/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "alloc-util.h" #include "blkid-util.h" #include "bootspec.h" #include "copy.h" #include "dirent-util.h" #include "efi-loader.h" #include "efivars.h" #include "env-util.h" #include "escape.h" #include "fd-util.h" #include "fileio.h" #include "fs-util.h" #include "locale-util.h" #include "main-func.h" #include "mkdir.h" #include "pager.h" #include "parse-util.h" #include "pretty-print.h" #include "random-util.h" #include "rm-rf.h" #include "stat-util.h" #include "stdio-util.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" #include "tmpfile-util.h" #include "umask-util.h" #include "utf8.h" #include "util.h" #include "verbs.h" #include "virt.h" static char *arg_esp_path = NULL; static char *arg_xbootldr_path = NULL; static bool arg_print_esp_path = false; static bool arg_print_dollar_boot_path = false; static bool arg_touch_variables = true; static PagerFlags arg_pager_flags = 0; static bool arg_graceful = false; STATIC_DESTRUCTOR_REGISTER(arg_esp_path, freep); STATIC_DESTRUCTOR_REGISTER(arg_xbootldr_path, freep); static const char *arg_dollar_boot_path(void) { /* $BOOT shall be the XBOOTLDR partition if it exists, and otherwise the ESP */ return arg_xbootldr_path ?: arg_esp_path; } static int acquire_esp( bool unprivileged_mode, uint32_t *ret_part, uint64_t *ret_pstart, uint64_t *ret_psize, sd_id128_t *ret_uuid) { char *np; int r; /* Find the ESP, and log about errors. Note that find_esp_and_warn() will log in all error cases on * its own, except for ENOKEY (which is good, we want to show our own message in that case, * suggesting use of --esp-path=) and EACCESS (only when we request unprivileged mode; in this case * we simply eat up the error here, so that --list and --status work too, without noise about * this). */ r = find_esp_and_warn(arg_esp_path, unprivileged_mode, &np, ret_part, ret_pstart, ret_psize, ret_uuid); if (r == -ENOKEY) return log_error_errno(r, "Couldn't find EFI system partition. It is recommended to mount it to /boot or /efi.\n" "Alternatively, use --esp-path= to specify path to mount point."); if (r < 0) return r; free_and_replace(arg_esp_path, np); log_debug("Using EFI System Partition at %s.", arg_esp_path); return 1; } static int acquire_xbootldr(bool unprivileged_mode, sd_id128_t *ret_uuid) { char *np; int r; r = find_xbootldr_and_warn(arg_xbootldr_path, unprivileged_mode, &np, ret_uuid); if (r == -ENOKEY) { log_debug_errno(r, "Didn't find an XBOOTLDR partition, using the ESP as $BOOT."); if (ret_uuid) *ret_uuid = SD_ID128_NULL; arg_xbootldr_path = mfree(arg_xbootldr_path); return 0; } if (r < 0) return r; free_and_replace(arg_xbootldr_path, np); log_debug("Using XBOOTLDR partition at %s as $BOOT.", arg_xbootldr_path); return 1; } /* search for "#### LoaderInfo: systemd-boot 218 ####" string inside the binary */ static int get_file_version(int fd, char **v) { struct stat st; char *buf; const char *s, *e; char *x = NULL; int r = 0; assert(fd >= 0); assert(v); if (fstat(fd, &st) < 0) return log_error_errno(errno, "Failed to stat EFI binary: %m"); r = stat_verify_regular(&st); if (r < 0) return log_error_errno(r, "EFI binary is not a regular file: %m"); if (st.st_size < 27) { *v = NULL; return 0; } buf = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (buf == MAP_FAILED) return log_error_errno(errno, "Failed to memory map EFI binary: %m"); s = memmem(buf, st.st_size - 8, "#### LoaderInfo: ", 17); if (!s) goto finish; s += 17; e = memmem(s, st.st_size - (s - buf), " ####", 5); if (!e || e - s < 3) { r = log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Malformed version string."); goto finish; } x = strndup(s, e - s); if (!x) { r = log_oom(); goto finish; } r = 1; finish: (void) munmap(buf, st.st_size); *v = x; return r; } static int enumerate_binaries(const char *esp_path, const char *path, const char *prefix) { _cleanup_closedir_ DIR *d = NULL; struct dirent *de; const char *p; int c = 0, r; assert(esp_path); assert(path); p = prefix_roota(esp_path, path); d = opendir(p); if (!d) { if (errno == ENOENT) return 0; return log_error_errno(errno, "Failed to read \"%s\": %m", p); } FOREACH_DIRENT(de, d, break) { _cleanup_free_ char *v = NULL; _cleanup_close_ int fd = -1; if (!endswith_no_case(de->d_name, ".efi")) continue; if (prefix && !startswith_no_case(de->d_name, prefix)) continue; fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC); if (fd < 0) return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name); r = get_file_version(fd, &v); if (r < 0) return r; if (r > 0) printf(" File: %s/%s/%s (%s%s%s)\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name, ansi_highlight(), v, ansi_normal()); else printf(" File: %s/%s/%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name); c++; } return c; } static int status_binaries(const char *esp_path, sd_id128_t partition) { int r; printf("Available Boot Loaders on ESP:\n"); if (!esp_path) { printf(" ESP: Cannot find or access mount point of ESP.\n\n"); return -ENOENT; } printf(" ESP: %s", esp_path); if (!sd_id128_is_null(partition)) printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")", SD_ID128_FORMAT_VAL(partition)); printf("\n"); r = enumerate_binaries(esp_path, "EFI/systemd", NULL); if (r < 0) goto finish; if (r == 0) log_info("systemd-boot not installed in ESP."); r = enumerate_binaries(esp_path, "EFI/BOOT", "boot"); if (r < 0) goto finish; if (r == 0) log_info("No default/fallback boot loader installed in ESP."); r = 0; finish: printf("\n"); return r; } static int print_efi_option(uint16_t id, bool in_order) { _cleanup_free_ char *title = NULL; _cleanup_free_ char *path = NULL; sd_id128_t partition; bool active; int r = 0; r = efi_get_boot_option(id, &title, &partition, &path, &active); if (r < 0) return r; /* print only configured entries with partition information */ if (!path || sd_id128_is_null(partition)) return 0; efi_tilt_backslashes(path); printf(" Title: %s%s%s\n", ansi_highlight(), strna(title), ansi_normal()); printf(" ID: 0x%04X\n", id); printf(" Status: %sactive%s\n", active ? "" : "in", in_order ? ", boot-order" : ""); printf(" Partition: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n", SD_ID128_FORMAT_VAL(partition)); printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path); printf("\n"); return 0; } static int status_variables(void) { _cleanup_free_ uint16_t *options = NULL, *order = NULL; int n_options, n_order, i; n_options = efi_get_boot_options(&options); if (n_options == -ENOENT) return log_error_errno(n_options, "Failed to access EFI variables, efivarfs" " needs to be available at /sys/firmware/efi/efivars/."); if (n_options < 0) return log_error_errno(n_options, "Failed to read EFI boot entries: %m"); n_order = efi_get_boot_order(&order); if (n_order == -ENOENT) n_order = 0; else if (n_order < 0) return log_error_errno(n_order, "Failed to read EFI boot order: %m"); /* print entries in BootOrder first */ printf("Boot Loaders Listed in EFI Variables:\n"); for (i = 0; i < n_order; i++) print_efi_option(order[i], true); /* print remaining entries */ for (i = 0; i < n_options; i++) { int j; for (j = 0; j < n_order; j++) if (options[i] == order[j]) goto next_option; print_efi_option(options[i], false); next_option: continue; } return 0; } static int boot_entry_file_check(const char *root, const char *p) { _cleanup_free_ char *path; path = path_join(root, p); if (!path) return log_oom(); if (access(path, F_OK) < 0) return -errno; return 0; } static void boot_entry_file_list(const char *field, const char *root, const char *p, int *ret_status) { int status = boot_entry_file_check(root, p); printf("%13s%s ", strempty(field), field ? ":" : " "); if (status < 0) { errno = -status; printf("%s%s%s (%m)\n", ansi_highlight_red(), p, ansi_normal()); } else printf("%s\n", p); if (*ret_status == 0 && status < 0) *ret_status = status; } static int boot_entry_show(const BootEntry *e, bool show_as_default) { int status = 0; /* Returns 0 on success, negative on processing error, and positive if something is wrong with the boot entry itself. */ assert(e); printf(" title: %s%s%s" "%s%s%s\n", ansi_highlight(), boot_entry_title(e), ansi_normal(), ansi_highlight_green(), show_as_default ? " (default)" : "", ansi_normal()); if (e->id) printf(" id: %s\n", e->id); if (e->path) { _cleanup_free_ char *link = NULL; /* Let's urlify the link to make it easy to view in an editor, but only if it is a text * file. Unified images are binary ELFs, and EFI variables are not pure text either. */ if (e->type == BOOT_ENTRY_CONF) (void) terminal_urlify_path(e->path, NULL, &link); printf(" source: %s\n", link ?: e->path); } if (e->version) printf(" version: %s\n", e->version); if (e->machine_id) printf(" machine-id: %s\n", e->machine_id); if (e->architecture) printf(" architecture: %s\n", e->architecture); if (e->kernel) boot_entry_file_list("linux", e->root, e->kernel, &status); char **s; STRV_FOREACH(s, e->initrd) boot_entry_file_list(s == e->initrd ? "initrd" : NULL, e->root, *s, &status); if (!strv_isempty(e->options)) { _cleanup_free_ char *t = NULL, *t2 = NULL; _cleanup_strv_free_ char **ts = NULL; t = strv_join(e->options, " "); if (!t) return log_oom(); ts = strv_split_newlines(t); if (!ts) return log_oom(); t2 = strv_join(ts, "\n "); if (!t2) return log_oom(); printf(" options: %s\n", t2); } if (e->device_tree) boot_entry_file_list("devicetree", e->root, e->device_tree, &status); return -status; } static int status_entries( const char *esp_path, sd_id128_t esp_partition_uuid, const char *xbootldr_path, sd_id128_t xbootldr_partition_uuid) { _cleanup_(boot_config_free) BootConfig config = {}; sd_id128_t dollar_boot_partition_uuid; const char *dollar_boot_path; int r; assert(esp_path || xbootldr_path); if (xbootldr_path) { dollar_boot_path = xbootldr_path; dollar_boot_partition_uuid = xbootldr_partition_uuid; } else { dollar_boot_path = esp_path; dollar_boot_partition_uuid = esp_partition_uuid; } printf("Boot Loader Entries:\n" " $BOOT: %s", dollar_boot_path); if (!sd_id128_is_null(dollar_boot_partition_uuid)) printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")", SD_ID128_FORMAT_VAL(dollar_boot_partition_uuid)); printf("\n\n"); r = boot_entries_load_config(esp_path, xbootldr_path, &config); if (r < 0) return r; if (config.default_entry < 0) printf("%zu entries, no entry could be determined as default.\n", config.n_entries); else { printf("Default Boot Loader Entry:\n"); r = boot_entry_show(config.entries + config.default_entry, false); if (r > 0) /* < 0 is already logged by the function itself, let's just emit an extra warning if the default entry is broken */ printf("\nWARNING: default boot entry is broken\n"); } return 0; } static int compare_product(const char *a, const char *b) { size_t x, y; assert(a); assert(b); x = strcspn(a, " "); y = strcspn(b, " "); if (x != y) return x < y ? -1 : x > y ? 1 : 0; return strncmp(a, b, x); } static int compare_version(const char *a, const char *b) { assert(a); assert(b); a += strcspn(a, " "); a += strspn(a, " "); b += strcspn(b, " "); b += strspn(b, " "); return strverscmp(a, b); } static int version_check(int fd_from, const char *from, int fd_to, const char *to) { _cleanup_free_ char *a = NULL, *b = NULL; int r; assert(fd_from >= 0); assert(from); assert(fd_to >= 0); assert(to); r = get_file_version(fd_from, &a); if (r < 0) return r; if (r == 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Source file \"%s\" does not carry version information!", from); r = get_file_version(fd_to, &b); if (r < 0) return r; if (r == 0 || compare_product(a, b) != 0) return log_notice_errno(SYNTHETIC_ERRNO(EEXIST), "Skipping \"%s\", since it's owned by another boot loader.", to); if (compare_version(a, b) < 0) return log_warning_errno(SYNTHETIC_ERRNO(ESTALE), "Skipping \"%s\", since a newer boot loader version exists already.", to); return 0; } static int copy_file_with_version_check(const char *from, const char *to, bool force) { _cleanup_close_ int fd_from = -1, fd_to = -1; _cleanup_free_ char *t = NULL; int r; fd_from = open(from, O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd_from < 0) return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", from); if (!force) { fd_to = open(to, O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd_to < 0) { if (errno != -ENOENT) return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", to); } else { r = version_check(fd_from, from, fd_to, to); if (r < 0) return r; if (lseek(fd_from, 0, SEEK_SET) == (off_t) -1) return log_error_errno(errno, "Failed to seek in \"%s\": %m", from); fd_to = safe_close(fd_to); } } r = tempfn_random(to, NULL, &t); if (r < 0) return log_oom(); RUN_WITH_UMASK(0000) { fd_to = open(t, O_WRONLY|O_CREAT|O_CLOEXEC|O_EXCL|O_NOFOLLOW, 0644); if (fd_to < 0) return log_error_errno(errno, "Failed to open \"%s\" for writing: %m", t); } r = copy_bytes(fd_from, fd_to, (uint64_t) -1, COPY_REFLINK); if (r < 0) { (void) unlink(t); return log_error_errno(r, "Failed to copy data from \"%s\" to \"%s\": %m", from, t); } (void) copy_times(fd_from, fd_to, 0); if (fsync(fd_to) < 0) { (void) unlink_noerrno(t); return log_error_errno(errno, "Failed to copy data from \"%s\" to \"%s\": %m", from, t); } (void) fsync_directory_of_file(fd_to); if (renameat(AT_FDCWD, t, AT_FDCWD, to) < 0) { (void) unlink_noerrno(t); return log_error_errno(errno, "Failed to rename \"%s\" to \"%s\": %m", t, to); } log_info("Copied \"%s\" to \"%s\".", from, to); return 0; } static int mkdir_one(const char *prefix, const char *suffix) { _cleanup_free_ char *p = NULL; p = path_join(prefix, suffix); if (mkdir(p, 0700) < 0) { if (errno != EEXIST) return log_error_errno(errno, "Failed to create \"%s\": %m", p); } else log_info("Created \"%s\".", p); return 0; } static const char *const esp_subdirs[] = { /* The directories to place in the ESP */ "EFI", "EFI/systemd", "EFI/BOOT", "loader", NULL }; static const char *const dollar_boot_subdirs[] = { /* The directories to place in the XBOOTLDR partition or the ESP, depending what exists */ "loader", "loader/entries", /* Type #1 entries */ "EFI", "EFI/Linux", /* Type #2 entries */ NULL }; static int create_subdirs(const char *root, const char * const *subdirs) { const char *const *i; int r; STRV_FOREACH(i, subdirs) { r = mkdir_one(root, *i); if (r < 0) return r; } return 0; } static int copy_one_file(const char *esp_path, const char *name, bool force) { const char *e; char *p, *q; int r; p = strjoina(BOOTLIBDIR "/", name); q = strjoina(esp_path, "/EFI/systemd/", name); r = copy_file_with_version_check(p, q, force); e = startswith(name, "systemd-boot"); if (e) { int k; char *v; /* Create the EFI default boot loader name (specified for removable devices) */ v = strjoina(esp_path, "/EFI/BOOT/BOOT", e); ascii_strupper(strrchr(v, '/') + 1); k = copy_file_with_version_check(p, v, force); if (k < 0 && r == 0) r = k; } return r; } static int install_binaries(const char *esp_path, bool force) { struct dirent *de; _cleanup_closedir_ DIR *d = NULL; int r = 0; d = opendir(BOOTLIBDIR); if (!d) return log_error_errno(errno, "Failed to open \""BOOTLIBDIR"\": %m"); FOREACH_DIRENT(de, d, return log_error_errno(errno, "Failed to read \""BOOTLIBDIR"\": %m")) { int k; if (!endswith_no_case(de->d_name, ".efi")) continue; k = copy_one_file(esp_path, de->d_name, force); if (k < 0 && r == 0) r = k; } return r; } static bool same_entry(uint16_t id, sd_id128_t uuid, const char *path) { _cleanup_free_ char *opath = NULL; sd_id128_t ouuid; int r; r = efi_get_boot_option(id, NULL, &ouuid, &opath, NULL); if (r < 0) return false; if (!sd_id128_equal(uuid, ouuid)) return false; if (!streq_ptr(path, opath)) return false; return true; } static int find_slot(sd_id128_t uuid, const char *path, uint16_t *id) { _cleanup_free_ uint16_t *options = NULL; int n, i; n = efi_get_boot_options(&options); if (n < 0) return n; /* find already existing systemd-boot entry */ for (i = 0; i < n; i++) if (same_entry(options[i], uuid, path)) { *id = options[i]; return 1; } /* find free slot in the sorted BootXXXX variable list */ for (i = 0; i < n; i++) if (i != options[i]) { *id = i; return 1; } /* use the next one */ if (i == 0xffff) return -ENOSPC; *id = i; return 0; } static int insert_into_order(uint16_t slot, bool first) { _cleanup_free_ uint16_t *order = NULL; uint16_t *t; int n, i; n = efi_get_boot_order(&order); if (n <= 0) /* no entry, add us */ return efi_set_boot_order(&slot, 1); /* are we the first and only one? */ if (n == 1 && order[0] == slot) return 0; /* are we already in the boot order? */ for (i = 0; i < n; i++) { if (order[i] != slot) continue; /* we do not require to be the first one, all is fine */ if (!first) return 0; /* move us to the first slot */ memmove(order + 1, order, i * sizeof(uint16_t)); order[0] = slot; return efi_set_boot_order(order, n); } /* extend array */ t = reallocarray(order, n + 1, sizeof(uint16_t)); if (!t) return -ENOMEM; order = t; /* add us to the top or end of the list */ if (first) { memmove(order + 1, order, n * sizeof(uint16_t)); order[0] = slot; } else order[n] = slot; return efi_set_boot_order(order, n + 1); } static int remove_from_order(uint16_t slot) { _cleanup_free_ uint16_t *order = NULL; int n, i; n = efi_get_boot_order(&order); if (n <= 0) return n; for (i = 0; i < n; i++) { if (order[i] != slot) continue; if (i + 1 < n) memmove(order + i, order + i+1, (n - i) * sizeof(uint16_t)); return efi_set_boot_order(order, n - 1); } return 0; } static int install_variables(const char *esp_path, uint32_t part, uint64_t pstart, uint64_t psize, sd_id128_t uuid, const char *path, bool first) { const char *p; uint16_t slot; int r; if (!is_efi_boot()) { log_warning("Not booted with EFI, skipping EFI variable setup."); return 0; } p = prefix_roota(esp_path, path); if (access(p, F_OK) < 0) { if (errno == ENOENT) return 0; return log_error_errno(errno, "Cannot access \"%s\": %m", p); } r = find_slot(uuid, path, &slot); if (r < 0) return log_error_errno(r, r == -ENOENT ? "Failed to access EFI variables. Is the \"efivarfs\" filesystem mounted?" : "Failed to determine current boot order: %m"); if (first || r == 0) { r = efi_add_boot_option(slot, "Linux Boot Manager", part, pstart, psize, uuid, path); if (r < 0) return log_error_errno(r, "Failed to create EFI Boot variable entry: %m"); log_info("Created EFI boot entry \"Linux Boot Manager\"."); } return insert_into_order(slot, first); } static int remove_boot_efi(const char *esp_path) { _cleanup_closedir_ DIR *d = NULL; struct dirent *de; const char *p; int r, c = 0; p = prefix_roota(esp_path, "/EFI/BOOT"); d = opendir(p); if (!d) { if (errno == ENOENT) return 0; return log_error_errno(errno, "Failed to open directory \"%s\": %m", p); } FOREACH_DIRENT(de, d, break) { _cleanup_close_ int fd = -1; _cleanup_free_ char *v = NULL; if (!endswith_no_case(de->d_name, ".efi")) continue; if (!startswith_no_case(de->d_name, "boot")) continue; fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC); if (fd < 0) return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name); r = get_file_version(fd, &v); if (r < 0) return r; if (r > 0 && startswith(v, "systemd-boot ")) { r = unlinkat(dirfd(d), de->d_name, 0); if (r < 0) return log_error_errno(errno, "Failed to remove \"%s/%s\": %m", p, de->d_name); log_info("Removed \"%s/%s\".", p, de->d_name); } c++; } return c; } static int rmdir_one(const char *prefix, const char *suffix) { const char *p; p = prefix_roota(prefix, suffix); if (rmdir(p) < 0) { bool ignore = IN_SET(errno, ENOENT, ENOTEMPTY); log_full_errno(ignore ? LOG_DEBUG : LOG_ERR, errno, "Failed to remove directory \"%s\": %m", p); if (!ignore) return -errno; } else log_info("Removed \"%s\".", p); return 0; } static int remove_subdirs(const char *root, const char *const *subdirs) { int r, q; /* We use recursion here to destroy the directories in reverse order. Which should be safe given how * short the array is. */ if (!subdirs[0]) /* A the end of the list */ return 0; r = remove_subdirs(root, subdirs + 1); q = rmdir_one(root, subdirs[0]); return r < 0 ? r : q; } static int remove_machine_id_directory(const char *root, sd_id128_t machine_id) { char buf[SD_ID128_STRING_MAX]; assert(root); return rmdir_one(root, sd_id128_to_string(machine_id, buf)); } static int remove_binaries(const char *esp_path) { const char *p; int r, q; p = prefix_roota(esp_path, "/EFI/systemd"); r = rm_rf(p, REMOVE_ROOT|REMOVE_PHYSICAL); q = remove_boot_efi(esp_path); if (q < 0 && r == 0) r = q; return r; } static int remove_file(const char *root, const char *file) { const char *p; assert(root); assert(file); p = prefix_roota(root, file); if (unlink(p) < 0) { log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_ERR, errno, "Failed to unlink file \"%s\": %m", p); return errno == ENOENT ? 0 : -errno; } log_info("Removed \"%s\".", p); return 1; } static int remove_variables(sd_id128_t uuid, const char *path, bool in_order) { uint16_t slot; int r; if (!is_efi_boot()) return 0; r = find_slot(uuid, path, &slot); if (r != 1) return 0; r = efi_remove_boot_option(slot); if (r < 0) return r; if (in_order) return remove_from_order(slot); return 0; } static int remove_loader_variables(void) { const char *p; int r = 0; /* Remove all persistent loader variables we define */ FOREACH_STRING(p, "LoaderConfigTimeout", "LoaderConfigTimeoutOneShot", "LoaderEntryDefault", "LoaderEntryOneShot", "LoaderSystemToken") { int q; q = efi_set_variable(EFI_VENDOR_LOADER, p, NULL, 0); if (q == -ENOENT) continue; if (q < 0) { log_warning_errno(q, "Failed to remove %s variable: %m", p); if (r >= 0) r = q; } else log_info("Removed EFI variable %s.", p); } return r; } static int install_loader_config(const char *esp_path, sd_id128_t machine_id) { char machine_string[SD_ID128_STRING_MAX]; _cleanup_(unlink_and_freep) char *t = NULL; _cleanup_fclose_ FILE *f = NULL; const char *p; int r, fd; p = prefix_roota(esp_path, "/loader/loader.conf"); if (access(p, F_OK) >= 0) /* Silently skip creation if the file already exists (early check) */ return 0; fd = open_tmpfile_linkable(p, O_WRONLY|O_CLOEXEC, &t); if (fd < 0) return log_error_errno(fd, "Failed to open \"%s\" for writing: %m", p); f = fdopen(fd, "w"); if (!f) { safe_close(fd); return log_oom(); } fprintf(f, "#timeout 3\n" "#console-mode keep\n" "default %s-*\n", sd_id128_to_string(machine_id, machine_string)); r = fflush_sync_and_check(f); if (r < 0) return log_error_errno(r, "Failed to write \"%s\": %m", p); r = link_tmpfile(fd, t, p); if (r == -EEXIST) return 0; /* Silently skip creation if the file exists now (recheck) */ if (r < 0) return log_error_errno(r, "Failed to move \"%s\" into place: %m", p); t = mfree(t); return 1; } static int install_machine_id_directory(const char *root, sd_id128_t machine_id) { char buf[SD_ID128_STRING_MAX]; assert(root); return mkdir_one(root, sd_id128_to_string(machine_id, buf)); } static int help(int argc, char *argv[], void *userdata) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("bootctl", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...] COMMAND ...\n" "\n%sInstall/update/remove the systemd-boot EFI boot manager and list/select entries.%s\n" "\nBoot Loader Commands:\n" " status Show status of installed systemd-boot and EFI variables\n" " install Install systemd-boot to the ESP and EFI variables\n" " update Update systemd-boot in the ESP and EFI variables\n" " remove Remove systemd-boot from the ESP and EFI variables\n" " is-installed Test whether systemd-boot is installed in the ESP\n" " random-seed Initialize random seed in ESP and EFI variables\n" " systemd-efi-options Query or set system options string in EFI variable\n" "\nBoot Loader Entries Commands:\n" " list List boot loader entries\n" " set-default ID Set default boot loader entry\n" " set-oneshot ID Set default boot loader entry, for next boot only\n" "\nOptions:\n" " -h --help Show this help\n" " --version Print version\n" " --esp-path=PATH Path to the EFI System Partition (ESP)\n" " --boot-path=PATH Path to the $BOOT partition\n" " -p --print-esp-path Print path to the EFI System Partition\n" " -x --print-boot-path Print path to the $BOOT partition\n" " --no-variables Don't touch EFI variables\n" " --no-pager Do not pipe output into a pager\n" " --graceful Don't fail when the ESP cannot be found or EFI\n" " variables cannot be written\n" "\nSee the %s for details.\n" , program_invocation_short_name , ansi_highlight() , ansi_normal() , link); return 0; } static int parse_argv(int argc, char *argv[]) { enum { ARG_ESP_PATH = 0x100, ARG_BOOT_PATH, ARG_VERSION, ARG_NO_VARIABLES, ARG_NO_PAGER, ARG_GRACEFUL, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "esp-path", required_argument, NULL, ARG_ESP_PATH }, { "path", required_argument, NULL, ARG_ESP_PATH }, /* Compatibility alias */ { "boot-path", required_argument, NULL, ARG_BOOT_PATH }, { "print-esp-path", no_argument, NULL, 'p' }, { "print-path", no_argument, NULL, 'p' }, /* Compatibility alias */ { "print-boot-path", no_argument, NULL, 'x' }, { "no-variables", no_argument, NULL, ARG_NO_VARIABLES }, { "no-pager", no_argument, NULL, ARG_NO_PAGER }, { "graceful", no_argument, NULL, ARG_GRACEFUL }, {} }; int c, r; assert(argc >= 0); assert(argv); while ((c = getopt_long(argc, argv, "hpx", options, NULL)) >= 0) switch (c) { case 'h': help(0, NULL, NULL); return 0; case ARG_VERSION: return version(); case ARG_ESP_PATH: r = free_and_strdup(&arg_esp_path, optarg); if (r < 0) return log_oom(); break; case ARG_BOOT_PATH: r = free_and_strdup(&arg_xbootldr_path, optarg); if (r < 0) return log_oom(); break; case 'p': if (arg_print_dollar_boot_path) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "--print-boot-path/-x cannot be combined with --print-esp-path/-p"); arg_print_esp_path = true; break; case 'x': if (arg_print_esp_path) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "--print-boot-path/-x cannot be combined with --print-esp-path/-p"); arg_print_dollar_boot_path = true; break; case ARG_NO_VARIABLES: arg_touch_variables = false; break; case ARG_NO_PAGER: arg_pager_flags |= PAGER_DISABLE; break; case ARG_GRACEFUL: arg_graceful = true; break; case '?': return -EINVAL; default: assert_not_reached("Unknown option"); } return 1; } static void read_loader_efi_var(const char *name, char **var) { int r; r = efi_get_variable_string(EFI_VENDOR_LOADER, name, var); if (r < 0 && r != -ENOENT) log_warning_errno(r, "Failed to read EFI variable %s: %m", name); } static int verb_status(int argc, char *argv[], void *userdata) { sd_id128_t esp_uuid = SD_ID128_NULL, xbootldr_uuid = SD_ID128_NULL; int r, k; r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, &esp_uuid); if (arg_print_esp_path) { if (r == -EACCES) /* If we couldn't acquire the ESP path, log about access errors (which is the only * error the find_esp_and_warn() won't log on its own) */ return log_error_errno(r, "Failed to determine ESP location: %m"); if (r < 0) return r; puts(arg_esp_path); } r = acquire_xbootldr(geteuid() != 0, &xbootldr_uuid); if (arg_print_dollar_boot_path) { if (r == -EACCES) return log_error_errno(r, "Failed to determine XBOOTLDR location: %m"); if (r < 0) return r; const char *path = arg_dollar_boot_path(); if (!path) return log_error_errno(SYNTHETIC_ERRNO(EACCES), "Failed to determine XBOOTLDR location: %m"); puts(path); } if (arg_print_esp_path || arg_print_dollar_boot_path) return 0; r = 0; /* If we couldn't determine the path, then don't consider that a problem from here on, just show what we * can show */ (void) pager_open(arg_pager_flags); if (is_efi_boot()) { static const struct { uint64_t flag; const char *name; } flags[] = { { EFI_LOADER_FEATURE_BOOT_COUNTING, "Boot counting" }, { EFI_LOADER_FEATURE_CONFIG_TIMEOUT, "Menu timeout control" }, { EFI_LOADER_FEATURE_CONFIG_TIMEOUT_ONE_SHOT, "One-shot menu timeout control" }, { EFI_LOADER_FEATURE_ENTRY_DEFAULT, "Default entry control" }, { EFI_LOADER_FEATURE_ENTRY_ONESHOT, "One-shot entry control" }, { EFI_LOADER_FEATURE_XBOOTLDR, "Support for XBOOTLDR partition" }, { EFI_LOADER_FEATURE_RANDOM_SEED, "Support for passing random seed to OS" }, }; _cleanup_free_ char *fw_type = NULL, *fw_info = NULL, *loader = NULL, *loader_path = NULL, *stub = NULL; sd_id128_t loader_part_uuid = SD_ID128_NULL; uint64_t loader_features = 0; size_t i; read_loader_efi_var("LoaderFirmwareType", &fw_type); read_loader_efi_var("LoaderFirmwareInfo", &fw_info); read_loader_efi_var("LoaderInfo", &loader); read_loader_efi_var("StubInfo", &stub); read_loader_efi_var("LoaderImageIdentifier", &loader_path); (void) efi_loader_get_features(&loader_features); if (loader_path) efi_tilt_backslashes(loader_path); k = efi_loader_get_device_part_uuid(&loader_part_uuid); if (k < 0 && k != -ENOENT) r = log_warning_errno(k, "Failed to read EFI variable LoaderDevicePartUUID: %m"); printf("System:\n"); printf(" Firmware: %s%s (%s)%s\n", ansi_highlight(), strna(fw_type), strna(fw_info), ansi_normal()); printf(" Secure Boot: %sd\n", enable_disable(is_efi_secure_boot())); printf(" Setup Mode: %s\n", is_efi_secure_boot_setup_mode() ? "setup" : "user"); printf("\n"); printf("Current Boot Loader:\n"); printf(" Product: %s%s%s\n", ansi_highlight(), strna(loader), ansi_normal()); for (i = 0; i < ELEMENTSOF(flags); i++) { if (i == 0) printf(" Features: "); else printf(" "); if (FLAGS_SET(loader_features, flags[i].flag)) printf("%s%s%s %s\n", ansi_highlight_green(), special_glyph(SPECIAL_GLYPH_CHECK_MARK), ansi_normal(), flags[i].name); else printf("%s%s%s %s\n", ansi_highlight_red(), special_glyph(SPECIAL_GLYPH_CROSS_MARK), ansi_normal(), flags[i].name); } if (stub) printf(" Stub: %s\n", stub); if (!sd_id128_is_null(loader_part_uuid)) printf(" ESP: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n", SD_ID128_FORMAT_VAL(loader_part_uuid)); else printf(" ESP: n/a\n"); printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), strna(loader_path)); printf("\n"); printf("Random Seed:\n"); printf(" Passed to OS: %s\n", yes_no(access("/sys/firmware/efi/efivars/LoaderRandomSeed-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0)); printf(" System Token: %s\n", access("/sys/firmware/efi/efivars/LoaderSystemToken-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0 ? "set" : "not set"); if (arg_esp_path) { _cleanup_free_ char *p = NULL; p = path_join(arg_esp_path, "/loader/random-seed"); if (!p) return log_oom(); printf(" Exists: %s\n", yes_no(access(p, F_OK) >= 0)); } printf("\n"); } else printf("System:\n Not booted with EFI\n\n"); if (arg_esp_path) { k = status_binaries(arg_esp_path, esp_uuid); if (k < 0) r = k; } if (is_efi_boot()) { k = status_variables(); if (k < 0) r = k; } if (arg_esp_path || arg_xbootldr_path) { k = status_entries(arg_esp_path, esp_uuid, arg_xbootldr_path, xbootldr_uuid); if (k < 0) r = k; } return r; } static int verb_list(int argc, char *argv[], void *userdata) { _cleanup_(boot_config_free) BootConfig config = {}; int r; /* If we lack privileges we invoke find_esp_and_warn() in "unprivileged mode" here, which does two things: turn * off logging about access errors and turn off potentially privileged device probing. Here we're interested in * the latter but not the former, hence request the mode, and log about EACCES. */ r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, NULL); if (r == -EACCES) /* We really need the ESP path for this call, hence also log about access errors */ return log_error_errno(r, "Failed to determine ESP: %m"); if (r < 0) return r; r = acquire_xbootldr(geteuid() != 0, NULL); if (r == -EACCES) return log_error_errno(r, "Failed to determine XBOOTLDR partition: %m"); if (r < 0) return r; r = boot_entries_load_config(arg_esp_path, arg_xbootldr_path, &config); if (r < 0) return r; (void) boot_entries_augment_from_loader(&config, false); if (config.n_entries == 0) log_info("No boot loader entries found."); else { size_t n; (void) pager_open(arg_pager_flags); printf("Boot Loader Entries:\n"); for (n = 0; n < config.n_entries; n++) { r = boot_entry_show(config.entries + n, n == (size_t) config.default_entry); if (r < 0) return r; if (n+1 < config.n_entries) putchar('\n'); } } return 0; } static int install_random_seed(const char *esp) { _cleanup_(unlink_and_freep) char *tmp = NULL; _cleanup_free_ void *buffer = NULL; _cleanup_free_ char *path = NULL; _cleanup_close_ int fd = -1; size_t sz, token_size; ssize_t n; int r; assert(esp); path = path_join(esp, "/loader/random-seed"); if (!path) return log_oom(); sz = random_pool_size(); buffer = malloc(sz); if (!buffer) return log_oom(); r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK); if (r < 0) return log_error_errno(r, "Failed to acquire random seed: %m"); /* Normally create_subdirs() should already have created everything we need, but in case "bootctl * random-seed" is called we want to just create the minimum we need for it, and not the full * list. */ r = mkdir_parents(path, 0755); if (r < 0) return log_error_errno(r, "Failed to create parent directory for %s: %m", path); r = tempfn_random(path, "bootctl", &tmp); if (r < 0) return log_oom(); fd = open(tmp, O_CREAT|O_EXCL|O_NOFOLLOW|O_NOCTTY|O_WRONLY|O_CLOEXEC, 0600); if (fd < 0) { tmp = mfree(tmp); return log_error_errno(fd, "Failed to open random seed file for writing: %m"); } n = write(fd, buffer, sz); if (n < 0) return log_error_errno(errno, "Failed to write random seed file: %m"); if ((size_t) n != sz) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Short write while writing random seed file."); if (rename(tmp, path) < 0) return log_error_errno(r, "Failed to move random seed file into place: %m"); tmp = mfree(tmp); log_info("Random seed file %s successfully written (%zu bytes).", path, sz); if (!arg_touch_variables) return 0; if (!is_efi_boot()) { log_notice("Not booted with EFI, skipping EFI variable setup."); return 0; } r = getenv_bool("SYSTEMD_WRITE_SYSTEM_TOKEN"); if (r < 0) { if (r != -ENXIO) log_warning_errno(r, "Failed to parse $SYSTEMD_WRITE_SYSTEM_TOKEN, ignoring."); if (detect_vm() > 0) { /* Let's not write a system token if we detect we are running in a VM * environment. Why? Our default security model for the random seed uses the system * token as a mechanism to ensure we are not vulnerable to golden master sloppiness * issues, i.e. that people initialize the random seed file, then copy the image to * many systems and end up with the same random seed in each that is assumed to be * valid but in reality is the same for all machines. By storing a system token in * the EFI variable space we can make sure that even though the random seeds on disk * are all the same they will be different on each system under the assumption that * the EFI variable space is maintained separate from the random seed storage. That * is generally the case on physical systems, as the ESP is stored on persistant * storage, and the EFI variables in NVRAM. However in virtualized environments this * is generally not true: the EFI variable set is typically stored along with the * disk image itself. For example, using the OVMF EFI firmware the EFI variables are * stored in a file in the ESP itself. */ log_notice("Not installing system token, since we are running in a virtualized environment."); return 0; } } else if (r == 0) { log_notice("Not writing system token, because $SYSTEMD_WRITE_SYSTEM_TOKEN is set to false."); return 0; } r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", NULL, NULL, &token_size); if (r < 0) { if (r != -ENOENT) return log_error_errno(r, "Failed to test system token validity: %m"); } else { if (token_size >= sz) { /* Let's avoid writes if we can, and initialize this only once. */ log_debug("System token already written, not updating."); return 0; } log_debug("Existing system token size (%zu) does not match our expectations (%zu), replacing.", token_size, sz); } r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK); if (r < 0) return log_error_errno(r, "Failed to acquire random seed: %m"); /* Let's write this variable with an umask in effect, so that unprivileged users can't see the token * and possibly get identification information or too much insight into the kernel's entropy pool * state. */ RUN_WITH_UMASK(0077) { r = efi_set_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", buffer, sz); if (r < 0) { if (!arg_graceful) return log_error_errno(r, "Failed to write 'LoaderSystemToken' EFI variable: %m"); if (r == -EINVAL) log_warning_errno(r, "Unable to write 'LoaderSystemToken' EFI variable (firmware problem?), ignoring: %m"); else log_warning_errno(r, "Unable to write 'LoaderSystemToken' EFI variable, ignoring: %m"); } else log_info("Successfully initialized system token in EFI variable with %zu bytes.", sz); } return 0; } static int sync_everything(void) { int ret = 0, k; if (arg_esp_path) { k = syncfs_path(AT_FDCWD, arg_esp_path); if (k < 0) ret = log_error_errno(k, "Failed to synchronize the ESP '%s': %m", arg_esp_path); } if (arg_xbootldr_path) { k = syncfs_path(AT_FDCWD, arg_xbootldr_path); if (k < 0) ret = log_error_errno(k, "Failed to synchronize $BOOT '%s': %m", arg_xbootldr_path); } return ret; } static int verb_install(int argc, char *argv[], void *userdata) { sd_id128_t uuid = SD_ID128_NULL; uint64_t pstart = 0, psize = 0; uint32_t part = 0; sd_id128_t machine_id; bool install; int r; r = acquire_esp(false, &part, &pstart, &psize, &uuid); if (r < 0) return r; r = acquire_xbootldr(false, NULL); if (r < 0) return r; r = sd_id128_get_machine(&machine_id); if (r < 0) return log_error_errno(r, "Failed to get machine id: %m"); install = streq(argv[0], "install"); RUN_WITH_UMASK(0002) { if (install) { /* Don't create any of these directories when we are just updating. When we update * we'll drop-in our files (unless there are newer ones already), but we won't create * the directories for them in the first place. */ r = create_subdirs(arg_esp_path, esp_subdirs); if (r < 0) return r; r = create_subdirs(arg_dollar_boot_path(), dollar_boot_subdirs); if (r < 0) return r; } r = install_binaries(arg_esp_path, install); if (r < 0) return r; if (install) { r = install_loader_config(arg_esp_path, machine_id); if (r < 0) return r; r = install_machine_id_directory(arg_dollar_boot_path(), machine_id); if (r < 0) return r; r = install_random_seed(arg_esp_path); if (r < 0) return r; } } (void) sync_everything(); if (arg_touch_variables) r = install_variables(arg_esp_path, part, pstart, psize, uuid, "/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi", install); return r; } static int verb_remove(int argc, char *argv[], void *userdata) { sd_id128_t uuid = SD_ID128_NULL, machine_id; int r, q; r = acquire_esp(false, NULL, NULL, NULL, &uuid); if (r < 0) return r; r = acquire_xbootldr(false, NULL); if (r < 0) return r; r = sd_id128_get_machine(&machine_id); if (r < 0) return log_error_errno(r, "Failed to get machine id: %m"); r = remove_binaries(arg_esp_path); q = remove_file(arg_esp_path, "/loader/loader.conf"); if (q < 0 && r >= 0) r = q; q = remove_file(arg_esp_path, "/loader/random-seed"); if (q < 0 && r >= 0) r = q; q = remove_subdirs(arg_esp_path, esp_subdirs); if (q < 0 && r >= 0) r = q; q = remove_subdirs(arg_esp_path, dollar_boot_subdirs); if (q < 0 && r >= 0) r = q; q = remove_machine_id_directory(arg_esp_path, machine_id); if (q < 0 && r >= 0) r = 1; if (arg_xbootldr_path) { /* Remove the latter two also in the XBOOTLDR partition if it exists */ q = remove_subdirs(arg_xbootldr_path, dollar_boot_subdirs); if (q < 0 && r >= 0) r = q; q = remove_machine_id_directory(arg_xbootldr_path, machine_id); if (q < 0 && r >= 0) r = q; } (void) sync_everything(); if (!arg_touch_variables) return r; q = remove_variables(uuid, "/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi", true); if (q < 0 && r >= 0) r = q; q = remove_loader_variables(); if (q < 0 && r >= 0) r = q; return r; } static int verb_is_installed(int argc, char *argv[], void *userdata) { _cleanup_free_ char *p = NULL; int r; r = acquire_esp(false, NULL, NULL, NULL, NULL); if (r < 0) return r; /* Tests whether systemd-boot is installed. It's not obvious what to use as check here: we could * check EFI variables, we could check what binary /EFI/BOOT/BOOT*.EFI points to, or whether the * loader entries directory exists. Here we opted to check whether /EFI/systemd/ is non-empty, which * should be a suitable and very minimal check for a number of reasons: * * → The check is architecture independent (i.e. we check if any systemd-boot loader is installed, not a * specific one.) * * → It doesn't assume we are the only boot loader (i.e doesn't check if we own the main * /EFI/BOOT/BOOT*.EFI fallback binary. * * → It specifically checks for systemd-boot, not for other boot loaders (which a check for * /boot/loader/entries would do). */ p = path_join(arg_esp_path, "/EFI/systemd/"); if (!p) return log_oom(); r = dir_is_empty(p); if (r > 0 || r == -ENOENT) { puts("no"); return EXIT_FAILURE; } if (r < 0) return log_error_errno(r, "Failed to detect whether systemd-boot is installed: %m"); puts("yes"); return EXIT_SUCCESS; } static int verb_set_default(int argc, char *argv[], void *userdata) { const char *name; int r; if (!is_efi_boot()) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Not booted with UEFI."); if (access("/sys/firmware/efi/efivars/LoaderInfo-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) < 0) { if (errno == ENOENT) { log_error_errno(errno, "Not booted with a supported boot loader."); return -EOPNOTSUPP; } return log_error_errno(errno, "Failed to detect whether boot loader supports '%s' operation: %m", argv[0]); } if (detect_container() > 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "'%s' operation not supported in a container.", argv[0]); if (!arg_touch_variables) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "'%s' operation cannot be combined with --touch-variables=no.", argv[0]); name = streq(argv[0], "set-default") ? "LoaderEntryDefault" : "LoaderEntryOneShot"; if (isempty(argv[1])) { r = efi_set_variable(EFI_VENDOR_LOADER, name, NULL, 0); if (r < 0 && r != -ENOENT) return log_error_errno(r, "Failed to remove EFI variale: %m"); } else { _cleanup_free_ char16_t *encoded = NULL; encoded = utf8_to_utf16(argv[1], strlen(argv[1])); if (!encoded) return log_oom(); r = efi_set_variable(EFI_VENDOR_LOADER, name, encoded, char16_strlen(encoded) * 2 + 2); if (r < 0) return log_error_errno(r, "Failed to update EFI variable: %m"); } return 0; } static int verb_random_seed(int argc, char *argv[], void *userdata) { int r; r = find_esp_and_warn(arg_esp_path, false, &arg_esp_path, NULL, NULL, NULL, NULL); if (r == -ENOKEY) { /* find_esp_and_warn() doesn't warn about ENOKEY, so let's do that on our own */ if (!arg_graceful) return log_error_errno(r, "Unable to find ESP."); log_notice("No ESP found, not initializing random seed."); return 0; } if (r < 0) return r; r = install_random_seed(arg_esp_path); if (r < 0) return r; (void) sync_everything(); return 0; } static int verb_systemd_efi_options(int argc, char *argv[], void *userdata) { int r; if (argc == 1) { _cleanup_free_ char *line = NULL; r = systemd_efi_options_variable(&line); if (r < 0) return log_error_errno(r, "Failed to query SystemdOptions EFI variable: %m"); puts(line); } else { r = efi_set_variable_string(EFI_VENDOR_SYSTEMD, "SystemdOptions", argv[1]); if (r < 0) return log_error_errno(r, "Failed to set SystemdOptions EFI variable: %m"); } return 0; } static int bootctl_main(int argc, char *argv[]) { static const Verb verbs[] = { { "help", VERB_ANY, VERB_ANY, 0, help }, { "status", VERB_ANY, 1, VERB_DEFAULT, verb_status }, { "install", VERB_ANY, 1, 0, verb_install }, { "update", VERB_ANY, 1, 0, verb_install }, { "remove", VERB_ANY, 1, 0, verb_remove }, { "is-installed", VERB_ANY, 1, 0, verb_is_installed }, { "list", VERB_ANY, 1, 0, verb_list }, { "set-default", 2, 2, 0, verb_set_default }, { "set-oneshot", 2, 2, 0, verb_set_default }, { "random-seed", VERB_ANY, 1, 0, verb_random_seed }, { "systemd-efi-options", VERB_ANY, 2, 0, verb_systemd_efi_options }, {} }; return dispatch_verb(argc, argv, verbs, NULL); } static int run(int argc, char *argv[]) { int r; log_parse_environment(); log_open(); /* If we run in a container, automatically turn off EFI file system access */ if (detect_container() > 0) arg_touch_variables = false; r = parse_argv(argc, argv); if (r <= 0) return r; return bootctl_main(argc, argv); } DEFINE_MAIN_FUNCTION(run);