns 1 on success and 0 in the event that an error has
occurred. Specifically, 0 is returned in the following events:

=over 4

=item *

If the underlying call to strtoul returned a non zero errno value

=item *

If the translation did not consume the entire input string, and the passed
endptr value was NULL

=item *

If no characters were consumed in the translation

=back

Note that a success condition does not imply that the expected
translation has been performed.  For instance calling

    OPENSSL_strtoul("0x12345", &endptr, 10, &num);

will result in a successful translation with num having the value 0, and
*endptr = 'x'.  Be sure to validate how much data was consumed when calling this
function.

=head1 HISTORY

OPENSSL_mem_debug_push(), OPENSSL_mem_debug_pop(),
CRYPTO_mem_debug_push(), CRYPTO_mem_debug_pop(),
CRYPTO_mem_leaks(), CRYPTO_mem_leaks_fp(),
CRYPTO_mem_leaks_cb(), CRYPTO_set_mem_debug(), CRYPTO_mem_ctrl()
were deprecated in OpenSSL 3.0.
The memory-leak checking has been deprecated in OpenSSL 3.0 in favor of
clang's memory and leak sanitizer.
OPENSSL_aligned_alloc(), CRYPTO_aligned_alloc() were added in OpenSSL 3.4.0

=head1 COPYRIGHT

Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.

=cut