/* SPDX-License-Identifier: LGPL-2.1-or-later */ #pragma once #include #include #include #include #include #include #include #include #include #include "alloc-util.h" #include "format-util.h" #include "macro.h" #include "namespace-util.h" #include "time-util.h" #define procfs_file_alloca(pid, field) \ ({ \ pid_t _pid_ = (pid); \ const char *_field_ = (field); \ char *_r_; \ if (_pid_ == 0) { \ _r_ = newa(char, STRLEN("/proc/self/") + strlen(_field_) + 1); \ strcpy(stpcpy(_r_, "/proc/self/"), _field_); \ } else { \ _r_ = newa(char, STRLEN("/proc/") + DECIMAL_STR_MAX(pid_t) + 1 + strlen(_field_) + 1); \ sprintf(_r_, "/proc/" PID_FMT "/%s", _pid_, _field_); \ } \ (const char*) _r_; \ }) typedef enum ProcessCmdlineFlags { PROCESS_CMDLINE_COMM_FALLBACK = 1 << 0, PROCESS_CMDLINE_USE_LOCALE = 1 << 1, PROCESS_CMDLINE_QUOTE = 1 << 2, PROCESS_CMDLINE_QUOTE_POSIX = 1 << 3, } ProcessCmdlineFlags; int pid_get_comm(pid_t pid, char **ret); int pidref_get_comm(const PidRef *pid, char **ret); int pid_get_cmdline(pid_t pid, size_t max_columns, ProcessCmdlineFlags flags, char **ret); int pidref_get_cmdline(const PidRef *pid, size_t max_columns, ProcessCmdlineFlags flags, char **ret); int pid_get_cmdline_strv(pid_t pid, ProcessCmdlineFlags flags, char ***ret); int pidref_get_cmdline_strv(const PidRef *pid, ProcessCmdlineFlags flags, char ***ret); int get_process_exe(pid_t pid, char **ret); int pid_get_uid(pid_t pid, uid_t *ret); int pidref_get_uid(const PidRef *pid, uid_t *ret); int get_process_gid(pid_t pid, gid_t *ret); int get_process_capeff(pid_t pid, char **ret); int get_process_cwd(pid_t pid, char **ret); int get_process_root(pid_t pid, char **ret); int get_process_environ(pid_t pid, char **ret); int get_process_ppid(pid_t pid, pid_t *ret); int pid_get_start_time(pid_t pid, usec_t *ret); int pidref_get_start_time(const PidRef* pid, usec_t *ret); int get_process_umask(pid_t pid, mode_t *ret); int container_get_leader(const char *machine, pid_t *pid); int namespace_get_leader(pid_t pid, NamespaceType type, pid_t *ret); int wait_for_terminate(pid_t pid, siginfo_t *status); typedef enum WaitFlags { WAIT_LOG_ABNORMAL = 1 << 0, WAIT_LOG_NON_ZERO_EXIT_STATUS = 1 << 1, /* A shortcut for requesting the most complete logging */ WAIT_LOG = WAIT_LOG_ABNORMAL|WAIT_LOG_NON_ZERO_EXIT_STATUS, } WaitFlags; int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags); int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout); void sigkill_wait(pid_t pid); void sigkill_waitp(pid_t *pid); void sigterm_wait(pid_t pid); void sigkill_nowait(pid_t pid); void sigkill_nowaitp(pid_t *pid); int kill_and_sigcont(pid_t pid, int sig); int pid_is_kernel_thread(pid_t pid); int pidref_is_kernel_thread(const PidRef *pid); int getenv_for_pid(pid_t pid, const char *field, char **_value); int pid_is_alive(pid_t pid); int pidref_is_alive(const PidRef *pidref); int pid_is_unwaited(pid_t pid); int pidref_is_unwaited(const PidRef *pidref); int pid_is_my_child(pid_t pid); int pidref_is_my_child(const PidRef *pidref); int pid_from_same_root_fs(pid_t pid); bool is_main_thread(void); bool oom_score_adjust_is_valid(int oa); #ifndef PERSONALITY_INVALID /* personality(2) documents that 0xFFFFFFFFUL is used for querying the * current personality, hence let's use that here as error * indicator. */ #define PERSONALITY_INVALID 0xFFFFFFFFUL #endif /* The personality() syscall returns a 32-bit value where the top three bytes are reserved for flags that * emulate historical or architectural quirks, and only the least significant byte reflects the actual * personality we're interested in. */ #define OPINIONATED_PERSONALITY_MASK 0xFFUL unsigned long personality_from_string(const char *p); const char* personality_to_string(unsigned long); int safe_personality(unsigned long p); int opinionated_personality(unsigned long *ret); const char* sigchld_code_to_string(int i) _const_; int sigchld_code_from_string(const char *s) _pure_; int sched_policy_to_string_alloc(int i, char **s); int sched_policy_from_string(const char *s); static inline pid_t PTR_TO_PID(const void *p) { return (pid_t) ((uintptr_t) p); } static inline void* PID_TO_PTR(pid_t pid) { return (void*) ((uintptr_t) pid); } void valgrind_summary_hack(void); int pid_compare_func(const pid_t *a, const pid_t *b); static inline bool nice_is_valid(int n) { return n >= PRIO_MIN && n < PRIO_MAX; } static inline bool sched_policy_is_valid(int i) { return IN_SET(i, SCHED_OTHER, SCHED_BATCH, SCHED_IDLE, SCHED_FIFO, SCHED_RR); } static inline bool sched_priority_is_valid(int i) { return i >= 0 && i <= sched_get_priority_max(SCHED_RR); } static inline bool pid_is_valid(pid_t p) { return p > 0; } pid_t getpid_cached(void); void reset_cached_pid(void); int must_be_root(void); pid_t clone_with_nested_stack(int (*fn)(void *), int flags, void *userdata); /* 💣 Note that FORK_NEW_USERNS, FORK_NEW_MOUNTNS, or FORK_NEW_NETNS should not be called in threaded * programs, because they cause us to use raw_clone() which does not synchronize the glibc malloc() locks, * and thus will cause deadlocks if the parent uses threads and the child does memory allocations. Hence: if * the parent is threaded these flags may not be used. These flags cannot be used if the parent uses threads * or the child uses malloc(). 💣 */ typedef enum ForkFlags { FORK_RESET_SIGNALS = 1 << 0, /* Reset all signal handlers and signal mask */ FORK_CLOSE_ALL_FDS = 1 << 1, /* Close all open file descriptors in the child, except for 0,1,2 */ FORK_DEATHSIG_SIGTERM = 1 << 2, /* Set PR_DEATHSIG in the child to SIGTERM */ FORK_DEATHSIG_SIGINT = 1 << 3, /* Set PR_DEATHSIG in the child to SIGINT */ FORK_DEATHSIG_SIGKILL = 1 << 4, /* Set PR_DEATHSIG in the child to SIGKILL */ FORK_REARRANGE_STDIO = 1 << 5, /* Connect 0,1,2 to specified fds or /dev/null */ FORK_REOPEN_LOG = 1 << 6, /* Reopen log connection */ FORK_LOG = 1 << 7, /* Log above LOG_DEBUG log level about failures */ FORK_WAIT = 1 << 8, /* Wait until child exited */ FORK_NEW_MOUNTNS = 1 << 9, /* Run child in its own mount namespace 💣 DO NOT USE IN THREADED PROGRAMS! 💣 */ FORK_MOUNTNS_SLAVE = 1 << 10, /* Make child's mount namespace MS_SLAVE */ FORK_PRIVATE_TMP = 1 << 11, /* Mount new /tmp/ in the child (combine with FORK_NEW_MOUNTNS!) */ FORK_RLIMIT_NOFILE_SAFE = 1 << 12, /* Set RLIMIT_NOFILE soft limit to 1K for select() compat */ FORK_STDOUT_TO_STDERR = 1 << 13, /* Make stdout a copy of stderr */ FORK_FLUSH_STDIO = 1 << 14, /* fflush() stdout (and stderr) before forking */ FORK_NEW_USERNS = 1 << 15, /* Run child in its own user namespace 💣 DO NOT USE IN THREADED PROGRAMS! 💣 */ FORK_CLOEXEC_OFF = 1 << 16, /* In the child: turn off O_CLOEXEC on all fds in except_fds[] */ FORK_KEEP_NOTIFY_SOCKET = 1 << 17, /* Unless this specified, $NOTIFY_SOCKET will be unset. */ FORK_DETACH = 1 << 18, /* Double fork if needed to ensure PID1/subreaper is parent */ FORK_NEW_NETNS = 1 << 19, /* Run child in its own network namespace 💣 DO NOT USE IN THREADED PROGRAMS! 💣 */ FORK_PACK_FDS = 1 << 20, /* Rearrange the passed FDs to be FD 3,4,5,etc. Updates the array in place (combine with FORK_CLOSE_ALL_FDS!) */ } ForkFlags; int safe_fork_full( const char *name, const int stdio_fds[3], int except_fds[], size_t n_except_fds, ForkFlags flags, pid_t *ret_pid); static inline int safe_fork(const char *name, ForkFlags flags, pid_t *ret_pid) { return safe_fork_full(name, NULL, NULL, 0, flags, ret_pid); } int pidref_safe_fork_full( const char *name, const int stdio_fds[3], int except_fds[], size_t n_except_fds, ForkFlags flags, PidRef *ret_pid); static inline int pidref_safe_fork(const char *name, ForkFlags flags, PidRef *ret_pid) { return pidref_safe_fork_full(name, NULL, NULL, 0, flags, ret_pid); } int namespace_fork( const char *outer_name, const char *inner_name, int except_fds[], size_t n_except_fds, ForkFlags flags, int pidns_fd, int mntns_fd, int netns_fd, int userns_fd, int root_fd, pid_t *ret_pid); int set_oom_score_adjust(int value); int get_oom_score_adjust(int *ret); /* The highest possibly (theoretic) pid_t value on this architecture. */ #define PID_T_MAX ((pid_t) INT32_MAX) /* The maximum number of concurrent processes Linux allows on this architecture, as well as the highest valid PID value * the kernel will potentially assign. This reflects a value compiled into the kernel (PID_MAX_LIMIT), and sets the * upper boundary on what may be written to the /proc/sys/kernel/pid_max sysctl (but do note that the sysctl is off by * 1, since PID 0 can never exist and there can hence only be one process less than the limit would suggest). Since * these values are documented in proc(5) we feel quite confident that they are stable enough for the near future at * least to define them here too. */ #define TASKS_MAX 4194303U assert_cc(TASKS_MAX <= (unsigned long) PID_T_MAX); /* Like TAKE_PTR() but for pid_t, resetting them to 0 */ #define TAKE_PID(pid) TAKE_GENERIC(pid, pid_t, 0) int pidfd_get_pid(int fd, pid_t *ret); int pidfd_verify_pid(int pidfd, pid_t pid); int setpriority_closest(int priority); _noreturn_ void freeze(void); int get_process_threads(pid_t pid); int is_reaper_process(void); int make_reaper_process(bool b); int posix_spawn_wrapper( const char *path, char * const *argv, char * const *envp, const char *cgroup, PidRef *ret_pidref); int proc_dir_open(DIR **ret); int proc_dir_read(DIR *d, pid_t *ret); int proc_dir_read_pidref(DIR *d, PidRef *ret);