/* SPDX-License-Identifier: LGPL-2.1+ */
/***
This file is part of systemd.
Copyright 2012 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include
#include
#include
#include "sd-bus.h"
#include "alloc-util.h"
#include "bus-error.h"
#include "bus-util.h"
#include "cgroup-show.h"
#include "cgroup-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "hashmap.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "stdio-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "unit-name.h"
#include "util.h"
#include "virt.h"
typedef struct Group {
char *path;
bool n_tasks_valid:1;
bool cpu_valid:1;
bool memory_valid:1;
bool io_valid:1;
uint64_t n_tasks;
unsigned cpu_iteration;
nsec_t cpu_usage;
nsec_t cpu_timestamp;
double cpu_fraction;
uint64_t memory;
unsigned io_iteration;
uint64_t io_input, io_output;
nsec_t io_timestamp;
uint64_t io_input_bps, io_output_bps;
} Group;
static unsigned arg_depth = 3;
static unsigned arg_iterations = (unsigned) -1;
static bool arg_batch = false;
static bool arg_raw = false;
static usec_t arg_delay = 1*USEC_PER_SEC;
static char* arg_machine = NULL;
static char* arg_root = NULL;
static bool arg_recursive = true;
static bool arg_recursive_unset = false;
static enum {
COUNT_PIDS,
COUNT_USERSPACE_PROCESSES,
COUNT_ALL_PROCESSES,
} arg_count = COUNT_PIDS;
static enum {
ORDER_PATH,
ORDER_TASKS,
ORDER_CPU,
ORDER_MEMORY,
ORDER_IO,
} arg_order = ORDER_CPU;
static enum {
CPU_PERCENT,
CPU_TIME,
} arg_cpu_type = CPU_PERCENT;
static void group_free(Group *g) {
assert(g);
free(g->path);
free(g);
}
static void group_hashmap_clear(Hashmap *h) {
hashmap_clear_with_destructor(h, group_free);
}
static void group_hashmap_free(Hashmap *h) {
group_hashmap_clear(h);
hashmap_free(h);
}
static const char *maybe_format_bytes(char *buf, size_t l, bool is_valid, uint64_t t) {
if (!is_valid)
return "-";
if (arg_raw) {
snprintf(buf, l, "%" PRIu64, t);
return buf;
}
return format_bytes(buf, l, t);
}
static bool is_root_cgroup(const char *path) {
/* Returns true if the specified path belongs to the root cgroup. The root cgroup is special on cgroupsv2 as it
* carries only very few attributes in order not to export multiple truth about system state as most
* information is available elsewhere in /proc anyway. We need to be able to deal with that, and need to get
* our data from different sources in that case.
*
* There's one extra complication in all of this, though 😣: if the path to the cgroup indicates we are in the
* root cgroup this might actually not be the case, because cgroup namespacing might be in effect
* (CLONE_NEWCGROUP). Since there's no nice way to distuingish a real cgroup root from a fake namespaced one we
* do an explicit container check here, under the assumption that CLONE_NEWCGROUP is generally used when
* container managers are used too.
*
* Note that checking for a container environment is kinda ugly, since in theory people could use cgtop from
* inside a container where cgroup namespacing is turned off to watch the host system. However, that's mostly a
* theoretic usecase, and if people actually try all they'll lose is accounting for the top-level cgroup. Which
* isn't too bad. */
if (detect_container() > 0)
return false;
return isempty(path) || path_equal(path, "/");
}
static int process(
const char *controller,
const char *path,
Hashmap *a,
Hashmap *b,
unsigned iteration,
Group **ret) {
Group *g;
int r, all_unified;
assert(controller);
assert(path);
assert(a);
all_unified = cg_all_unified();
if (all_unified < 0)
return all_unified;
g = hashmap_get(a, path);
if (!g) {
g = hashmap_get(b, path);
if (!g) {
g = new0(Group, 1);
if (!g)
return -ENOMEM;
g->path = strdup(path);
if (!g->path) {
group_free(g);
return -ENOMEM;
}
r = hashmap_put(a, g->path, g);
if (r < 0) {
group_free(g);
return r;
}
} else {
r = hashmap_move_one(a, b, path);
if (r < 0)
return r;
g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false;
}
}
if (streq(controller, SYSTEMD_CGROUP_CONTROLLER) &&
IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES)) {
_cleanup_fclose_ FILE *f = NULL;
pid_t pid;
r = cg_enumerate_processes(controller, path, &f);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
g->n_tasks = 0;
while (cg_read_pid(f, &pid) > 0) {
if (arg_count == COUNT_USERSPACE_PROCESSES && is_kernel_thread(pid) > 0)
continue;
g->n_tasks++;
}
if (g->n_tasks > 0)
g->n_tasks_valid = true;
} else if (streq(controller, "pids") && arg_count == COUNT_PIDS) {
if (is_root_cgroup(path)) {
r = procfs_tasks_get_current(&g->n_tasks);
if (r < 0)
return r;
} else {
_cleanup_free_ char *p = NULL, *v = NULL;
r = cg_get_path(controller, path, "pids.current", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &g->n_tasks);
if (r < 0)
return r;
}
if (g->n_tasks > 0)
g->n_tasks_valid = true;
} else if (STR_IN_SET(controller, "cpu", "cpuacct")) {
_cleanup_free_ char *p = NULL, *v = NULL;
uint64_t new_usage;
nsec_t timestamp;
if (is_root_cgroup(path)) {
r = procfs_cpu_get_usage(&new_usage);
if (r < 0)
return r;
} else if (all_unified) {
const char *keys[] = { "usage_usec", NULL };
_cleanup_free_ char *val = NULL;
if (!streq(controller, "cpu"))
return 0;
r = cg_get_keyed_attribute("cpu", path, "cpu.stat", keys, &val);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(val, &new_usage);
if (r < 0)
return r;
new_usage *= NSEC_PER_USEC;
} else {
if (!streq(controller, "cpuacct"))
return 0;
r = cg_get_path(controller, path, "cpuacct.usage", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &new_usage);
if (r < 0)
return r;
}
timestamp = now_nsec(CLOCK_MONOTONIC);
if (g->cpu_iteration == iteration - 1 &&
(nsec_t) new_usage > g->cpu_usage) {
nsec_t x, y;
x = timestamp - g->cpu_timestamp;
if (x < 1)
x = 1;
y = (nsec_t) new_usage - g->cpu_usage;
g->cpu_fraction = (double) y / (double) x;
g->cpu_valid = true;
}
g->cpu_usage = (nsec_t) new_usage;
g->cpu_timestamp = timestamp;
g->cpu_iteration = iteration;
} else if (streq(controller, "memory")) {
if (is_root_cgroup(path)) {
r = procfs_memory_get_current(&g->memory);
if (r < 0)
return r;
} else {
_cleanup_free_ char *p = NULL, *v = NULL;
if (all_unified)
r = cg_get_path(controller, path, "memory.current", &p);
else
r = cg_get_path(controller, path, "memory.usage_in_bytes", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &g->memory);
if (r < 0)
return r;
}
if (g->memory > 0)
g->memory_valid = true;
} else if ((streq(controller, "io") && all_unified) ||
(streq(controller, "blkio") && !all_unified)) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_free_ char *p = NULL;
uint64_t wr = 0, rd = 0;
nsec_t timestamp;
r = cg_get_path(controller, path, all_unified ? "io.stat" : "blkio.io_service_bytes", &p);
if (r < 0)
return r;
f = fopen(p, "re");
if (!f) {
if (errno == ENOENT)
return 0;
return -errno;
}
for (;;) {
char line[LINE_MAX], *l;
uint64_t k, *q;
if (!fgets(line, sizeof(line), f))
break;
/* Trim and skip the device */
l = strstrip(line);
l += strcspn(l, WHITESPACE);
l += strspn(l, WHITESPACE);
if (all_unified) {
while (!isempty(l)) {
if (sscanf(l, "rbytes=%" SCNu64, &k))
rd += k;
else if (sscanf(l, "wbytes=%" SCNu64, &k))
wr += k;
l += strcspn(l, WHITESPACE);
l += strspn(l, WHITESPACE);
}
} else {
if (first_word(l, "Read")) {
l += 4;
q = &rd;
} else if (first_word(l, "Write")) {
l += 5;
q = ≀
} else
continue;
l += strspn(l, WHITESPACE);
r = safe_atou64(l, &k);
if (r < 0)
continue;
*q += k;
}
}
timestamp = now_nsec(CLOCK_MONOTONIC);
if (g->io_iteration == iteration - 1) {
uint64_t x, yr, yw;
x = (uint64_t) (timestamp - g->io_timestamp);
if (x < 1)
x = 1;
if (rd > g->io_input)
yr = rd - g->io_input;
else
yr = 0;
if (wr > g->io_output)
yw = wr - g->io_output;
else
yw = 0;
if (yr > 0 || yw > 0) {
g->io_input_bps = (yr * 1000000000ULL) / x;
g->io_output_bps = (yw * 1000000000ULL) / x;
g->io_valid = true;
}
}
g->io_input = rd;
g->io_output = wr;
g->io_timestamp = timestamp;
g->io_iteration = iteration;
}
if (ret)
*ret = g;
return 0;
}
static int refresh_one(
const char *controller,
const char *path,
Hashmap *a,
Hashmap *b,
unsigned iteration,
unsigned depth,
Group **ret) {
_cleanup_closedir_ DIR *d = NULL;
Group *ours = NULL;
int r;
assert(controller);
assert(path);
assert(a);
if (depth > arg_depth)
return 0;
r = process(controller, path, a, b, iteration, &ours);
if (r < 0)
return r;
r = cg_enumerate_subgroups(controller, path, &d);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
for (;;) {
_cleanup_free_ char *fn = NULL, *p = NULL;
Group *child = NULL;
r = cg_read_subgroup(d, &fn);
if (r < 0)
return r;
if (r == 0)
break;
p = strjoin(path, "/", fn);
if (!p)
return -ENOMEM;
path_kill_slashes(p);
r = refresh_one(controller, p, a, b, iteration, depth + 1, &child);
if (r < 0)
return r;
if (arg_recursive &&
IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES) &&
child &&
child->n_tasks_valid &&
streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
/* Recursively sum up processes */
if (ours->n_tasks_valid)
ours->n_tasks += child->n_tasks;
else {
ours->n_tasks = child->n_tasks;
ours->n_tasks_valid = true;
}
}
}
if (ret)
*ret = ours;
return 1;
}
static int refresh(const char *root, Hashmap *a, Hashmap *b, unsigned iteration) {
int r;
assert(a);
r = refresh_one(SYSTEMD_CGROUP_CONTROLLER, root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("cpu", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("cpuacct", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("memory", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("io", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("blkio", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("pids", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
return 0;
}
static const char *empty_to_slash(const char *p) {
return isempty(p) ? "/" : p;
}
static int group_compare(const void*a, const void *b) {
const Group *x = *(Group**)a, *y = *(Group**)b;
if (arg_order != ORDER_TASKS || arg_recursive) {
/* Let's make sure that the parent is always before
* the child. Except when ordering by tasks and
* recursive summing is off, since that is actually
* not accumulative for all children. */
if (path_startswith(empty_to_slash(y->path), empty_to_slash(x->path)))
return -1;
if (path_startswith(empty_to_slash(x->path), empty_to_slash(y->path)))
return 1;
}
switch (arg_order) {
case ORDER_PATH:
break;
case ORDER_CPU:
if (arg_cpu_type == CPU_PERCENT) {
if (x->cpu_valid && y->cpu_valid) {
if (x->cpu_fraction > y->cpu_fraction)
return -1;
else if (x->cpu_fraction < y->cpu_fraction)
return 1;
} else if (x->cpu_valid)
return -1;
else if (y->cpu_valid)
return 1;
} else {
if (x->cpu_usage > y->cpu_usage)
return -1;
else if (x->cpu_usage < y->cpu_usage)
return 1;
}
break;
case ORDER_TASKS:
if (x->n_tasks_valid && y->n_tasks_valid) {
if (x->n_tasks > y->n_tasks)
return -1;
else if (x->n_tasks < y->n_tasks)
return 1;
} else if (x->n_tasks_valid)
return -1;
else if (y->n_tasks_valid)
return 1;
break;
case ORDER_MEMORY:
if (x->memory_valid && y->memory_valid) {
if (x->memory > y->memory)
return -1;
else if (x->memory < y->memory)
return 1;
} else if (x->memory_valid)
return -1;
else if (y->memory_valid)
return 1;
break;
case ORDER_IO:
if (x->io_valid && y->io_valid) {
if (x->io_input_bps + x->io_output_bps > y->io_input_bps + y->io_output_bps)
return -1;
else if (x->io_input_bps + x->io_output_bps < y->io_input_bps + y->io_output_bps)
return 1;
} else if (x->io_valid)
return -1;
else if (y->io_valid)
return 1;
}
return path_compare(x->path, y->path);
}
static void display(Hashmap *a) {
Iterator i;
Group *g;
Group **array;
signed path_columns;
unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 3; /* 3 for ellipsize() to work properly */
char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)];
assert(a);
if (!terminal_is_dumb())
fputs(ANSI_HOME_CLEAR, stdout);
array = alloca(sizeof(Group*) * hashmap_size(a));
HASHMAP_FOREACH(g, a, i)
if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid)
array[n++] = g;
qsort_safe(array, n, sizeof(Group*), group_compare);
/* Find the longest names in one run */
for (j = 0; j < n; j++) {
unsigned cputlen, pathtlen;
format_timespan(buffer, sizeof(buffer), (usec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0);
cputlen = strlen(buffer);
maxtcpu = MAX(maxtcpu, cputlen);
pathtlen = strlen(array[j]->path);
maxtpath = MAX(maxtpath, pathtlen);
}
if (arg_cpu_type == CPU_PERCENT)
xsprintf(buffer, "%6s", "%CPU");
else
xsprintf(buffer, "%*s", maxtcpu, "CPU Time");
rows = lines();
if (rows <= 10)
rows = 10;
if (on_tty()) {
const char *on, *off;
path_columns = columns() - 36 - strlen(buffer);
if (path_columns < 10)
path_columns = 10;
on = ansi_highlight_underline();
off = ansi_underline();
printf("%s%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s%s\n",
ansi_underline(),
arg_order == ORDER_PATH ? on : "", path_columns, "Control Group",
arg_order == ORDER_PATH ? off : "",
arg_order == ORDER_TASKS ? on : "", arg_count == COUNT_PIDS ? "Tasks" : arg_count == COUNT_USERSPACE_PROCESSES ? "Procs" : "Proc+",
arg_order == ORDER_TASKS ? off : "",
arg_order == ORDER_CPU ? on : "", buffer,
arg_order == ORDER_CPU ? off : "",
arg_order == ORDER_MEMORY ? on : "", "Memory",
arg_order == ORDER_MEMORY ? off : "",
arg_order == ORDER_IO ? on : "", "Input/s",
arg_order == ORDER_IO ? off : "",
arg_order == ORDER_IO ? on : "", "Output/s",
arg_order == ORDER_IO ? off : "",
ansi_normal());
} else
path_columns = maxtpath;
for (j = 0; j < n; j++) {
_cleanup_free_ char *ellipsized = NULL;
const char *path;
if (on_tty() && j + 6 > rows)
break;
g = array[j];
path = empty_to_slash(g->path);
ellipsized = ellipsize(path, path_columns, 33);
printf("%-*s", path_columns, ellipsized ?: path);
if (g->n_tasks_valid)
printf(" %7" PRIu64, g->n_tasks);
else
fputs(" -", stdout);
if (arg_cpu_type == CPU_PERCENT) {
if (g->cpu_valid)
printf(" %6.1f", g->cpu_fraction*100);
else
fputs(" -", stdout);
} else
printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (usec_t) (g->cpu_usage / NSEC_PER_USEC), 0));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->memory_valid, g->memory));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_input_bps));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_output_bps));
putchar('\n');
}
}
static void help(void) {
printf("%s [OPTIONS...] [CGROUP]\n\n"
"Show top control groups by their resource usage.\n\n"
" -h --help Show this help\n"
" --version Show package version\n"
" -p --order=path Order by path\n"
" -t --order=tasks Order by number of tasks/processes\n"
" -c --order=cpu Order by CPU load (default)\n"
" -m --order=memory Order by memory load\n"
" -i --order=io Order by IO load\n"
" -r --raw Provide raw (not human-readable) numbers\n"
" --cpu=percentage Show CPU usage as percentage (default)\n"
" --cpu=time Show CPU usage as time\n"
" -P Count userspace processes instead of tasks (excl. kernel)\n"
" -k Count all processes instead of tasks (incl. kernel)\n"
" --recursive=BOOL Sum up process count recursively\n"
" -d --delay=DELAY Delay between updates\n"
" -n --iterations=N Run for N iterations before exiting\n"
" -1 Shortcut for --iterations=1\n"
" -b --batch Run in batch mode, accepting no input\n"
" --depth=DEPTH Maximum traversal depth (default: %u)\n"
" -M --machine= Show container\n"
, program_invocation_short_name, arg_depth);
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_VERSION = 0x100,
ARG_DEPTH,
ARG_CPU_TYPE,
ARG_ORDER,
ARG_RECURSIVE,
};
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "delay", required_argument, NULL, 'd' },
{ "iterations", required_argument, NULL, 'n' },
{ "batch", no_argument, NULL, 'b' },
{ "raw", no_argument, NULL, 'r' },
{ "depth", required_argument, NULL, ARG_DEPTH },
{ "cpu", optional_argument, NULL, ARG_CPU_TYPE },
{ "order", required_argument, NULL, ARG_ORDER },
{ "recursive", required_argument, NULL, ARG_RECURSIVE },
{ "machine", required_argument, NULL, 'M' },
{}
};
int c, r;
assert(argc >= 1);
assert(argv);
while ((c = getopt_long(argc, argv, "hptcmin:brd:kPM:1", options, NULL)) >= 0)
switch (c) {
case 'h':
help();
return 0;
case ARG_VERSION:
return version();
case ARG_CPU_TYPE:
if (optarg) {
if (streq(optarg, "time"))
arg_cpu_type = CPU_TIME;
else if (streq(optarg, "percentage"))
arg_cpu_type = CPU_PERCENT;
else {
log_error("Unknown argument to --cpu=: %s", optarg);
return -EINVAL;
}
} else
arg_cpu_type = CPU_TIME;
break;
case ARG_DEPTH:
r = safe_atou(optarg, &arg_depth);
if (r < 0)
return log_error_errno(r, "Failed to parse depth parameter: %s", optarg);
break;
case 'd':
r = parse_sec(optarg, &arg_delay);
if (r < 0 || arg_delay <= 0) {
log_error("Failed to parse delay parameter: %s", optarg);
return -EINVAL;
}
break;
case 'n':
r = safe_atou(optarg, &arg_iterations);
if (r < 0)
return log_error_errno(r, "Failed to parse iterations parameter: %s", optarg);
break;
case '1':
arg_iterations = 1;
break;
case 'b':
arg_batch = true;
break;
case 'r':
arg_raw = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case ARG_ORDER:
if (streq(optarg, "path"))
arg_order = ORDER_PATH;
else if (streq(optarg, "tasks"))
arg_order = ORDER_TASKS;
else if (streq(optarg, "cpu"))
arg_order = ORDER_CPU;
else if (streq(optarg, "memory"))
arg_order = ORDER_MEMORY;
else if (streq(optarg, "io"))
arg_order = ORDER_IO;
else {
log_error("Invalid argument to --order=: %s", optarg);
return -EINVAL;
}
break;
case 'k':
arg_count = COUNT_ALL_PROCESSES;
break;
case 'P':
arg_count = COUNT_USERSPACE_PROCESSES;
break;
case ARG_RECURSIVE:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --recursive= argument: %s", optarg);
arg_recursive = r;
arg_recursive_unset = r == 0;
break;
case 'M':
arg_machine = optarg;
break;
case '?':
return -EINVAL;
default:
assert_not_reached("Unhandled option");
}
if (optind == argc - 1)
arg_root = argv[optind];
else if (optind < argc) {
log_error("Too many arguments.");
return -EINVAL;
}
return 1;
}
static const char* counting_what(void) {
if (arg_count == COUNT_PIDS)
return "tasks";
else if (arg_count == COUNT_ALL_PROCESSES)
return "all processes (incl. kernel)";
else
return "userspace processes (excl. kernel)";
}
int main(int argc, char *argv[]) {
int r;
Hashmap *a = NULL, *b = NULL;
unsigned iteration = 0;
usec_t last_refresh = 0;
bool quit = false, immediate_refresh = false;
_cleanup_free_ char *root = NULL;
CGroupMask mask;
log_parse_environment();
log_open();
r = parse_argv(argc, argv);
if (r <= 0)
goto finish;
r = cg_mask_supported(&mask);
if (r < 0) {
log_error_errno(r, "Failed to determine supported controllers: %m");
goto finish;
}
arg_count = (mask & CGROUP_MASK_PIDS) ? COUNT_PIDS : COUNT_USERSPACE_PROCESSES;
if (arg_recursive_unset && arg_count == COUNT_PIDS) {
log_error("Non-recursive counting is only supported when counting processes, not tasks. Use -P or -k.");
return -EINVAL;
}
r = show_cgroup_get_path_and_warn(arg_machine, arg_root, &root);
if (r < 0) {
log_error_errno(r, "Failed to get root control group path: %m");
goto finish;
} else
log_debug("Cgroup path: %s", root);
a = hashmap_new(&string_hash_ops);
b = hashmap_new(&string_hash_ops);
if (!a || !b) {
r = log_oom();
goto finish;
}
signal(SIGWINCH, columns_lines_cache_reset);
if (arg_iterations == (unsigned) -1)
arg_iterations = on_tty() ? 0 : 1;
while (!quit) {
Hashmap *c;
usec_t t;
char key;
char h[FORMAT_TIMESPAN_MAX];
t = now(CLOCK_MONOTONIC);
if (t >= last_refresh + arg_delay || immediate_refresh) {
r = refresh(root, a, b, iteration++);
if (r < 0) {
log_error_errno(r, "Failed to refresh: %m");
goto finish;
}
group_hashmap_clear(b);
c = a;
a = b;
b = c;
last_refresh = t;
immediate_refresh = false;
}
display(b);
if (arg_iterations && iteration >= arg_iterations)
break;
if (!on_tty()) /* non-TTY: Empty newline as delimiter between polls */
fputs("\n", stdout);
fflush(stdout);
if (arg_batch)
(void) usleep(last_refresh + arg_delay - t);
else {
r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL);
if (r == -ETIMEDOUT)
continue;
if (r < 0) {
log_error_errno(r, "Couldn't read key: %m");
goto finish;
}
}
if (on_tty()) { /* TTY: Clear any user keystroke */
fputs("\r \r", stdout);
fflush(stdout);
}
if (arg_batch)
continue;
switch (key) {
case ' ':
immediate_refresh = true;
break;
case 'q':
quit = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case '%':
arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME;
break;
case 'k':
arg_count = arg_count != COUNT_ALL_PROCESSES ? COUNT_ALL_PROCESSES : COUNT_PIDS;
fprintf(stdout, "\nCounting: %s.", counting_what());
fflush(stdout);
sleep(1);
break;
case 'P':
arg_count = arg_count != COUNT_USERSPACE_PROCESSES ? COUNT_USERSPACE_PROCESSES : COUNT_PIDS;
fprintf(stdout, "\nCounting: %s.", counting_what());
fflush(stdout);
sleep(1);
break;
case 'r':
if (arg_count == COUNT_PIDS)
fprintf(stdout, "\n\aCannot toggle recursive counting, not available in task counting mode.");
else {
arg_recursive = !arg_recursive;
fprintf(stdout, "\nRecursive process counting: %s", yes_no(arg_recursive));
}
fflush(stdout);
sleep(1);
break;
case '+':
if (arg_delay < USEC_PER_SEC)
arg_delay += USEC_PER_MSEC*250;
else
arg_delay += USEC_PER_SEC;
fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '-':
if (arg_delay <= USEC_PER_MSEC*500)
arg_delay = USEC_PER_MSEC*250;
else if (arg_delay < USEC_PER_MSEC*1250)
arg_delay -= USEC_PER_MSEC*250;
else
arg_delay -= USEC_PER_SEC;
fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '?':
case 'h':
#define ON ANSI_HIGHLIGHT
#define OFF ANSI_NORMAL
fprintf(stdout,
"\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks/procs; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n"
"\t<" ON "+" OFF "> Inc. delay; <" ON "-" OFF "> Dec. delay; <" ON "%%" OFF "> Toggle time; <" ON "SPACE" OFF "> Refresh\n"
"\t<" ON "P" OFF "> Toggle count userspace processes; <" ON "k" OFF "> Toggle count all processes\n"
"\t<" ON "r" OFF "> Count processes recursively; <" ON "q" OFF "> Quit");
fflush(stdout);
sleep(3);
break;
default:
if (key < ' ')
fprintf(stdout, "\nUnknown key '\\x%x'. Ignoring.", key);
else
fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key);
fflush(stdout);
sleep(1);
break;
}
}
r = 0;
finish:
group_hashmap_free(a);
group_hashmap_free(b);
return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}