systemd-stub
systemd
systemd-stub
7
systemd-stub
sd-stub
linuxx64.efi.stub
linuxia32.efi.stub
linuxaa64.efi.stub
A simple UEFI kernel boot stub
/usr/lib/systemd/boot/efi/linuxx64.efi.stub
/usr/lib/systemd/boot/efi/linuxia32.efi.stub
/usr/lib/systemd/boot/efi/linuxaa64.efi.stub
ESP/.../foo.efi.extra.d/*.cred
ESP/.../foo.efi.extra.d/*.raw
ESP/loader/credentials/*.cred
Description
systemd-stub (stored in per-architecture files
linuxx64.efi.stub, linuxia32.efi.stub,
linuxaa64.efi.stub on disk) is a simple UEFI boot stub. An UEFI boot stub is
attached to a Linux kernel binary image, and is a piece of code that runs in the UEFI firmware
environment before transitioning into the Linux kernel environment. The UEFI boot stub ensures a Linux
kernel is executable as regular UEFI binary, and is able to do various preparations before switching the
system into the Linux world.
The UEFI boot stub looks for various resources for the kernel invocation inside the UEFI PE binary
itself. This allows combining various resources inside a single PE binary image, which may then be signed
via UEFI SecureBoot as a whole, covering all individual resources at once. Specifically it may
include:
The ELF Linux kernel images will be looked for in the .linux PE
section of the executed image.
The initial RAM disk (initrd) will be looked for in the .initrd PE
section.
A compiled binary DeviceTree will be looked for in the .dtb PE
section.
The kernel command line to pass to the invoked kernel will be looked for in the
.cmdline PE section.
A boot splash (in Windows .BMP format) to show on screen before
invoking the kernel will be looked for in the .splash PE section.
If UEFI SecureBoot is enabled and the .cmdline section is present in the executed
image, any attempts to override the kernel command line by passing one as invocation parameters to the
EFI binary are ignored. Thus, in order to allow overriding the kernel command line, either disable UEFI
SecureBoot, or don't include a kernel command line PE section in the kernel image file. If a command line
is accepted via EFI invocation parameters to the EFI binary it is measured into TPM PCR 12 (if a TPM is
present).
If a DeviceTree is embedded in the .dtb section, it replaces an existing
DeviceTree in the corresponding EFI configuration table. systemd-stub will ask the firmware via the
EFI_DT_FIXUP_PROTOCOL for hardware specific fixups to the DeviceTree.
Companion Files
The systemd-stub UEFI boot stub automatically collects two types of auxiliary
companion files optionally placed in drop-in directories on the same partition as the EFI binary,
dynamically generates cpio initrd archives from them, and passes them to the kernel.
Specifically:
For a kernel binary called foo.efi, it
will look for files with the .cred suffix in a directory named
foo.efi.extra.d/ next to it. A cpio
archive is generated from all files found that way, placing them in the
/.extra/credentials/ directory of the initrd file hierarchy. The main initrd may
then access them in this directory. This is supposed to be used to store auxiliary, encrypted,
authenticated credentials for use with LoadCredentialEncrypted= in the UEFI System
Partition. See
systemd.exec5
and
systemd-creds1
for
details on encrypted credentials. The generated cpio archive is measured into TPM
PCR 12 (if a TPM is present).
Similarly, files foo.efi.extra.d/*.raw
are packed up in a cpio archive and placed in the /.extra/sysext/
directory in the initrd file hierarchy. This is supposed to be used to pass additional system extension
images to the initrd. See
systemd-sysext8 for
details on system extension images. The generated cpio archive containing these
system extension images is measured into TPM PCR 4 (if a TPM is present).
Files /loader/credentials/*.cred are packed up in a
cpio archive and placed in the /.extra/global_credentials/
directory of the initrd file hierarchy. This is supposed to be used to pass additional credentials to
the initrd, regardless of the kernel being booted. The generated cpio archive is
measured into TPM PCR 12 (if a TPM is present)
These mechanisms may be used to parameterize and extend trusted (i.e. signed), immutable initrd
images in a reasonably safe way: all data they contain is measured into TPM PCRs. On access they should be
further validated: in case of the credentials case by encrypting/authenticating them via TPM, as exposed
by systemd-creds encrypt -T (see
systemd-creds1 for
details); in case of the system extension images by using signed Verity images.
TPM2 PCR Notes
Note that when a unified kernel using systemd-stub is invoked the firmware will
measure it as a whole to TPM PCR 4, covering all embedded resources, such as the stub code itself, the
core kernel, the embedded initrd and kernel command line (see above for a full list).
Also note that the Linux kernel will measure all initrds it receives into TPM PCR 9. This means
every type of initrd will be measured twice: the initrd embedded in the kernel image will be measured to
both PCR 4 and PCR 9; the initrd synthesized from credentials will be measured to both PCR 12 and PCR 9;
the initrd synthesized from system extensions will be measured to both PCR 4 and PCR 9. Let's summarize
the OS resources and the PCRs they are measured to:
OS Resource PCR Summary
OS Resource
Measurement PCR
systemd-stub code (the entry point of the unified PE binary)
4
Boot splash (embedded in the unified PE binary)
4
Core kernel code (embedded in unified PE binary)
4
Main initrd (embedded in unified PE binary)
4 + 9
Default kernel command line (embedded in unified PE binary)
4
Overridden kernel command line
12
Credentials (synthesized initrd from companion files)
12 + 9
System Extensions (synthesized initrd from companion files)
4 + 9
EFI Variables
The following EFI variables are defined, set and read by systemd-stub, under the
vendor UUID 4a67b082-0a4c-41cf-b6c7-440b29bb8c4f, for communication between the boot
stub and the OS:
LoaderDevicePartUUID
Contains the partition UUID of the EFI System Partition the EFI image was run
from. systemd-gpt-auto-generator8
uses this information to automatically find the disk booted from, in order to discover various other
partitions on the same disk automatically.
LoaderFirmwareInfo
LoaderFirmwareType
Brief firmware information. Use
bootctl1 to view this
data.
LoaderImageIdentifier
The path of EFI executable, relative to the EFI System Partition's root
directory. Use
bootctl1 to view
this data.
StubInfo
Brief stub information. Use
bootctl1 to view
this data.
Note that some of the variables above may also be set by the boot loader. The stub will only set
them if they aren't set already. Some of these variables are defined by the Boot Loader Interface.
Assembling Kernel Images
In order to assemble an UEFI PE kernel image from various components as described above, use an
objcopy1 command line
like this:
objcopy \
--add-section .osrel=os-release --change-section-vma .osrel=0x20000 \
--add-section .cmdline=cmdline.txt --change-section-vma .cmdline=0x30000 \
--add-section .dtb=devicetree.dtb --change-section-vma .dtb=0x40000 \
--add-section .splash=splash.bmp --change-section-vma .splash=0x100000 \
--add-section .linux=vmlinux --change-section-vma .linux=0x2000000 \
--add-section .initrd=initrd.cpio --change-section-vma .initrd=0x3000000 \
/usr/lib/systemd/boot/efi/linuxx64.efi.stub \
foo-unsigned.efi
This generates one PE executable file foo-unsigned.efi from the six individual
files for OS release information, kernel command line, boot splash image, kernel image, main initrd and
UEFI boot stub.
To then sign the resulting image for UEFI SecureBoot use an
sbsign1 command like
the following:
sbsign \
--key mykey.pem \
--cert mykey.crt \
--output foo.efi \
foo-unsigned.efi
This expects a pair of X.509 private key and certificate as parameters and then signs the UEFI PE
executable we generated above for UEFI SecureBoot and generates a signed UEFI PE executable as
result.
See Also
systemd-boot7,
systemd.exec5,
systemd-creds1,
systemd-sysext8,
Boot Loader Specification,
Boot Loader Interface,
objcopy1,
sbsign1