| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
| |
|
|
|
|
| |
This can now benchmark more than just kdbus.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For a longer discussion see this:
http://lists.freedesktop.org/archives/systemd-devel/2015-April/030175.html
This introduces /run/systemd/fsck.progress as a simply
AF_UNIX/SOCK_STREAM socket. If it exists and is connectable we'll
connect fsck's -c switch with it. If external programs want to get
progress data they should hence listen on this socket and will get
all they need via that socket. To get information about the connecting
fsck client they should use SO_PEERCRED.
Unless /run/systemd/fsck.progress is around and connectable this change
reverts back to v219 behaviour where we'd forward fsck output to
/dev/console on our own.
|
|
|
|
|
|
| |
Not that all functionality has been ported over to logind, the old
implementation can be removed. There goes one of the oldest parts of
the systemd code base.
|
|
|
|
|
|
|
|
|
| |
<audit-1400> is replaced by AVC, etc.
A fallback mechanism is provided for unlisted event types.
Occasionally new types are added to the kernel, but not too often.
Add a simple "test", which simply prints the mapping.
|
| |
|
| |
|
|
|
|
| |
Also, expose it in machinectl.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add systemd-fsckd multiplexer which accepts multiple systemd-fsck
instances to connect to it and sends progress report. systemd-fsckd then
computes and writes to /dev/console the number of devices currently being
checked and the minimum fsck progress. This will be used for interactive
progress report and cancelling in plymouth.
systemd-fsckd stops on idle when no systemd-fsck is connected.
Make the necessary changes to systemd-fsck to connect to the systemd-fsckd
socket.
|
|
|
|
|
|
|
|
|
|
| |
What used to be gummiboot, was renamed sd-boot when it was merged into
systemd. Let's try to be a bit more consistent with the rest of systemd
and rename it again as follows:
The EFI bootloader is now called 'systemd-bootx64.efi', and its sources are in
'src/boot/efi/'. The drop-in directory where bootctl will find EFI loaders
is now /usr/lib/systemd/boot/efi/.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
client to it
The old "systemd-import" binary is now an internal tool. We still use it
as asynchronous backend for systemd-importd. Since the import tool might
require some IO and CPU resources (due to qcow2 explosion, and
decompression), and because we might want to run it with more minimal
priviliges we still keep it around as the worker binary to execute as
child process of importd.
machinectl now has verbs for pulling down images, cancelling them and
listing them.
|
|
|
|
|
| |
Now that we want to make bus-proxy multi-threaded, we have to bring back
the systemd-stdio-bridge for our TCP use-cases.
|
|
|
|
|
|
|
|
| |
With this change the import tool will now unpack qcow2 images into
normal raw disk images, suitable for usage with nspawn.
This allows has the benefit of also allowing importing Ubuntu Cloud
images for usage with nspawn.
|
|
|
|
| |
rules, using libiptc
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Even though we use fallocate() it appears that file systems like btrfs
will trigger SIGBUS on certain low-disk-space situation. We should
handle that, hence catch the signal, add it to a list of invalidated
pages, and replace the page with an empty memory area. After each write
check if SIGBUS was triggered, and consider the write invalid if it was.
This should make journald a lot more robust with file systems where
fallocate() is not reliable, for example all CoW file systems
(btrfs...), where changing written data can fail with disk full errors.
https://bugzilla.redhat.com/show_bug.cgi?id=1045810
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
containers and install them locally
This adds a simply but powerful tool for downloading container images
from the most popular container solution used today. Use it like
this:
# systemd-import pull-dck mattdm/fedora
# systemd-nspawn -M fedora
This will donwload the layers for "mattdm/fedora", and make them
available locally as /var/lib/container/fedora.
The tool is pretty complete, as long as it's only about pulling down
images, or updating them. Pushing or searching is not supported yet.
|
|
|
|
|
|
|
|
| |
This pulls out the hwdb managment from udevadm into an independent tool.
The old code is left in place for backwards compatibility, and easy of
testing, but all documentation is dropped to encourage use of the new
tool instead.
|
| |
|
| |
|
|
|
|
|
| |
This way, we can ensure we have a more complete, up-to-date list of
capabilities around, always.
|
|
|
|
|
|
|
|
| |
gateway
This is useful inside of containers or local networks to intrdouce a
stable name of the default gateway host (in case of containers usually
the host, in case of LANs usually local router).
|
|
|
|
|
| |
This binary enables to commit transient machine-id on disk if it becomes
writable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I often want to use the awesome "./autogen.sh [cmd]" arguments, but have
to append some custom ./configure options. For now, I always had to edit
autogen.sh manually, or copy the full commands out of it and run it
myself.
As I think this is super annoying, this commit adds support for
".config.args" files in $topdir. If it exists, any content is just
appended to $args, thus to any ./configure invokation of autogen.sh.
Maybe autotools provide something similar out-of-the-box. In that case,
feel free to revert this and lemme know!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
add tests for the following directives:
- WorkingDirectory
- Personality
- IgnoreSIGPIPE
- PrivateTmp
- SystemCallFilter: It makes test/TEST-04-SECCOMP obsolete, so it has
been removed.
- SystemCallErrorNumber
- User
- Group
- Environment
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
It tests all available directives of Path units:
- PathChanged
- PathModified
- PathExists
- PathExisysGlob
- DirectoryNotEmpty
- MakeDirectory
- DirectoryMode
- Unit
|
|
|
|
|
| |
Now that we only have one file with condition implementations around, we
can drop the -util suffix and simplify things a bit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This library negotiates a PPPoE channel. It handles the discovery stage and
leaves the session stage to the kernel. A further PPP library is needed to
actually set up a PPP unit (negotatie LCP, IPCP and do authentication), so in
isolation this is not yet very useful.
The test program has two modes:
# ./test-pppoe
will create a veth tunnel in a new network namespace, start pppoe-server on one
end and this client library on the other. The pppd server will time out as no
LCP is performed, and the client will then shut down gracefully.
# ./test-pppoe eth0
will run the client on eth0 (or any other netdev), and requires a PPPoE server
to be reachable on the local link.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a first draft of systemd-consoled. This is still missing a lot
of features and does some rather primitive rendering. However, it shows
the direction this code is going and serves as basis for further testing.
The systemd-consoled binary should be run as `systemd --user' unit. It
automatically picks up any session marked as Desktop=SYSTEMD-CONSOLE.
Therefore, you can use any login-manager you want (ranging from /bin/login
to gdm) to create sessions for systemd-consoled. However, the sessions
managers must be prepared to set the Desktop= variable properly.
The user-session is called `systemd-console', only the daemon providing
the terminal environment is called `systemd-consoled' (mind the 'd').
So far, only a single terminal session is provided on each opened
user-session. However, we support multiple user-sessions (even across
multiple seats) just fine. In the future, the workspace logic will get
extended so you can have multiple terminal sessions in a single
user-session for easier access.
Note that this is still experimental! Instructions on how to run it will
follow shortly.
|
| |
|
|
|
|
| |
Add some test files and routines for dbus policy checking.
|
|
|
|
|
|
|
|
|
| |
The systemd-modeset tool is meant to debug grdev issues. It simply
displays morphing colors on any found display. This is pretty handy to
look for tearing in the backends and debug hotplug issues.
Note that this tool requires systemd-logind to be compiled from git
(there're important fixes that haven't been released, yet).
|
|
|
|
|
|
|
|
| |
Like systemd-subterm, this new systemd-evcat tool should only be used to
debug libsystemd-terminal. systemd-evcat attaches to the running session
and pushes all evdev devices attached to the current session into an
idev-session. All events of the created idev-devices are then printed to
stdout for input-event debugging.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
hibernate-resume-generator understands resume= kernel command line parameter
and instantiates the systemd-resume@.service accordingly if it is passed.
This enables resume from hibernation using device specified on the kernel
command line, and it may be specified either as "/dev/disk/by-foo/bar"
or "FOO=bar", not only "/dev/sdXY" which is understood by the in-kernel
implementation.
So now resume= is brought on par with root= in terms of possible ways to
specify a device.
|
|
|
|
|
|
|
|
|
|
| |
/sys/power/resume.
This can be used to initiate a resume from hibernation by path to a swap
device containing the hibernation image.
The respective templated unit is also added. It is instantiated using
path to the desired resume device.
|
|
|
|
|
|
|
|
| |
UIDs/GIDs from
This way we can guarantee a limited amount of compatibility with
login.defs, by generate an appopriate "r" line out of it, on package
installation.
|
| |
|
|
|
|
|
|
|
| |
In the long run this should become a full fledged client to networkd
(but not before networkd learns bus support). For now, just pull
interesting data out of networkd, udev, and rtnl and present it to the
user, in a simple but useful output.
|
| |
|