sd-id128
systemd
sd-id128
3
sd-id128
SD_ID128_ALLF
SD_ID128_CONST_STR
SD_ID128_FORMAT_STR
SD_ID128_FORMAT_VAL
SD_ID128_MAKE
SD_ID128_MAKE_STR
SD_ID128_MAKE_UUID_STR
SD_ID128_NULL
SD_ID128_UUID_FORMAT_STR
sd_id128_equal
sd_id128_in_set
sd_id128_in_set_sentinel
sd_id128_in_setv
sd_id128_is_allf
sd_id128_is_null
sd_id128_t
APIs for processing 128-bit IDs
#include <systemd/sd-id128.h>
pkg-config --cflags --libs libsystemd
Description
sd-id128.h provides APIs to process and generate 128-bit ID values. The
128-bit ID values processed and generated by these APIs are a generalization of OSF UUIDs as defined by
RFC 4122 but use a simpler string format. These
functions impose no structure on the used IDs, much unlike OSF UUIDs or Microsoft GUIDs, but are mostly
compatible with those types of IDs.
See
sd_id128_to_string3,
sd_id128_randomize3
and
sd_id128_get_machine3
for more information about the implemented functions.
A 128-bit ID is implemented as the following
union type:
typedef union sd_id128 {
uint8_t bytes[16];
uint64_t qwords[2];
} sd_id128_t;
This union type allows accessing the 128-bit ID as 16
separate bytes or two 64-bit words. It is generally safer to
access the ID components by their 8-bit array to avoid endianness
issues. This union is intended to be passed call-by-value (as
opposed to call-by-reference) and may be directly manipulated by
clients.
A couple of macros are defined to denote and decode 128-bit
IDs:
SD_ID128_MAKE() may be used to denote a
constant 128-bit ID in source code. A commonly used idiom is to
assign a name to a 128-bit ID using this macro:
#define SD_MESSAGE_COREDUMP SD_ID128_MAKE(fc,2e,22,bc,6e,e6,47,b6,b9,07,29,ab,34,a2,50,b1)
SD_ID128_NULL may be used to refer to the 128-bit ID consisting of only
NUL bytes.
SD_ID128_MAKE_STR() is similar to SD_ID128_MAKE(), but creates a
const char* expression that can be conveniently used in message formats and such:
#include <stdio.h>
#define SD_MESSAGE_COREDUMP_STR SD_ID128_MAKE_STR(fc,2e,22,bc,6e,e6,47,b6,b9,07,29,ab,34,a2,50,b1)
int main(int argc, char **argv) {
puts("Match for coredumps: MESSAGE_ID=" SD_MESSAGE_COREDUMP_STR);
}
SD_ID128_CONST_STR() may be used to
convert constant 128-bit IDs into constant strings for output. The
following example code will output the string
"fc2e22bc6ee647b6b90729ab34a250b1":
int main(int argc, char *argv[]) {
puts("Match for coredumps: %s", SD_ID128_CONST_STR(SD_MESSAGE_COREDUMP));
}
SD_ID128_FORMAT_STR and SD_ID128_FORMAT_VAL() may
be used to format a 128-bit ID in a
printf3
format string, as shown in the following example:
int main(int argc, char *argv[]) {
sd_id128_t id;
id = SD_ID128_MAKE(ee,89,be,71,bd,6e,43,d6,91,e6,c5,5d,eb,03,02,07);
printf("The ID encoded in this C file is " SD_ID128_FORMAT_STR ".\n", SD_ID128_FORMAT_VAL(id));
return 0;
}
SD_ID128_UUID_FORMAT_STR and SD_ID128_MAKE_UUID_STR()
are similar to
SD_ID128_FORMAT_STR and SD_ID128_MAKE_STR(),
but include separating hyphens to conform to the
"canonical representation".
They format the string based on RFC4122 Variant 1 rules, i.e. converting from Big
Endian byte order. This matches behaviour of most other Linux userspace infrastructure. It's probably
best to avoid UUIDs of other variants, in order to avoid unnecessary ambiguities. All 128-bit IDs
generated by the sd-id128 APIs strictly conform to Variant 1 Version 4 UUIDs, as per RFC 4122.
Use sd_id128_equal() to compare two 128-bit IDs:
int main(int argc, char *argv[]) {
sd_id128_t a, b, c;
a = SD_ID128_MAKE(ee,89,be,71,bd,6e,43,d6,91,e6,c5,5d,eb,03,02,07);
b = SD_ID128_MAKE(f2,28,88,9c,5f,09,44,15,9d,d7,04,77,58,cb,e7,3e);
c = a;
assert(sd_id128_equal(a, c));
assert(!sd_id128_equal(a, b));
return 0;
}
Use sd_id128_is_null() to check if an 128-bit ID consists of only
NUL bytes:
assert(sd_id128_is_null(SD_ID128_NULL));
Similarly, use sd_id128_is_allf() to check if an 128-bit ID consists of only
0xFF bytes (all bits on):
assert(sd_id128_is_allf(SD_ID128_ALLF));
For convenience, sd_id128_in_set() takes a list of IDs and
returns true if any are equal to the first argument:
int main(int argc, char *argv[]) {
sd_id12_t a = SD_ID128_MAKE(ee,89,be,71,bd,6e,43,d6,91,e6,c5,5d,eb,03,02,07);
assert(sd_id128_in_set(a, a));
assert(sd_id128_in_set(a, a, a));
assert(!sd_id128_in_set(a));
assert(!sd_id128_in_set(a,
SD_ID128_MAKE(f2,28,88,9c,5f,09,44,15,9d,d7,04,77,58,cb,e7,3e)
SD_ID128_MAKE(2f,88,28,5f,9c,44,09,9d,d7,15,77,04,bc,85,7e,e3)
SD_ID128_ALLF));
return 0;
}
sd_id128_in_set() is defined as a macro over
sd_id128_in_set_sentinel(), adding the SD_ID128_NULL
sentinel. Since sd_id128_in_set_sentinel() uses SD_ID128_NULL
as the sentinel, SD_ID128_NULL cannot be otherwise placed in the argument list.
sd_id128_in_setv() is similar to
sd_id128_in_set_sentinel(), but takes a struct varargs
argument.
Note that new, randomized IDs may be generated with
systemd-id1281's
new command.
See Also
systemd1,
sd_id128_to_string3,
sd_id128_randomize3,
sd_id128_get_machine3,
printf3,
journalctl1,
sd-journal7,
pkg-config1,
machine-id5