/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #if HAVE_PAM #include #include #endif #if HAVE_APPARMOR #include #endif #include "sd-messages.h" #if HAVE_APPARMOR #include "apparmor-util.h" #endif #include "argv-util.h" #include "barrier.h" #include "bpf-dlopen.h" #include "bpf-restrict-fs.h" #include "btrfs-util.h" #include "capability-util.h" #include "cgroup-setup.h" #include "chase.h" #include "chattr-util.h" #include "chown-recursive.h" #include "copy.h" #include "data-fd-util.h" #include "env-util.h" #include "escape.h" #include "exec-credential.h" #include "exec-invoke.h" #include "execute.h" #include "exit-status.h" #include "fd-util.h" #include "hexdecoct.h" #include "io-util.h" #include "iovec-util.h" #include "journal-send.h" #include "missing_ioprio.h" #include "missing_prctl.h" #include "missing_sched.h" #include "missing_securebits.h" #include "missing_syscall.h" #include "mkdir-label.h" #include "proc-cmdline.h" #include "process-util.h" #include "psi-util.h" #include "rlimit-util.h" #include "seccomp-util.h" #include "selinux-util.h" #include "signal-util.h" #include "smack-util.h" #include "socket-util.h" #include "string-table.h" #include "strv.h" #include "terminal-util.h" #include "utmp-wtmp.h" #include "vpick.h" #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC) #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC) #define SNDBUF_SIZE (8*1024*1024) static int flag_fds( const int fds[], size_t n_socket_fds, size_t n_fds, bool nonblock) { int r; assert(fds || n_fds == 0); /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags. * O_NONBLOCK only applies to socket activation though. */ for (size_t i = 0; i < n_fds; i++) { if (i < n_socket_fds) { r = fd_nonblock(fds[i], nonblock); if (r < 0) return r; } /* We unconditionally drop FD_CLOEXEC from the fds, * since after all we want to pass these fds to our * children */ r = fd_cloexec(fds[i], false); if (r < 0) return r; } return 0; } static bool is_terminal_input(ExecInput i) { return IN_SET(i, EXEC_INPUT_TTY, EXEC_INPUT_TTY_FORCE, EXEC_INPUT_TTY_FAIL); } static bool is_terminal_output(ExecOutput o) { return IN_SET(o, EXEC_OUTPUT_TTY, EXEC_OUTPUT_KMSG_AND_CONSOLE, EXEC_OUTPUT_JOURNAL_AND_CONSOLE); } static bool is_kmsg_output(ExecOutput o) { return IN_SET(o, EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE); } static bool exec_context_needs_term(const ExecContext *c) { assert(c); /* Return true if the execution context suggests we should set $TERM to something useful. */ if (is_terminal_input(c->std_input)) return true; if (is_terminal_output(c->std_output)) return true; if (is_terminal_output(c->std_error)) return true; return !!c->tty_path; } static int open_null_as(int flags, int nfd) { int fd; assert(nfd >= 0); fd = open("/dev/null", flags|O_NOCTTY); if (fd < 0) return -errno; return move_fd(fd, nfd, false); } static int connect_journal_socket( int fd, const char *log_namespace, uid_t uid, gid_t gid) { uid_t olduid = UID_INVALID; gid_t oldgid = GID_INVALID; const char *j; int r; assert(fd >= 0); j = journal_stream_path(log_namespace); if (!j) return -EINVAL; if (gid_is_valid(gid)) { oldgid = getgid(); if (setegid(gid) < 0) return -errno; } if (uid_is_valid(uid)) { olduid = getuid(); if (seteuid(uid) < 0) { r = -errno; goto restore_gid; } } r = connect_unix_path(fd, AT_FDCWD, j); /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if an LSM interferes. */ if (uid_is_valid(uid)) (void) seteuid(olduid); restore_gid: if (gid_is_valid(gid)) (void) setegid(oldgid); return r; } static int connect_logger_as( const ExecContext *context, const ExecParameters *params, ExecOutput output, const char *ident, int nfd, uid_t uid, gid_t gid) { _cleanup_close_ int fd = -EBADF; int r; assert(context); assert(params); assert(output < _EXEC_OUTPUT_MAX); assert(ident); assert(nfd >= 0); fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) return -errno; r = connect_journal_socket(fd, context->log_namespace, uid, gid); if (r < 0) return r; if (shutdown(fd, SHUT_RD) < 0) return -errno; (void) fd_inc_sndbuf(fd, SNDBUF_SIZE); if (dprintf(fd, "%s\n" "%s\n" "%i\n" "%i\n" "%i\n" "%i\n" "%i\n", context->syslog_identifier ?: ident, params->flags & EXEC_PASS_LOG_UNIT ? params->unit_id : "", context->syslog_priority, !!context->syslog_level_prefix, false, is_kmsg_output(output), is_terminal_output(output)) < 0) return -errno; return move_fd(TAKE_FD(fd), nfd, false); } static int open_terminal_as(const char *path, int flags, int nfd) { int fd; assert(path); assert(nfd >= 0); fd = open_terminal(path, flags | O_NOCTTY); if (fd < 0) return fd; return move_fd(fd, nfd, false); } static int acquire_path(const char *path, int flags, mode_t mode) { _cleanup_close_ int fd = -EBADF; int r; assert(path); if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR)) flags |= O_CREAT; fd = open(path, flags|O_NOCTTY, mode); if (fd >= 0) return TAKE_FD(fd); if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */ return -errno; /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */ fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) return -errno; r = connect_unix_path(fd, AT_FDCWD, path); if (IN_SET(r, -ENOTSOCK, -EINVAL)) /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this * wasn't an AF_UNIX socket after all */ return -ENXIO; if (r < 0) return r; if ((flags & O_ACCMODE) == O_RDONLY) r = shutdown(fd, SHUT_WR); else if ((flags & O_ACCMODE) == O_WRONLY) r = shutdown(fd, SHUT_RD); else r = 0; if (r < 0) return -errno; return TAKE_FD(fd); } static int fixup_input( const ExecContext *context, int socket_fd, bool apply_tty_stdin) { ExecInput std_input; assert(context); std_input = context->std_input; if (is_terminal_input(std_input) && !apply_tty_stdin) return EXEC_INPUT_NULL; if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0) return EXEC_INPUT_NULL; if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0) return EXEC_INPUT_NULL; return std_input; } static int fixup_output(ExecOutput output, int socket_fd) { if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0) return EXEC_OUTPUT_INHERIT; return output; } static int setup_input( const ExecContext *context, const ExecParameters *params, int socket_fd, const int named_iofds[static 3]) { ExecInput i; int r; assert(context); assert(params); assert(named_iofds); if (params->stdin_fd >= 0) { if (dup2(params->stdin_fd, STDIN_FILENO) < 0) return -errno; /* Try to make this the controlling tty, if it is a tty */ if (isatty_safe(STDIN_FILENO)) (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE); return STDIN_FILENO; } i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN); switch (i) { case EXEC_INPUT_NULL: return open_null_as(O_RDONLY, STDIN_FILENO); case EXEC_INPUT_TTY: case EXEC_INPUT_TTY_FORCE: case EXEC_INPUT_TTY_FAIL: { _cleanup_close_ int tty_fd = -EBADF; const char *tty_path; tty_path = ASSERT_PTR(exec_context_tty_path(context)); tty_fd = acquire_terminal(tty_path, i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY : i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE : ACQUIRE_TERMINAL_WAIT, USEC_INFINITY); if (tty_fd < 0) return tty_fd; r = move_fd(tty_fd, STDIN_FILENO, /* cloexec= */ false); if (r < 0) return r; TAKE_FD(tty_fd); return r; } case EXEC_INPUT_SOCKET: assert(socket_fd >= 0); return RET_NERRNO(dup2(socket_fd, STDIN_FILENO)); case EXEC_INPUT_NAMED_FD: assert(named_iofds[STDIN_FILENO] >= 0); (void) fd_nonblock(named_iofds[STDIN_FILENO], false); return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO)); case EXEC_INPUT_DATA: { int fd; fd = acquire_data_fd_full(context->stdin_data, context->stdin_data_size, /* flags = */ 0); if (fd < 0) return fd; return move_fd(fd, STDIN_FILENO, false); } case EXEC_INPUT_FILE: { bool rw; int fd; assert(context->stdio_file[STDIN_FILENO]); rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) || (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO])); fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask); if (fd < 0) return fd; return move_fd(fd, STDIN_FILENO, false); } default: assert_not_reached(); } } static bool can_inherit_stderr_from_stdout( const ExecContext *context, ExecOutput o, ExecOutput e) { assert(context); /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the * stderr fd */ if (e == EXEC_OUTPUT_INHERIT) return true; if (e != o) return false; if (e == EXEC_OUTPUT_NAMED_FD) return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]); if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE)) return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]); return true; } static int setup_output( const ExecContext *context, const ExecParameters *params, int fileno, int socket_fd, const int named_iofds[static 3], const char *ident, uid_t uid, gid_t gid, dev_t *journal_stream_dev, ino_t *journal_stream_ino) { ExecOutput o; ExecInput i; int r; assert(context); assert(params); assert(ident); assert(journal_stream_dev); assert(journal_stream_ino); if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) { if (dup2(params->stdout_fd, STDOUT_FILENO) < 0) return -errno; return STDOUT_FILENO; } if (fileno == STDERR_FILENO && params->stderr_fd >= 0) { if (dup2(params->stderr_fd, STDERR_FILENO) < 0) return -errno; return STDERR_FILENO; } i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN); o = fixup_output(context->std_output, socket_fd); // FIXME: we probably should spend some time here to verify that if we inherit an fd from stdin // (possibly indirect via inheritance from stdout) it is actually opened for write! if (fileno == STDERR_FILENO) { ExecOutput e; e = fixup_output(context->std_error, socket_fd); /* This expects the input and output are already set up */ /* Don't change the stderr file descriptor if we inherit all * the way and are not on a tty */ if (e == EXEC_OUTPUT_INHERIT && o == EXEC_OUTPUT_INHERIT && i == EXEC_INPUT_NULL && !is_terminal_input(context->std_input) && getppid() != 1) return fileno; /* Duplicate from stdout if possible */ if (can_inherit_stderr_from_stdout(context, o, e)) return RET_NERRNO(dup2(STDOUT_FILENO, fileno)); o = e; } else if (o == EXEC_OUTPUT_INHERIT) { /* If input got downgraded, inherit the original value */ if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input)) return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno); /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */ if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA)) return RET_NERRNO(dup2(STDIN_FILENO, fileno)); /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */ if (getppid() != 1) return fileno; /* We need to open /dev/null here anew, to get the right access mode. */ return open_null_as(O_WRONLY, fileno); } switch (o) { case EXEC_OUTPUT_NULL: return open_null_as(O_WRONLY, fileno); case EXEC_OUTPUT_TTY: if (is_terminal_input(i)) return RET_NERRNO(dup2(STDIN_FILENO, fileno)); return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno); case EXEC_OUTPUT_KMSG: case EXEC_OUTPUT_KMSG_AND_CONSOLE: case EXEC_OUTPUT_JOURNAL: case EXEC_OUTPUT_JOURNAL_AND_CONSOLE: r = connect_logger_as(context, params, o, ident, fileno, uid, gid); if (r < 0) { log_exec_warning_errno(context, params, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr"); r = open_null_as(O_WRONLY, fileno); } else { struct stat st; /* If we connected this fd to the journal via a stream, patch the device/inode into the passed * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits * services to detect whether they are connected to the journal or not. * * If both stdout and stderr are connected to a stream then let's make sure to store the data * about STDERR as that's usually the best way to do logging. */ if (fstat(fileno, &st) >= 0 && (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) { *journal_stream_dev = st.st_dev; *journal_stream_ino = st.st_ino; } } return r; case EXEC_OUTPUT_SOCKET: assert(socket_fd >= 0); return RET_NERRNO(dup2(socket_fd, fileno)); case EXEC_OUTPUT_NAMED_FD: assert(named_iofds[fileno] >= 0); (void) fd_nonblock(named_iofds[fileno], false); return RET_NERRNO(dup2(named_iofds[fileno], fileno)); case EXEC_OUTPUT_FILE: case EXEC_OUTPUT_FILE_APPEND: case EXEC_OUTPUT_FILE_TRUNCATE: { bool rw; int fd, flags; assert(context->stdio_file[fileno]); rw = context->std_input == EXEC_INPUT_FILE && streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]); if (rw) return RET_NERRNO(dup2(STDIN_FILENO, fileno)); flags = O_WRONLY; if (o == EXEC_OUTPUT_FILE_APPEND) flags |= O_APPEND; else if (o == EXEC_OUTPUT_FILE_TRUNCATE) flags |= O_TRUNC; fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask); if (fd < 0) return fd; return move_fd(fd, fileno, 0); } default: assert_not_reached(); } } static int chown_terminal(int fd, uid_t uid) { int r; assert(fd >= 0); /* Before we chown/chmod the TTY, let's ensure this is actually a tty */ if (!isatty_safe(fd)) return 0; /* This might fail. What matters are the results. */ r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID); if (r < 0) return r; return 1; } static int setup_confirm_stdio( const ExecContext *context, const char *vc, int *ret_saved_stdin, int *ret_saved_stdout) { _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF; int r; assert(ret_saved_stdin); assert(ret_saved_stdout); saved_stdin = fcntl(STDIN_FILENO, F_DUPFD_CLOEXEC, 3); if (saved_stdin < 0) return -errno; saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD_CLOEXEC, 3); if (saved_stdout < 0) return -errno; fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC); if (fd < 0) return fd; _cleanup_close_ int lock_fd = lock_dev_console(); if (lock_fd < 0) log_debug_errno(lock_fd, "Failed to lock /dev/console, ignoring: %m"); r = chown_terminal(fd, getuid()); if (r < 0) return r; r = terminal_reset_defensive(fd, /* switch_to_text= */ true); if (r < 0) return r; r = exec_context_apply_tty_size(context, fd, fd, vc); if (r < 0) return r; r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */ TAKE_FD(fd); if (r < 0) return r; *ret_saved_stdin = TAKE_FD(saved_stdin); *ret_saved_stdout = TAKE_FD(saved_stdout); return 0; } static void write_confirm_error_fd(int err, int fd, const char *unit_id) { assert(err != 0); assert(fd >= 0); assert(unit_id); errno = abs(err); if (errno == ETIMEDOUT) dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", unit_id); else dprintf(fd, "Couldn't ask confirmation for %s, assuming positive response: %m\n", unit_id); } static void write_confirm_error(int err, const char *vc, const char *unit_id) { _cleanup_close_ int fd = -EBADF; assert(vc); fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC); if (fd < 0) return; write_confirm_error_fd(err, fd, unit_id); } static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) { int r = 0; assert(saved_stdin); assert(saved_stdout); release_terminal(); if (*saved_stdin >= 0) if (dup2(*saved_stdin, STDIN_FILENO) < 0) r = -errno; if (*saved_stdout >= 0) if (dup2(*saved_stdout, STDOUT_FILENO) < 0) r = -errno; *saved_stdin = safe_close(*saved_stdin); *saved_stdout = safe_close(*saved_stdout); return r; } enum { CONFIRM_PRETEND_FAILURE = -1, CONFIRM_PRETEND_SUCCESS = 0, CONFIRM_EXECUTE = 1, }; static bool confirm_spawn_disabled(void) { return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0; } static int ask_for_confirmation(const ExecContext *context, const ExecParameters *params, const char *cmdline) { int saved_stdout = -EBADF, saved_stdin = -EBADF, r; _cleanup_free_ char *e = NULL; char c; assert(context); assert(params); /* For any internal errors, assume a positive response. */ r = setup_confirm_stdio(context, params->confirm_spawn, &saved_stdin, &saved_stdout); if (r < 0) { write_confirm_error(r, params->confirm_spawn, params->unit_id); return CONFIRM_EXECUTE; } /* confirm_spawn might have been disabled while we were sleeping. */ if (!params->confirm_spawn || confirm_spawn_disabled()) { r = 1; goto restore_stdio; } e = ellipsize(cmdline, 60, 100); if (!e) { log_oom(); r = CONFIRM_EXECUTE; goto restore_stdio; } for (;;) { r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e); if (r < 0) { write_confirm_error_fd(r, STDOUT_FILENO, params->unit_id); r = CONFIRM_EXECUTE; goto restore_stdio; } switch (c) { case 'c': printf("Resuming normal execution.\n"); manager_disable_confirm_spawn(); r = 1; break; case 'D': printf(" Unit: %s\n", params->unit_id); exec_context_dump(context, stdout, " "); exec_params_dump(params, stdout, " "); continue; /* ask again */ case 'f': printf("Failing execution.\n"); r = CONFIRM_PRETEND_FAILURE; break; case 'h': printf(" c - continue, proceed without asking anymore\n" " D - dump, show the state of the unit\n" " f - fail, don't execute the command and pretend it failed\n" " h - help\n" " i - info, show a short summary of the unit\n" " j - jobs, show jobs that are in progress\n" " s - skip, don't execute the command and pretend it succeeded\n" " y - yes, execute the command\n"); continue; /* ask again */ case 'i': printf(" Unit: %s\n" " Command: %s\n", params->unit_id, cmdline); continue; /* ask again */ case 'j': if (sigqueue(getppid(), SIGRTMIN+18, (const union sigval) { .sival_int = MANAGER_SIGNAL_COMMAND_DUMP_JOBS }) < 0) return -errno; continue; /* ask again */ case 'n': /* 'n' was removed in favor of 'f'. */ printf("Didn't understand 'n', did you mean 'f'?\n"); continue; /* ask again */ case 's': printf("Skipping execution.\n"); r = CONFIRM_PRETEND_SUCCESS; break; case 'y': r = CONFIRM_EXECUTE; break; default: assert_not_reached(); } break; } restore_stdio: restore_confirm_stdio(&saved_stdin, &saved_stdout); return r; } static int get_fixed_user( const char *user_or_uid, const char **ret_username, uid_t *ret_uid, gid_t *ret_gid, const char **ret_home, const char **ret_shell) { int r; assert(user_or_uid); assert(ret_username); /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway * (i.e. are "/" or "/bin/nologin"). */ r = get_user_creds(&user_or_uid, ret_uid, ret_gid, ret_home, ret_shell, USER_CREDS_CLEAN); if (r < 0) return r; /* user_or_uid is normalized by get_user_creds to username */ *ret_username = user_or_uid; return 0; } static int get_fixed_group( const char *group_or_gid, const char **ret_groupname, gid_t *ret_gid) { int r; assert(group_or_gid); assert(ret_groupname); r = get_group_creds(&group_or_gid, ret_gid, /* flags = */ 0); if (r < 0) return r; /* group_or_gid is normalized by get_group_creds to groupname */ *ret_groupname = group_or_gid; return 0; } static int get_supplementary_groups(const ExecContext *c, const char *user, const char *group, gid_t gid, gid_t **supplementary_gids, int *ngids) { int r, k = 0; int ngroups_max; bool keep_groups = false; gid_t *groups = NULL; _cleanup_free_ gid_t *l_gids = NULL; assert(c); /* * If user is given, then lookup GID and supplementary groups list. * We avoid NSS lookups for gid=0. Also we have to initialize groups * here and as early as possible so we keep the list of supplementary * groups of the caller. */ if (user && gid_is_valid(gid) && gid != 0) { /* First step, initialize groups from /etc/groups */ if (initgroups(user, gid) < 0) return -errno; keep_groups = true; } if (strv_isempty(c->supplementary_groups)) return 0; /* * If SupplementaryGroups= was passed then NGROUPS_MAX has to * be positive, otherwise fail. */ errno = 0; ngroups_max = (int) sysconf(_SC_NGROUPS_MAX); if (ngroups_max <= 0) return errno_or_else(EOPNOTSUPP); l_gids = new(gid_t, ngroups_max); if (!l_gids) return -ENOMEM; if (keep_groups) { /* * Lookup the list of groups that the user belongs to, we * avoid NSS lookups here too for gid=0. */ k = ngroups_max; if (getgrouplist(user, gid, l_gids, &k) < 0) return -EINVAL; } else k = 0; STRV_FOREACH(i, c->supplementary_groups) { const char *g; if (k >= ngroups_max) return -E2BIG; g = *i; r = get_group_creds(&g, l_gids+k, 0); if (r < 0) return r; k++; } /* * Sets ngids to zero to drop all supplementary groups, happens * when we are under root and SupplementaryGroups= is empty. */ if (k == 0) { *ngids = 0; return 0; } /* Otherwise get the final list of supplementary groups */ groups = memdup(l_gids, sizeof(gid_t) * k); if (!groups) return -ENOMEM; *supplementary_gids = groups; *ngids = k; groups = NULL; return 0; } static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) { int r; /* Handle SupplementaryGroups= if it is not empty */ if (ngids > 0) { r = maybe_setgroups(ngids, supplementary_gids); if (r < 0) return r; } if (gid_is_valid(gid)) { /* Then set our gids */ if (setresgid(gid, gid, gid) < 0) return -errno; } return 0; } static int set_securebits(unsigned bits, unsigned mask) { unsigned applied; int current; current = prctl(PR_GET_SECUREBITS); if (current < 0) return -errno; /* Clear all securebits defined in mask and set bits */ applied = ((unsigned) current & ~mask) | bits; if ((unsigned) current == applied) return 0; if (prctl(PR_SET_SECUREBITS, applied) < 0) return -errno; return 1; } static int enforce_user( const ExecContext *context, uid_t uid, uint64_t capability_ambient_set) { assert(context); int r; if (!uid_is_valid(uid)) return 0; /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this * case. */ if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) { /* First step: If we need to keep capabilities but drop privileges we need to make sure we * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */ r = set_securebits(1U << SECURE_KEEP_CAPS, 0); if (r < 0) return r; } /* Second step: actually set the uids */ if (setresuid(uid, uid, uid) < 0) return -errno; /* At this point we should have all necessary capabilities but are otherwise a normal user. However, * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done * outside of this call. */ return 0; } #if HAVE_PAM static int null_conv( int num_msg, const struct pam_message **msg, struct pam_response **resp, void *appdata_ptr) { /* We don't support conversations */ return PAM_CONV_ERR; } static int pam_close_session_and_delete_credentials(pam_handle_t *handle, int flags) { int r, s; assert(handle); r = pam_close_session(handle, flags); if (r != PAM_SUCCESS) log_debug("pam_close_session() failed: %s", pam_strerror(handle, r)); s = pam_setcred(handle, PAM_DELETE_CRED | flags); if (s != PAM_SUCCESS) log_debug("pam_setcred(PAM_DELETE_CRED) failed: %s", pam_strerror(handle, s)); return r != PAM_SUCCESS ? r : s; } #endif static int setup_pam( const char *name, const char *user, uid_t uid, gid_t gid, const char *tty, char ***env, /* updated on success */ const int fds[], size_t n_fds, int exec_fd) { #if HAVE_PAM static const struct pam_conv conv = { .conv = null_conv, .appdata_ptr = NULL }; _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL; _cleanup_strv_free_ char **e = NULL; pam_handle_t *handle = NULL; sigset_t old_ss; int pam_code = PAM_SUCCESS, r; bool close_session = false; pid_t parent_pid; int flags = 0; assert(name); assert(user); assert(env); /* We set up PAM in the parent process, then fork. The child * will then stay around until killed via PR_GET_PDEATHSIG or * systemd via the cgroup logic. It will then remove the PAM * session again. The parent process will exec() the actual * daemon. We do things this way to ensure that the main PID * of the daemon is the one we initially fork()ed. */ r = barrier_create(&barrier); if (r < 0) goto fail; if (log_get_max_level() < LOG_DEBUG) flags |= PAM_SILENT; pam_code = pam_start(name, user, &conv, &handle); if (pam_code != PAM_SUCCESS) { handle = NULL; goto fail; } if (!tty) { _cleanup_free_ char *q = NULL; /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure * out if that's the case, and read the TTY off it. */ if (getttyname_malloc(STDIN_FILENO, &q) >= 0) tty = strjoina("/dev/", q); } if (tty) { pam_code = pam_set_item(handle, PAM_TTY, tty); if (pam_code != PAM_SUCCESS) goto fail; } STRV_FOREACH(nv, *env) { pam_code = pam_putenv(handle, *nv); if (pam_code != PAM_SUCCESS) goto fail; } pam_code = pam_acct_mgmt(handle, flags); if (pam_code != PAM_SUCCESS) goto fail; pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags); if (pam_code != PAM_SUCCESS) log_debug("pam_setcred(PAM_ESTABLISH_CRED) failed, ignoring: %s", pam_strerror(handle, pam_code)); pam_code = pam_open_session(handle, flags); if (pam_code != PAM_SUCCESS) goto fail; close_session = true; e = pam_getenvlist(handle); if (!e) { pam_code = PAM_BUF_ERR; goto fail; } /* Block SIGTERM, so that we know that it won't get lost in the child */ assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM) >= 0); parent_pid = getpid_cached(); r = safe_fork("(sd-pam)", 0, NULL); if (r < 0) goto fail; if (r == 0) { int ret = EXIT_PAM; /* The child's job is to reset the PAM session on termination */ barrier_set_role(&barrier, BARRIER_CHILD); /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only * those fds are open here that have been opened by PAM. */ (void) close_many(fds, n_fds); /* Also close the 'exec_fd' in the child, since the service manager waits for the EOF induced * by the execve() to wait for completion, and if we'd keep the fd open here in the child * we'd never signal completion. */ exec_fd = safe_close(exec_fd); /* Drop privileges - we don't need any to pam_close_session and this will make * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam * threads to fail to exit normally */ r = fully_set_uid_gid(uid, gid, /* supplementary_gids= */ NULL, /* n_supplementary_gids= */ 0); if (r < 0) log_warning_errno(r, "Failed to drop privileges in sd-pam: %m"); (void) ignore_signals(SIGPIPE); /* Wait until our parent died. This will only work if the above setresuid() succeeds, * otherwise the kernel will not allow unprivileged parents kill their privileged children * this way. We rely on the control groups kill logic to do the rest for us. */ if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) goto child_finish; /* Tell the parent that our setup is done. This is especially important regarding dropping * privileges. Otherwise, unit setup might race against our setresuid(2) call. * * If the parent aborted, we'll detect this below, hence ignore return failure here. */ (void) barrier_place(&barrier); /* Check if our parent process might already have died? */ if (getppid() == parent_pid) { sigset_t ss; int sig; assert_se(sigemptyset(&ss) >= 0); assert_se(sigaddset(&ss, SIGTERM) >= 0); assert_se(sigwait(&ss, &sig) == 0); assert(sig == SIGTERM); } /* If our parent died we'll end the session */ if (getppid() != parent_pid) { pam_code = pam_close_session_and_delete_credentials(handle, flags); if (pam_code != PAM_SUCCESS) goto child_finish; } ret = 0; child_finish: /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module * know about this. See pam_end(3) */ (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT); _exit(ret); } barrier_set_role(&barrier, BARRIER_PARENT); /* If the child was forked off successfully it will do all the cleanups, so forget about the handle * here. */ handle = NULL; /* Unblock SIGTERM again in the parent */ assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0); /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want * this fd around. */ closelog(); /* Synchronously wait for the child to initialize. We don't care for errors as we cannot * recover. However, warn loudly if it happens. */ if (!barrier_place_and_sync(&barrier)) log_error("PAM initialization failed"); return strv_free_and_replace(*env, e); fail: if (pam_code != PAM_SUCCESS) { log_error("PAM failed: %s", pam_strerror(handle, pam_code)); r = -EPERM; /* PAM errors do not map to errno */ } else log_error_errno(r, "PAM failed: %m"); if (handle) { if (close_session) pam_code = pam_close_session_and_delete_credentials(handle, flags); (void) pam_end(handle, pam_code | flags); } closelog(); return r; #else return 0; #endif } static void rename_process_from_path(const char *path) { _cleanup_free_ char *buf = NULL; const char *p; assert(path); /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in * /bin/ps */ if (path_extract_filename(path, &buf) < 0) { rename_process("(...)"); return; } size_t l = strlen(buf); if (l > 8) { /* The end of the process name is usually more interesting, since the first bit might just be * "systemd-" */ p = buf + l - 8; l = 8; } else p = buf; char process_name[11]; process_name[0] = '('; memcpy(process_name+1, p, l); process_name[1+l] = ')'; process_name[1+l+1] = 0; (void) rename_process(process_name); } static bool context_has_address_families(const ExecContext *c) { assert(c); return c->address_families_allow_list || !set_isempty(c->address_families); } static bool context_has_syscall_filters(const ExecContext *c) { assert(c); return c->syscall_allow_list || !hashmap_isempty(c->syscall_filter); } static bool context_has_syscall_logs(const ExecContext *c) { assert(c); return c->syscall_log_allow_list || !hashmap_isempty(c->syscall_log); } static bool context_has_seccomp(const ExecContext *c) { /* We need NNP if we have any form of seccomp and are unprivileged */ return c->lock_personality || c->memory_deny_write_execute || c->private_devices || c->protect_clock || c->protect_hostname || c->protect_kernel_tunables || c->protect_kernel_modules || c->protect_kernel_logs || context_has_address_families(c) || exec_context_restrict_namespaces_set(c) || c->restrict_realtime || c->restrict_suid_sgid || !set_isempty(c->syscall_archs) || context_has_syscall_filters(c) || context_has_syscall_logs(c); } static bool context_has_no_new_privileges(const ExecContext *c) { assert(c); if (c->no_new_privileges) return true; if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */ return false; return context_has_seccomp(c); } #if HAVE_SECCOMP static bool seccomp_allows_drop_privileges(const ExecContext *c) { void *id, *val; bool has_capget = false, has_capset = false, has_prctl = false; assert(c); /* No syscall filter, we are allowed to drop privileges */ if (hashmap_isempty(c->syscall_filter)) return true; HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) { _cleanup_free_ char *name = NULL; name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1); if (streq(name, "capget")) has_capget = true; else if (streq(name, "capset")) has_capset = true; else if (streq(name, "prctl")) has_prctl = true; } if (c->syscall_allow_list) return has_capget && has_capset && has_prctl; else return !(has_capget || has_capset || has_prctl); } static bool skip_seccomp_unavailable(const ExecContext *c, const ExecParameters *p, const char* msg) { if (is_seccomp_available()) return false; log_exec_debug(c, p, "SECCOMP features not detected in the kernel, skipping %s", msg); return true; } static int apply_syscall_filter(const ExecContext *c, const ExecParameters *p, bool needs_ambient_hack) { uint32_t negative_action, default_action, action; int r; assert(c); assert(p); if (!context_has_syscall_filters(c)) return 0; if (skip_seccomp_unavailable(c, p, "SystemCallFilter=")) return 0; negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno); if (c->syscall_allow_list) { default_action = negative_action; action = SCMP_ACT_ALLOW; } else { default_action = SCMP_ACT_ALLOW; action = negative_action; } if (needs_ambient_hack) { r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID); if (r < 0) return r; } /* Sending over exec_fd or handoff_timestamp_fd requires write() syscall. */ if (p->exec_fd >= 0 || p->handoff_timestamp_fd >= 0) { r = seccomp_filter_set_add_by_name(c->syscall_filter, c->syscall_allow_list, "write"); if (r < 0) return r; } return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false); } static int apply_syscall_log(const ExecContext *c, const ExecParameters *p) { #ifdef SCMP_ACT_LOG uint32_t default_action, action; #endif assert(c); assert(p); if (!context_has_syscall_logs(c)) return 0; #ifdef SCMP_ACT_LOG if (skip_seccomp_unavailable(c, p, "SystemCallLog=")) return 0; if (c->syscall_log_allow_list) { /* Log nothing but the ones listed */ default_action = SCMP_ACT_ALLOW; action = SCMP_ACT_LOG; } else { /* Log everything but the ones listed */ default_action = SCMP_ACT_LOG; action = SCMP_ACT_ALLOW; } return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false); #else /* old libseccomp */ log_exec_debug(c, p, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog="); return 0; #endif } static int apply_syscall_archs(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (set_isempty(c->syscall_archs)) return 0; if (skip_seccomp_unavailable(c, p, "SystemCallArchitectures=")) return 0; return seccomp_restrict_archs(c->syscall_archs); } static int apply_address_families(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!context_has_address_families(c)) return 0; if (skip_seccomp_unavailable(c, p, "RestrictAddressFamilies=")) return 0; return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list); } static int apply_memory_deny_write_execute(const ExecContext *c, const ExecParameters *p) { int r; assert(c); assert(p); if (!c->memory_deny_write_execute) return 0; /* use prctl() if kernel supports it (6.3) */ r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0); if (r == 0) { log_exec_debug(c, p, "Enabled MemoryDenyWriteExecute= with PR_SET_MDWE"); return 0; } if (r < 0 && errno != EINVAL) return log_exec_debug_errno(c, p, errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m"); /* else use seccomp */ log_exec_debug(c, p, "Kernel doesn't support PR_SET_MDWE: falling back to seccomp"); if (skip_seccomp_unavailable(c, p, "MemoryDenyWriteExecute=")) return 0; return seccomp_memory_deny_write_execute(); } static int apply_restrict_realtime(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!c->restrict_realtime) return 0; if (skip_seccomp_unavailable(c, p, "RestrictRealtime=")) return 0; return seccomp_restrict_realtime(); } static int apply_restrict_suid_sgid(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!c->restrict_suid_sgid) return 0; if (skip_seccomp_unavailable(c, p, "RestrictSUIDSGID=")) return 0; return seccomp_restrict_suid_sgid(); } static int apply_protect_sysctl(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but * let's protect even those systems where this is left on in the kernel. */ if (!c->protect_kernel_tunables) return 0; if (skip_seccomp_unavailable(c, p, "ProtectKernelTunables=")) return 0; return seccomp_protect_sysctl(); } static int apply_protect_kernel_modules(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); /* Turn off module syscalls on ProtectKernelModules=yes */ if (!c->protect_kernel_modules) return 0; if (skip_seccomp_unavailable(c, p, "ProtectKernelModules=")) return 0; return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false); } static int apply_protect_kernel_logs(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!c->protect_kernel_logs) return 0; if (skip_seccomp_unavailable(c, p, "ProtectKernelLogs=")) return 0; return seccomp_protect_syslog(); } static int apply_protect_clock(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!c->protect_clock) return 0; if (skip_seccomp_unavailable(c, p, "ProtectClock=")) return 0; return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false); } static int apply_private_devices(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */ if (!c->private_devices) return 0; if (skip_seccomp_unavailable(c, p, "PrivateDevices=")) return 0; return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false); } static int apply_restrict_namespaces(const ExecContext *c, const ExecParameters *p) { assert(c); assert(p); if (!exec_context_restrict_namespaces_set(c)) return 0; if (skip_seccomp_unavailable(c, p, "RestrictNamespaces=")) return 0; return seccomp_restrict_namespaces(c->restrict_namespaces); } static int apply_lock_personality(const ExecContext *c, const ExecParameters *p) { unsigned long personality; int r; assert(c); assert(p); if (!c->lock_personality) return 0; if (skip_seccomp_unavailable(c, p, "LockPersonality=")) return 0; personality = c->personality; /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */ if (personality == PERSONALITY_INVALID) { r = opinionated_personality(&personality); if (r < 0) return r; } return seccomp_lock_personality(personality); } #endif #if HAVE_LIBBPF static int apply_restrict_filesystems(const ExecContext *c, const ExecParameters *p) { int r; assert(c); assert(p); if (!exec_context_restrict_filesystems_set(c)) return 0; if (p->bpf_restrict_fs_map_fd < 0) { /* LSM BPF is unsupported or lsm_bpf_setup failed */ log_exec_debug(c, p, "LSM BPF not supported, skipping RestrictFileSystems="); return 0; } /* We are in a new binary, so dl-open again */ r = dlopen_bpf(); if (r < 0) return r; return bpf_restrict_fs_update(c->restrict_filesystems, p->cgroup_id, p->bpf_restrict_fs_map_fd, c->restrict_filesystems_allow_list); } #endif static int apply_protect_hostname(const ExecContext *c, const ExecParameters *p, int *ret_exit_status) { assert(c); assert(p); if (!c->protect_hostname) return 0; if (ns_type_supported(NAMESPACE_UTS)) { if (unshare(CLONE_NEWUTS) < 0) { if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) { *ret_exit_status = EXIT_NAMESPACE; return log_exec_error_errno(c, p, errno, "Failed to set up UTS namespacing: %m"); } log_exec_warning(c, p, "ProtectHostname=yes is configured, but UTS namespace setup is " "prohibited (container manager?), ignoring namespace setup."); } } else log_exec_warning(c, p, "ProtectHostname=yes is configured, but the kernel does not " "support UTS namespaces, ignoring namespace setup."); #if HAVE_SECCOMP int r; if (skip_seccomp_unavailable(c, p, "ProtectHostname=")) return 0; r = seccomp_protect_hostname(); if (r < 0) { *ret_exit_status = EXIT_SECCOMP; return log_exec_error_errno(c, p, r, "Failed to apply hostname restrictions: %m"); } #endif return 0; } static void do_idle_pipe_dance(int idle_pipe[static 4]) { assert(idle_pipe); idle_pipe[1] = safe_close(idle_pipe[1]); idle_pipe[2] = safe_close(idle_pipe[2]); if (idle_pipe[0] >= 0) { int r; r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC); if (idle_pipe[3] >= 0 && r == 0 /* timeout */) { ssize_t n; /* Signal systemd that we are bored and want to continue. */ n = write(idle_pipe[3], "x", 1); if (n > 0) /* Wait for systemd to react to the signal above. */ (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC); } idle_pipe[0] = safe_close(idle_pipe[0]); } idle_pipe[3] = safe_close(idle_pipe[3]); } static const char *exec_directory_env_name_to_string(ExecDirectoryType t); /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to * the service payload in. */ static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY", [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY", [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY", [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY", [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY", }; DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType); static int build_environment( const ExecContext *c, const ExecParameters *p, const CGroupContext *cgroup_context, size_t n_fds, const char *home, const char *username, const char *shell, dev_t journal_stream_dev, ino_t journal_stream_ino, const char *memory_pressure_path, char ***ret) { _cleanup_strv_free_ char **our_env = NULL; size_t n_env = 0; char *x; int r; assert(c); assert(p); assert(ret); #define N_ENV_VARS 19 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX); if (!our_env) return -ENOMEM; if (n_fds > 0) { _cleanup_free_ char *joined = NULL; if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0) return -ENOMEM; our_env[n_env++] = x; if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0) return -ENOMEM; our_env[n_env++] = x; joined = strv_join(p->fd_names, ":"); if (!joined) return -ENOMEM; x = strjoin("LISTEN_FDNAMES=", joined); if (!x) return -ENOMEM; our_env[n_env++] = x; } if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) { if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0) return -ENOMEM; our_env[n_env++] = x; if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0) return -ENOMEM; our_env[n_env++] = x; } /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */ if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) { x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1"); if (!x) return -ENOMEM; our_env[n_env++] = x; } /* We query "root" if this is a system unit and User= is not specified. $USER is always set. $HOME * could cause problem for e.g. getty, since login doesn't override $HOME, and $LOGNAME and $SHELL don't * really make much sense since we're not logged in. Hence we conditionalize the three based on * SetLoginEnvironment= switch. */ if (!c->user && !c->dynamic_user && p->runtime_scope == RUNTIME_SCOPE_SYSTEM) { r = get_fixed_user("root", &username, NULL, NULL, &home, &shell); if (r < 0) return log_exec_debug_errno(c, p, r, "Failed to determine user credentials for root: %m"); } bool set_user_login_env = exec_context_get_set_login_environment(c); if (username) { x = strjoin("USER=", username); if (!x) return -ENOMEM; our_env[n_env++] = x; if (set_user_login_env) { x = strjoin("LOGNAME=", username); if (!x) return -ENOMEM; our_env[n_env++] = x; } } if (home && set_user_login_env) { x = strjoin("HOME=", home); if (!x) return -ENOMEM; path_simplify(x + 5); our_env[n_env++] = x; } if (shell && set_user_login_env) { x = strjoin("SHELL=", shell); if (!x) return -ENOMEM; path_simplify(x + 6); our_env[n_env++] = x; } if (!sd_id128_is_null(p->invocation_id)) { assert(p->invocation_id_string); x = strjoin("INVOCATION_ID=", p->invocation_id_string); if (!x) return -ENOMEM; our_env[n_env++] = x; } if (exec_context_needs_term(c)) { _cleanup_free_ char *cmdline = NULL; const char *tty_path, *term = NULL; tty_path = exec_context_tty_path(c); /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the * container manager passes to PID 1 ends up all the way in the console login shown. */ if (path_equal(tty_path, "/dev/console") && getppid() == 1) term = getenv("TERM"); else if (tty_path && in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) { _cleanup_free_ char *key = NULL; key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path)); if (!key) return -ENOMEM; r = proc_cmdline_get_key(key, 0, &cmdline); if (r < 0) log_exec_debug_errno(c, p, r, "Failed to read %s from kernel cmdline, ignoring: %m", key); else if (r > 0) term = cmdline; } if (!term) term = default_term_for_tty(tty_path); x = strjoin("TERM=", term); if (!x) return -ENOMEM; our_env[n_env++] = x; } if (journal_stream_dev != 0 && journal_stream_ino != 0) { if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0) return -ENOMEM; our_env[n_env++] = x; } if (c->log_namespace) { x = strjoin("LOG_NAMESPACE=", c->log_namespace); if (!x) return -ENOMEM; our_env[n_env++] = x; } for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { _cleanup_free_ char *joined = NULL; const char *n; if (!p->prefix[t]) continue; if (c->directories[t].n_items == 0) continue; n = exec_directory_env_name_to_string(t); if (!n) continue; for (size_t i = 0; i < c->directories[t].n_items; i++) { _cleanup_free_ char *prefixed = NULL; prefixed = path_join(p->prefix[t], c->directories[t].items[i].path); if (!prefixed) return -ENOMEM; if (!strextend_with_separator(&joined, ":", prefixed)) return -ENOMEM; } x = strjoin(n, "=", joined); if (!x) return -ENOMEM; our_env[n_env++] = x; } _cleanup_free_ char *creds_dir = NULL; r = exec_context_get_credential_directory(c, p, p->unit_id, &creds_dir); if (r < 0) return r; if (r > 0) { x = strjoin("CREDENTIALS_DIRECTORY=", creds_dir); if (!x) return -ENOMEM; our_env[n_env++] = x; } if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0) return -ENOMEM; our_env[n_env++] = x; if (memory_pressure_path) { x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path); if (!x) return -ENOMEM; our_env[n_env++] = x; if (cgroup_context && !path_equal(memory_pressure_path, "/dev/null")) { _cleanup_free_ char *b = NULL, *e = NULL; if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT, MEMORY_PRESSURE_DEFAULT_TYPE, cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC : CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC), MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0) return -ENOMEM; if (base64mem(b, strlen(b) + 1, &e) < 0) return -ENOMEM; x = strjoin("MEMORY_PRESSURE_WRITE=", e); if (!x) return -ENOMEM; our_env[n_env++] = x; } } assert(n_env < N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX); #undef N_ENV_VARS *ret = TAKE_PTR(our_env); return 0; } static int build_pass_environment(const ExecContext *c, char ***ret) { _cleanup_strv_free_ char **pass_env = NULL; size_t n_env = 0; STRV_FOREACH(i, c->pass_environment) { _cleanup_free_ char *x = NULL; char *v; v = getenv(*i); if (!v) continue; x = strjoin(*i, "=", v); if (!x) return -ENOMEM; if (!GREEDY_REALLOC(pass_env, n_env + 2)) return -ENOMEM; pass_env[n_env++] = TAKE_PTR(x); pass_env[n_env] = NULL; } *ret = TAKE_PTR(pass_env); return 0; } static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) { _cleanup_free_ char *uid_map = NULL, *gid_map = NULL; _cleanup_close_pair_ int errno_pipe[2] = EBADF_PAIR; _cleanup_close_ int unshare_ready_fd = -EBADF; _cleanup_(sigkill_waitp) pid_t pid = 0; uint64_t c = 1; ssize_t n; int r; /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e. * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which * we however lack after opening the user namespace. To work around this we fork() a temporary child process, * which waits for the parent to create the new user namespace while staying in the original namespace. The * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and * continues execution normally. * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it * does not need CAP_SETUID to write the single line mapping to itself. */ /* Can only set up multiple mappings with CAP_SETUID. */ if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid)) r = asprintf(&uid_map, UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */ UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */ ouid, ouid, uid, uid); else r = asprintf(&uid_map, UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */ ouid, ouid); if (r < 0) return -ENOMEM; /* Can only set up multiple mappings with CAP_SETGID. */ if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid)) r = asprintf(&gid_map, GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */ GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */ ogid, ogid, gid, gid); else r = asprintf(&gid_map, GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */ ogid, ogid); if (r < 0) return -ENOMEM; /* Create a communication channel so that the parent can tell the child when it finished creating the user * namespace. */ unshare_ready_fd = eventfd(0, EFD_CLOEXEC); if (unshare_ready_fd < 0) return -errno; /* Create a communication channel so that the child can tell the parent a proper error code in case it * failed. */ if (pipe2(errno_pipe, O_CLOEXEC) < 0) return -errno; r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG_SIGKILL, &pid); if (r < 0) return r; if (r == 0) { _cleanup_close_ int fd = -EBADF; const char *a; pid_t ppid; /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from * here, after the parent opened its own user namespace. */ ppid = getppid(); errno_pipe[0] = safe_close(errno_pipe[0]); /* Wait until the parent unshared the user namespace */ if (read(unshare_ready_fd, &c, sizeof(c)) < 0) { r = -errno; goto child_fail; } /* Disable the setgroups() system call in the child user namespace, for good. */ a = procfs_file_alloca(ppid, "setgroups"); fd = open(a, O_WRONLY|O_CLOEXEC); if (fd < 0) { if (errno != ENOENT) { r = -errno; goto child_fail; } /* If the file is missing the kernel is too old, let's continue anyway. */ } else { if (write(fd, "deny\n", 5) < 0) { r = -errno; goto child_fail; } fd = safe_close(fd); } /* First write the GID map */ a = procfs_file_alloca(ppid, "gid_map"); fd = open(a, O_WRONLY|O_CLOEXEC); if (fd < 0) { r = -errno; goto child_fail; } if (write(fd, gid_map, strlen(gid_map)) < 0) { r = -errno; goto child_fail; } fd = safe_close(fd); /* The write the UID map */ a = procfs_file_alloca(ppid, "uid_map"); fd = open(a, O_WRONLY|O_CLOEXEC); if (fd < 0) { r = -errno; goto child_fail; } if (write(fd, uid_map, strlen(uid_map)) < 0) { r = -errno; goto child_fail; } _exit(EXIT_SUCCESS); child_fail: (void) write(errno_pipe[1], &r, sizeof(r)); _exit(EXIT_FAILURE); } errno_pipe[1] = safe_close(errno_pipe[1]); if (unshare(CLONE_NEWUSER) < 0) return -errno; /* Let the child know that the namespace is ready now */ if (write(unshare_ready_fd, &c, sizeof(c)) < 0) return -errno; /* Try to read an error code from the child */ n = read(errno_pipe[0], &r, sizeof(r)); if (n < 0) return -errno; if (n == sizeof(r)) { /* an error code was sent to us */ if (r < 0) return r; return -EIO; } if (n != 0) /* on success we should have read 0 bytes */ return -EIO; r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0); if (r < 0) return r; if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */ return -EIO; return 0; } static int create_many_symlinks(const char *root, const char *source, char **symlinks) { _cleanup_free_ char *src_abs = NULL; int r; assert(source); src_abs = path_join(root, source); if (!src_abs) return -ENOMEM; STRV_FOREACH(dst, symlinks) { _cleanup_free_ char *dst_abs = NULL; dst_abs = path_join(root, *dst); if (!dst_abs) return -ENOMEM; r = mkdir_parents_label(dst_abs, 0755); if (r < 0) return r; r = symlink_idempotent(src_abs, dst_abs, true); if (r < 0) return r; } return 0; } static int setup_exec_directory( const ExecContext *context, const ExecParameters *params, uid_t uid, gid_t gid, ExecDirectoryType type, bool needs_mount_namespace, int *exit_status) { static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY, [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY, [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY, [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY, [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY, }; int r; assert(context); assert(params); assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX); assert(exit_status); if (!params->prefix[type]) return 0; if (params->flags & EXEC_CHOWN_DIRECTORIES) { if (!uid_is_valid(uid)) uid = 0; if (!gid_is_valid(gid)) gid = 0; } FOREACH_ARRAY(i, context->directories[type].items, context->directories[type].n_items) { _cleanup_free_ char *p = NULL, *pp = NULL; p = path_join(params->prefix[type], i->path); if (!p) { r = -ENOMEM; goto fail; } r = mkdir_parents_label(p, 0755); if (r < 0) goto fail; if (IN_SET(type, EXEC_DIRECTORY_STATE, EXEC_DIRECTORY_LOGS) && params->runtime_scope == RUNTIME_SCOPE_USER) { /* If we are in user mode, and a configuration directory exists but a state directory * doesn't exist, then we likely are upgrading from an older systemd version that * didn't know the more recent addition to the xdg-basedir spec: the $XDG_STATE_HOME * directory. In older systemd versions EXEC_DIRECTORY_STATE was aliased to * EXEC_DIRECTORY_CONFIGURATION, with the advent of $XDG_STATE_HOME it is now * separated. If a service has both dirs configured but only the configuration dir * exists and the state dir does not, we assume we are looking at an update * situation. Hence, create a compatibility symlink, so that all expectations are * met. * * (We also do something similar with the log directory, which still doesn't exist in * the xdg basedir spec. We'll make it a subdir of the state dir.) */ /* this assumes the state dir is always created before the configuration dir */ assert_cc(EXEC_DIRECTORY_STATE < EXEC_DIRECTORY_LOGS); assert_cc(EXEC_DIRECTORY_LOGS < EXEC_DIRECTORY_CONFIGURATION); r = laccess(p, F_OK); if (r == -ENOENT) { _cleanup_free_ char *q = NULL; /* OK, we know that the state dir does not exist. Let's see if the dir exists * under the configuration hierarchy. */ if (type == EXEC_DIRECTORY_STATE) q = path_join(params->prefix[EXEC_DIRECTORY_CONFIGURATION], i->path); else if (type == EXEC_DIRECTORY_LOGS) q = path_join(params->prefix[EXEC_DIRECTORY_CONFIGURATION], "log", i->path); else assert_not_reached(); if (!q) { r = -ENOMEM; goto fail; } r = laccess(q, F_OK); if (r >= 0) { /* It does exist! This hence looks like an update. Symlink the * configuration directory into the state directory. */ r = symlink_idempotent(q, p, /* make_relative= */ true); if (r < 0) goto fail; log_exec_notice(context, params, "Unit state directory %s missing but matching configuration directory %s exists, assuming update from systemd 253 or older, creating compatibility symlink.", p, q); continue; } else if (r != -ENOENT) log_exec_warning_errno(context, params, r, "Unable to detect whether unit configuration directory '%s' exists, assuming not: %m", q); } else if (r < 0) log_exec_warning_errno(context, params, r, "Unable to detect whether unit state directory '%s' is missing, assuming it is: %m", p); } if (exec_directory_is_private(context, type)) { /* So, here's one extra complication when dealing with DynamicUser=1 units. In that * case we want to avoid leaving a directory around fully accessible that is owned by * a dynamic user whose UID is later on reused. To lock this down we use the same * trick used by container managers to prohibit host users to get access to files of * the same UID in containers: we place everything inside a directory that has an * access mode of 0700 and is owned root:root, so that it acts as security boundary * for unprivileged host code. We then use fs namespacing to make this directory * permeable for the service itself. * * Specifically: for a service which wants a special directory "foo/" we first create * a directory "private/" with access mode 0700 owned by root:root. Then we place * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to * "private/foo". This way, privileged host users can access "foo/" as usual, but * unprivileged host users can't look into it. Inside of the namespace of the unit * "private/" is replaced by a more liberally accessible tmpfs, into which the host's * "private/foo/" is mounted under the same name, thus disabling the access boundary * for the service and making sure it only gets access to the dirs it needs but no * others. Tricky? Yes, absolutely, but it works! * * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not * to be owned by the service itself. * * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used * for sharing files or sockets with other services. */ pp = path_join(params->prefix[type], "private"); if (!pp) { r = -ENOMEM; goto fail; } /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */ r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE); if (r < 0) goto fail; if (!path_extend(&pp, i->path)) { r = -ENOMEM; goto fail; } /* Create all directories between the configured directory and this private root, and mark them 0755 */ r = mkdir_parents_label(pp, 0755); if (r < 0) goto fail; if (is_dir(p, false) > 0 && (laccess(pp, F_OK) == -ENOENT)) { /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move * it over. Most likely the service has been upgraded from one that didn't use * DynamicUser=1, to one that does. */ log_exec_info(context, params, "Found pre-existing public %s= directory %s, migrating to %s.\n" "Apparently, service previously had DynamicUser= turned off, and has now turned it on.", exec_directory_type_to_string(type), p, pp); r = RET_NERRNO(rename(p, pp)); if (r < 0) goto fail; } else { /* Otherwise, create the actual directory for the service */ r = mkdir_label(pp, context->directories[type].mode); if (r < 0 && r != -EEXIST) goto fail; } if (!i->only_create) { /* And link it up from the original place. * Notes * 1) If a mount namespace is going to be used, then this symlink remains on * the host, and a new one for the child namespace will be created later. * 2) It is not necessary to create this symlink when one of its parent * directories is specified and already created. E.g. * StateDirectory=foo foo/bar * In that case, the inode points to pp and p for "foo/bar" are the same: * pp = "/var/lib/private/foo/bar" * p = "/var/lib/foo/bar" * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only * we do not need to create the symlink, but we cannot create the symlink. * See issue #24783. */ r = symlink_idempotent(pp, p, true); if (r < 0) goto fail; } } else { _cleanup_free_ char *target = NULL; if (type != EXEC_DIRECTORY_CONFIGURATION && readlink_and_make_absolute(p, &target) >= 0) { _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL; /* This already exists and is a symlink? Interesting. Maybe it's one created * by DynamicUser=1 (see above)? * * We do this for all directory types except for ConfigurationDirectory=, * since they all support the private/ symlink logic at least in some * configurations, see above. */ r = chase(target, NULL, 0, &target_resolved, NULL); if (r < 0) goto fail; q = path_join(params->prefix[type], "private", i->path); if (!q) { r = -ENOMEM; goto fail; } /* /var/lib or friends may be symlinks. So, let's chase them also. */ r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL); if (r < 0) goto fail; if (path_equal(q_resolved, target_resolved)) { /* Hmm, apparently DynamicUser= was once turned on for this service, * but is no longer. Let's move the directory back up. */ log_exec_info(context, params, "Found pre-existing private %s= directory %s, migrating to %s.\n" "Apparently, service previously had DynamicUser= turned on, and has now turned it off.", exec_directory_type_to_string(type), q, p); r = RET_NERRNO(unlink(p)); if (r < 0) goto fail; r = RET_NERRNO(rename(q, p)); if (r < 0) goto fail; } } r = mkdir_label(p, context->directories[type].mode); if (r < 0) { if (r != -EEXIST) goto fail; if (type == EXEC_DIRECTORY_CONFIGURATION) { struct stat st; /* Don't change the owner/access mode of the configuration directory, * as in the common case it is not written to by a service, and shall * not be writable. */ r = RET_NERRNO(stat(p, &st)); if (r < 0) goto fail; /* Still complain if the access mode doesn't match */ if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0) log_exec_warning(context, params, "%s \'%s\' already exists but the mode is different. " "(File system: %o %sMode: %o)", exec_directory_type_to_string(type), i->path, st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777); continue; } } } /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the * current UID/GID ownership.) */ r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID); if (r < 0) goto fail; /* Skip the rest (which deals with ownership) in user mode, since ownership changes are not * available to user code anyway */ if (params->runtime_scope != RUNTIME_SCOPE_SYSTEM) continue; /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID * assignments to exist. */ r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777, AT_SYMLINK_FOLLOW); if (r < 0) goto fail; } /* If we are not going to run in a namespace, set up the symlinks - otherwise * they are set up later, to allow configuring empty var/run/etc. */ if (!needs_mount_namespace) FOREACH_ARRAY(i, context->directories[type].items, context->directories[type].n_items) { r = create_many_symlinks(params->prefix[type], i->path, i->symlinks); if (r < 0) goto fail; } return 0; fail: *exit_status = exit_status_table[type]; return r; } #if ENABLE_SMACK static int setup_smack( const ExecParameters *params, const ExecContext *context, int executable_fd) { int r; assert(params); assert(executable_fd >= 0); if (context->smack_process_label) { r = mac_smack_apply_pid(0, context->smack_process_label); if (r < 0) return r; } else if (params->fallback_smack_process_label) { _cleanup_free_ char *exec_label = NULL; r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label); if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r)) return r; r = mac_smack_apply_pid(0, exec_label ?: params->fallback_smack_process_label); if (r < 0) return r; } return 0; } #endif static int compile_bind_mounts( const ExecContext *context, const ExecParameters *params, BindMount **ret_bind_mounts, size_t *ret_n_bind_mounts, char ***ret_empty_directories) { _cleanup_strv_free_ char **empty_directories = NULL; BindMount *bind_mounts = NULL; size_t n, h = 0; int r; assert(context); assert(params); assert(ret_bind_mounts); assert(ret_n_bind_mounts); assert(ret_empty_directories); CLEANUP_ARRAY(bind_mounts, h, bind_mount_free_many); n = context->n_bind_mounts; for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { if (!params->prefix[t]) continue; FOREACH_ARRAY(i, context->directories[t].items, context->directories[t].n_items) n += !i->only_create; } if (n <= 0) { *ret_bind_mounts = NULL; *ret_n_bind_mounts = 0; *ret_empty_directories = NULL; return 0; } bind_mounts = new(BindMount, n); if (!bind_mounts) return -ENOMEM; FOREACH_ARRAY(item, context->bind_mounts, context->n_bind_mounts) { _cleanup_free_ char *s = NULL, *d = NULL; s = strdup(item->source); if (!s) return -ENOMEM; d = strdup(item->destination); if (!d) return -ENOMEM; bind_mounts[h++] = (BindMount) { .source = TAKE_PTR(s), .destination = TAKE_PTR(d), .read_only = item->read_only, .recursive = item->recursive, .ignore_enoent = item->ignore_enoent, }; } for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { if (!params->prefix[t]) continue; if (context->directories[t].n_items == 0) continue; if (exec_directory_is_private(context, t) && !exec_context_with_rootfs(context)) { char *private_root; /* So this is for a dynamic user, and we need to make sure the process can access its own * directory. For that we overmount the usually inaccessible "private" subdirectory with a * tmpfs that makes it accessible and is empty except for the submounts we do this for. */ private_root = path_join(params->prefix[t], "private"); if (!private_root) return -ENOMEM; r = strv_consume(&empty_directories, private_root); if (r < 0) return r; } FOREACH_ARRAY(i, context->directories[t].items, context->directories[t].n_items) { _cleanup_free_ char *s = NULL, *d = NULL; /* When one of the parent directories is in the list, we cannot create the symlink * for the child directory. See also the comments in setup_exec_directory(). */ if (i->only_create) continue; if (exec_directory_is_private(context, t)) s = path_join(params->prefix[t], "private", i->path); else s = path_join(params->prefix[t], i->path); if (!s) return -ENOMEM; if (exec_directory_is_private(context, t) && exec_context_with_rootfs(context)) /* When RootDirectory= or RootImage= are set, then the symbolic link to the private * directory is not created on the root directory. So, let's bind-mount the directory * on the 'non-private' place. */ d = path_join(params->prefix[t], i->path); else d = strdup(s); if (!d) return -ENOMEM; bind_mounts[h++] = (BindMount) { .source = TAKE_PTR(s), .destination = TAKE_PTR(d), .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */ .recursive = true, }; } } assert(h == n); *ret_bind_mounts = TAKE_PTR(bind_mounts); *ret_n_bind_mounts = n; *ret_empty_directories = TAKE_PTR(empty_directories); return (int) n; } /* ret_symlinks will contain a list of pairs src:dest that describes * the symlinks to create later on. For example, the symlinks needed * to safely give private directories to DynamicUser=1 users. */ static int compile_symlinks( const ExecContext *context, const ExecParameters *params, bool setup_os_release_symlink, char ***ret_symlinks) { _cleanup_strv_free_ char **symlinks = NULL; int r; assert(context); assert(params); assert(ret_symlinks); for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) FOREACH_ARRAY(i, context->directories[dt].items, context->directories[dt].n_items) { _cleanup_free_ char *private_path = NULL, *path = NULL; STRV_FOREACH(symlink, i->symlinks) { _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL; src_abs = path_join(params->prefix[dt], i->path); dst_abs = path_join(params->prefix[dt], *symlink); if (!src_abs || !dst_abs) return -ENOMEM; r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs)); if (r < 0) return r; } if (!exec_directory_is_private(context, dt) || exec_context_with_rootfs(context) || i->only_create) continue; private_path = path_join(params->prefix[dt], "private", i->path); if (!private_path) return -ENOMEM; path = path_join(params->prefix[dt], i->path); if (!path) return -ENOMEM; r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path)); if (r < 0) return r; } /* We make the host's os-release available via a symlink, so that we can copy it atomically * and readers will never get a half-written version. Note that, while the paths specified here are * absolute, when they are processed in namespace.c they will be made relative automatically, i.e.: * 'os-release -> .os-release-stage/os-release' is what will be created. */ if (setup_os_release_symlink) { r = strv_extend_many( &symlinks, "/run/host/.os-release-stage/os-release", "/run/host/os-release"); if (r < 0) return r; } *ret_symlinks = TAKE_PTR(symlinks); return 0; } static bool insist_on_sandboxing( const ExecContext *context, const char *root_dir, const char *root_image, const BindMount *bind_mounts, size_t n_bind_mounts) { assert(context); assert(n_bind_mounts == 0 || bind_mounts); /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that * would alter the view on the file system beyond making things read-only or invisible, i.e. would * rearrange stuff in a way we cannot ignore gracefully. */ if (context->n_temporary_filesystems > 0) return true; if (root_dir || root_image) return true; if (context->n_mount_images > 0) return true; if (context->dynamic_user) return true; if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories)) return true; /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes * essential. */ FOREACH_ARRAY(i, bind_mounts, n_bind_mounts) if (!path_equal(i->source, i->destination)) return true; if (context->log_namespace) return true; return false; } static int setup_ephemeral( const ExecContext *context, ExecRuntime *runtime, char **root_image, /* both input and output! modified if ephemeral logic enabled */ char **root_directory) { /* ditto */ _cleanup_close_ int fd = -EBADF; _cleanup_free_ char *new_root = NULL; int r; assert(context); assert(root_image); assert(root_directory); if (!*root_image && !*root_directory) return 0; if (!runtime || !runtime->ephemeral_copy) return 0; assert(runtime->ephemeral_storage_socket[0] >= 0); assert(runtime->ephemeral_storage_socket[1] >= 0); new_root = strdup(runtime->ephemeral_copy); if (!new_root) return log_oom_debug(); r = posix_lock(runtime->ephemeral_storage_socket[0], LOCK_EX); if (r < 0) return log_debug_errno(r, "Failed to lock ephemeral storage socket: %m"); CLEANUP_POSIX_UNLOCK(runtime->ephemeral_storage_socket[0]); fd = receive_one_fd(runtime->ephemeral_storage_socket[0], MSG_PEEK|MSG_DONTWAIT); if (fd >= 0) /* We got an fd! That means ephemeral has already been set up, so nothing to do here. */ return 0; if (fd != -EAGAIN) return log_debug_errno(fd, "Failed to receive file descriptor queued on ephemeral storage socket: %m"); if (*root_image) { log_debug("Making ephemeral copy of %s to %s", *root_image, new_root); fd = copy_file(*root_image, new_root, O_EXCL, 0600, COPY_LOCK_BSD| COPY_REFLINK| COPY_CRTIME); if (fd < 0) return log_debug_errno(fd, "Failed to copy image %s to %s: %m", *root_image, new_root); } else { assert(*root_directory); log_debug("Making ephemeral snapshot of %s to %s", *root_directory, new_root); fd = btrfs_subvol_snapshot_at( AT_FDCWD, *root_directory, AT_FDCWD, new_root, BTRFS_SNAPSHOT_FALLBACK_COPY | BTRFS_SNAPSHOT_FALLBACK_DIRECTORY | BTRFS_SNAPSHOT_RECURSIVE | BTRFS_SNAPSHOT_LOCK_BSD); if (fd < 0) return log_debug_errno(fd, "Failed to snapshot directory %s to %s: %m", *root_directory, new_root); } r = send_one_fd(runtime->ephemeral_storage_socket[1], fd, MSG_DONTWAIT); if (r < 0) return log_debug_errno(r, "Failed to queue file descriptor on ephemeral storage socket: %m"); if (*root_image) free_and_replace(*root_image, new_root); else { assert(*root_directory); free_and_replace(*root_directory, new_root); } return 1; } static int verity_settings_prepare( VeritySettings *verity, const char *root_image, const void *root_hash, size_t root_hash_size, const char *root_hash_path, const void *root_hash_sig, size_t root_hash_sig_size, const char *root_hash_sig_path, const char *verity_data_path) { int r; assert(verity); if (root_hash) { void *d; d = memdup(root_hash, root_hash_size); if (!d) return -ENOMEM; free_and_replace(verity->root_hash, d); verity->root_hash_size = root_hash_size; verity->designator = PARTITION_ROOT; } if (root_hash_sig) { void *d; d = memdup(root_hash_sig, root_hash_sig_size); if (!d) return -ENOMEM; free_and_replace(verity->root_hash_sig, d); verity->root_hash_sig_size = root_hash_sig_size; verity->designator = PARTITION_ROOT; } if (verity_data_path) { r = free_and_strdup(&verity->data_path, verity_data_path); if (r < 0) return r; } r = verity_settings_load( verity, root_image, root_hash_path, root_hash_sig_path); if (r < 0) return log_debug_errno(r, "Failed to load root hash: %m"); return 0; } static int pick_versions( const ExecContext *context, const ExecParameters *params, char **ret_root_image, char **ret_root_directory) { int r; assert(context); assert(params); assert(ret_root_image); assert(ret_root_directory); if (context->root_image) { _cleanup_(pick_result_done) PickResult result = PICK_RESULT_NULL; r = path_pick(/* toplevel_path= */ NULL, /* toplevel_fd= */ AT_FDCWD, context->root_image, &pick_filter_image_raw, PICK_ARCHITECTURE|PICK_TRIES|PICK_RESOLVE, &result); if (r < 0) return r; if (!result.path) return log_exec_debug_errno(context, params, SYNTHETIC_ERRNO(ENOENT), "No matching entry in .v/ directory %s found.", context->root_image); *ret_root_image = TAKE_PTR(result.path); *ret_root_directory = NULL; return r; } if (context->root_directory) { _cleanup_(pick_result_done) PickResult result = PICK_RESULT_NULL; r = path_pick(/* toplevel_path= */ NULL, /* toplevel_fd= */ AT_FDCWD, context->root_directory, &pick_filter_image_dir, PICK_ARCHITECTURE|PICK_TRIES|PICK_RESOLVE, &result); if (r < 0) return r; if (!result.path) return log_exec_debug_errno(context, params, SYNTHETIC_ERRNO(ENOENT), "No matching entry in .v/ directory %s found.", context->root_directory); *ret_root_image = NULL; *ret_root_directory = TAKE_PTR(result.path); return r; } *ret_root_image = *ret_root_directory = NULL; return 0; } static int apply_mount_namespace( ExecCommandFlags command_flags, const ExecContext *context, const ExecParameters *params, ExecRuntime *runtime, const char *memory_pressure_path, bool needs_sandboxing, char **error_path) { _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT; _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL, **read_write_paths_cleanup = NULL; _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL, *private_namespace_dir = NULL, *host_os_release_stage = NULL, *root_image = NULL, *root_dir = NULL; const char *tmp_dir = NULL, *var_tmp_dir = NULL; char **read_write_paths; bool setup_os_release_symlink; BindMount *bind_mounts = NULL; size_t n_bind_mounts = 0; int r; assert(context); CLEANUP_ARRAY(bind_mounts, n_bind_mounts, bind_mount_free_many); if (params->flags & EXEC_APPLY_CHROOT) { r = pick_versions( context, params, &root_image, &root_dir); if (r < 0) return r; r = setup_ephemeral( context, runtime, &root_image, &root_dir); if (r < 0) return r; } r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories); if (r < 0) return r; /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the * service will need to write to it in order to start the notifications. */ if (context->protect_control_groups && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) { read_write_paths_cleanup = strv_copy(context->read_write_paths); if (!read_write_paths_cleanup) return -ENOMEM; r = strv_extend(&read_write_paths_cleanup, memory_pressure_path); if (r < 0) return r; read_write_paths = read_write_paths_cleanup; } else read_write_paths = context->read_write_paths; if (needs_sandboxing) { /* The runtime struct only contains the parent of the private /tmp, which is non-accessible * to world users. Inside of it there's a /tmp that is sticky, and that's the one we want to * use here. This does not apply when we are using /run/systemd/empty as fallback. */ if (context->private_tmp == PRIVATE_TMP_CONNECTED && runtime && runtime->shared) { if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY)) tmp_dir = runtime->shared->tmp_dir; else if (runtime->shared->tmp_dir) tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp"); if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY)) var_tmp_dir = runtime->shared->var_tmp_dir; else if (runtime->shared->var_tmp_dir) var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp"); } } /* Symlinks (exec dirs, os-release) are set up after other mounts, before they are made read-only. */ setup_os_release_symlink = needs_sandboxing && exec_context_get_effective_mount_apivfs(context) && (root_dir || root_image); r = compile_symlinks(context, params, setup_os_release_symlink, &symlinks); if (r < 0) return r; if (context->mount_propagation_flag == MS_SHARED) log_exec_debug(context, params, "shared mount propagation hidden by other fs namespacing unit settings: ignoring"); r = exec_context_get_credential_directory(context, params, params->unit_id, &creds_path); if (r < 0) return r; if (params->runtime_scope == RUNTIME_SCOPE_SYSTEM) { propagate_dir = path_join("/run/systemd/propagate/", params->unit_id); if (!propagate_dir) return -ENOMEM; incoming_dir = strdup("/run/systemd/incoming"); if (!incoming_dir) return -ENOMEM; private_namespace_dir = strdup("/run/systemd"); if (!private_namespace_dir) return -ENOMEM; /* If running under a different root filesystem, propagate the host's os-release. We make a * copy rather than just bind mounting it, so that it can be updated on soft-reboot. */ if (setup_os_release_symlink) { host_os_release_stage = strdup("/run/systemd/propagate/.os-release-stage"); if (!host_os_release_stage) return -ENOMEM; } } else { assert(params->runtime_scope == RUNTIME_SCOPE_USER); if (asprintf(&private_namespace_dir, "/run/user/" UID_FMT "/systemd", geteuid()) < 0) return -ENOMEM; if (setup_os_release_symlink) { if (asprintf(&host_os_release_stage, "/run/user/" UID_FMT "/systemd/propagate/.os-release-stage", geteuid()) < 0) return -ENOMEM; } } if (root_image) { r = verity_settings_prepare( &verity, root_image, context->root_hash, context->root_hash_size, context->root_hash_path, context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path, context->root_verity); if (r < 0) return r; } NamespaceParameters parameters = { .runtime_scope = params->runtime_scope, .root_directory = root_dir, .root_image = root_image, .root_image_options = context->root_image_options, .root_image_policy = context->root_image_policy ?: &image_policy_service, .read_write_paths = read_write_paths, .read_only_paths = needs_sandboxing ? context->read_only_paths : NULL, .inaccessible_paths = needs_sandboxing ? context->inaccessible_paths : NULL, .exec_paths = needs_sandboxing ? context->exec_paths : NULL, .no_exec_paths = needs_sandboxing ? context->no_exec_paths : NULL, .empty_directories = empty_directories, .symlinks = symlinks, .bind_mounts = bind_mounts, .n_bind_mounts = n_bind_mounts, .temporary_filesystems = context->temporary_filesystems, .n_temporary_filesystems = context->n_temporary_filesystems, .mount_images = context->mount_images, .n_mount_images = context->n_mount_images, .mount_image_policy = context->mount_image_policy ?: &image_policy_service, .tmp_dir = tmp_dir, .var_tmp_dir = var_tmp_dir, .creds_path = creds_path, .log_namespace = context->log_namespace, .mount_propagation_flag = context->mount_propagation_flag, .verity = &verity, .extension_images = context->extension_images, .n_extension_images = context->n_extension_images, .extension_image_policy = context->extension_image_policy ?: &image_policy_sysext, .extension_directories = context->extension_directories, .propagate_dir = propagate_dir, .incoming_dir = incoming_dir, .private_namespace_dir = private_namespace_dir, .notify_socket = root_dir || root_image ? params->notify_socket : NULL, .host_os_release_stage = host_os_release_stage, /* If DynamicUser=no and RootDirectory= is set then lets pass a relaxed sandbox info, * otherwise enforce it, don't ignore protected paths and fail if we are enable to apply the * sandbox inside the mount namespace. */ .ignore_protect_paths = !needs_sandboxing && !context->dynamic_user && root_dir, .protect_control_groups = needs_sandboxing && context->protect_control_groups, .protect_kernel_tunables = needs_sandboxing && context->protect_kernel_tunables, .protect_kernel_modules = needs_sandboxing && context->protect_kernel_modules, .protect_kernel_logs = needs_sandboxing && context->protect_kernel_logs, .protect_hostname = needs_sandboxing && context->protect_hostname, .private_dev = needs_sandboxing && context->private_devices, .private_network = needs_sandboxing && exec_needs_network_namespace(context), .private_ipc = needs_sandboxing && exec_needs_ipc_namespace(context), .private_tmp = needs_sandboxing ? context->private_tmp : false, .mount_apivfs = needs_sandboxing && exec_context_get_effective_mount_apivfs(context), /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */ .mount_nosuid = needs_sandboxing && context->no_new_privileges && !mac_selinux_use(), .protect_home = needs_sandboxing ? context->protect_home : false, .protect_system = needs_sandboxing ? context->protect_system : false, .protect_proc = needs_sandboxing ? context->protect_proc : false, .proc_subset = needs_sandboxing ? context->proc_subset : false, }; r = setup_namespace(¶meters, error_path); /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a * completely different execution environment. */ if (r == -ENOANO) { if (insist_on_sandboxing( context, root_dir, root_image, bind_mounts, n_bind_mounts)) return log_exec_debug_errno(context, params, SYNTHETIC_ERRNO(EOPNOTSUPP), "Failed to set up namespace, and refusing to continue since " "the selected namespacing options alter mount environment non-trivially.\n" "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s", n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user)); log_exec_debug(context, params, "Failed to set up namespace, assuming containerized execution and ignoring."); return 0; } return r; } static int apply_working_directory( const ExecContext *context, const ExecParameters *params, ExecRuntime *runtime, const char *home, int *exit_status) { const char *wd; int r; assert(context); assert(exit_status); if (context->working_directory_home) { if (!home) { *exit_status = EXIT_CHDIR; return -ENXIO; } wd = home; } else wd = empty_to_root(context->working_directory); if (params->flags & EXEC_APPLY_CHROOT) r = RET_NERRNO(chdir(wd)); else { _cleanup_close_ int dfd = -EBADF; r = chase(wd, (runtime ? runtime->ephemeral_copy : NULL) ?: context->root_directory, CHASE_PREFIX_ROOT|CHASE_AT_RESOLVE_IN_ROOT, /* ret_path= */ NULL, &dfd); if (r >= 0) r = RET_NERRNO(fchdir(dfd)); } if (r < 0 && !context->working_directory_missing_ok) { *exit_status = EXIT_CHDIR; return r; } return 0; } static int apply_root_directory( const ExecContext *context, const ExecParameters *params, ExecRuntime *runtime, const bool needs_mount_ns, int *exit_status) { assert(context); assert(exit_status); if (params->flags & EXEC_APPLY_CHROOT) if (!needs_mount_ns && context->root_directory) if (chroot((runtime ? runtime->ephemeral_copy : NULL) ?: context->root_directory) < 0) { *exit_status = EXIT_CHROOT; return -errno; } return 0; } static int setup_keyring( const ExecContext *context, const ExecParameters *p, uid_t uid, gid_t gid) { key_serial_t keyring; int r = 0; uid_t saved_uid; gid_t saved_gid; assert(context); assert(p); /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */ if (context->keyring_mode == EXEC_KEYRING_INHERIT) return 0; /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user * & group is just as nasty as acquiring a reference to the user keyring. */ saved_uid = getuid(); saved_gid = getgid(); if (gid_is_valid(gid) && gid != saved_gid) { if (setregid(gid, -1) < 0) return log_exec_error_errno(context, p, errno, "Failed to change GID for user keyring: %m"); } if (uid_is_valid(uid) && uid != saved_uid) { if (setreuid(uid, -1) < 0) { r = log_exec_error_errno(context, p, errno, "Failed to change UID for user keyring: %m"); goto out; } } keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0); if (keyring == -1) { if (errno == ENOSYS) log_exec_debug_errno(context, p, errno, "Kernel keyring not supported, ignoring."); else if (ERRNO_IS_PRIVILEGE(errno)) log_exec_debug_errno(context, p, errno, "Kernel keyring access prohibited, ignoring."); else if (errno == EDQUOT) log_exec_debug_errno(context, p, errno, "Out of kernel keyrings to allocate, ignoring."); else r = log_exec_error_errno(context, p, errno, "Setting up kernel keyring failed: %m"); goto out; } /* When requested link the user keyring into the session keyring. */ if (context->keyring_mode == EXEC_KEYRING_SHARED) { if (keyctl(KEYCTL_LINK, KEY_SPEC_USER_KEYRING, KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) { r = log_exec_error_errno(context, p, errno, "Failed to link user keyring into session keyring: %m"); goto out; } } /* Restore uid/gid back */ if (uid_is_valid(uid) && uid != saved_uid) { if (setreuid(saved_uid, -1) < 0) { r = log_exec_error_errno(context, p, errno, "Failed to change UID back for user keyring: %m"); goto out; } } if (gid_is_valid(gid) && gid != saved_gid) { if (setregid(saved_gid, -1) < 0) return log_exec_error_errno(context, p, errno, "Failed to change GID back for user keyring: %m"); } /* Populate they keyring with the invocation ID by default, as original saved_uid. */ if (!sd_id128_is_null(p->invocation_id)) { key_serial_t key; key = add_key("user", "invocation_id", &p->invocation_id, sizeof(p->invocation_id), KEY_SPEC_SESSION_KEYRING); if (key == -1) log_exec_debug_errno(context, p, errno, "Failed to add invocation ID to keyring, ignoring: %m"); else { if (keyctl(KEYCTL_SETPERM, key, KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH| KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0) r = log_exec_error_errno(context, p, errno, "Failed to restrict invocation ID permission: %m"); } } out: /* Revert back uid & gid for the last time, and exit */ /* no extra logging, as only the first already reported error matters */ if (getuid() != saved_uid) (void) setreuid(saved_uid, -1); if (getgid() != saved_gid) (void) setregid(saved_gid, -1); return r; } static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) { assert(array); assert(n); assert(pair); if (pair[0] >= 0) array[(*n)++] = pair[0]; if (pair[1] >= 0) array[(*n)++] = pair[1]; } static int close_remaining_fds( const ExecParameters *params, const ExecRuntime *runtime, int socket_fd, const int *fds, size_t n_fds) { size_t n_dont_close = 0; int dont_close[n_fds + 16]; assert(params); if (params->stdin_fd >= 0) dont_close[n_dont_close++] = params->stdin_fd; if (params->stdout_fd >= 0) dont_close[n_dont_close++] = params->stdout_fd; if (params->stderr_fd >= 0) dont_close[n_dont_close++] = params->stderr_fd; if (socket_fd >= 0) dont_close[n_dont_close++] = socket_fd; if (n_fds > 0) { memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds); n_dont_close += n_fds; } if (runtime) append_socket_pair(dont_close, &n_dont_close, runtime->ephemeral_storage_socket); if (runtime && runtime->shared) { append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket); append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket); } if (runtime && runtime->dynamic_creds) { if (runtime->dynamic_creds->user) append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket); if (runtime->dynamic_creds->group) append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket); } if (params->user_lookup_fd >= 0) dont_close[n_dont_close++] = params->user_lookup_fd; if (params->handoff_timestamp_fd >= 0) dont_close[n_dont_close++] = params->handoff_timestamp_fd; assert(n_dont_close <= ELEMENTSOF(dont_close)); return close_all_fds(dont_close, n_dont_close); } static int send_user_lookup( const char *unit_id, int user_lookup_fd, uid_t uid, gid_t gid) { assert(unit_id); /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was * specified. */ if (user_lookup_fd < 0) return 0; if (!uid_is_valid(uid) && !gid_is_valid(gid)) return 0; if (writev(user_lookup_fd, (struct iovec[]) { IOVEC_MAKE(&uid, sizeof(uid)), IOVEC_MAKE(&gid, sizeof(gid)), IOVEC_MAKE_STRING(unit_id) }, 3) < 0) return -errno; return 0; } static int acquire_home(const ExecContext *c, const char **home, char **ret_buf) { int r; assert(c); assert(home); assert(ret_buf); /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */ if (*home) /* Already acquired from get_fixed_user()? */ return 0; if (!c->working_directory_home) return 0; if (c->dynamic_user) return -EADDRNOTAVAIL; r = get_home_dir(ret_buf); if (r < 0) return r; *home = *ret_buf; return 1; } static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) { _cleanup_strv_free_ char ** list = NULL; int r; assert(c); assert(p); assert(ret); assert(c->dynamic_user); /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special * directories. */ for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { if (t == EXEC_DIRECTORY_CONFIGURATION) continue; if (!p->prefix[t]) continue; for (size_t i = 0; i < c->directories[t].n_items; i++) { char *e; if (exec_directory_is_private(c, t)) e = path_join(p->prefix[t], "private", c->directories[t].items[i].path); else e = path_join(p->prefix[t], c->directories[t].items[i].path); if (!e) return -ENOMEM; r = strv_consume(&list, e); if (r < 0) return r; } } *ret = TAKE_PTR(list); return 0; } static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) { _cleanup_(cpu_set_reset) CPUSet s = {}; int r; assert(c); assert(ret); if (!c->numa_policy.nodes.set) { log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring"); return 0; } r = numa_to_cpu_set(&c->numa_policy, &s); if (r < 0) return r; cpu_set_reset(ret); return cpu_set_add_all(ret, &s); } static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int *fd) { int r; assert(fds); assert(n_fds); assert(*n_fds < fds_size); assert(fd); if (*fd < 0) return 0; if (*fd < 3 + (int) *n_fds) { /* Let's move the fd up, so that it's outside of the fd range we will use to store * the fds we pass to the process (or which are closed only during execve). */ r = fcntl(*fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds); if (r < 0) return -errno; close_and_replace(*fd, r); } fds[(*n_fds)++] = *fd; return 1; } static int connect_unix_harder(const ExecContext *c, const ExecParameters *p, const OpenFile *of, int ofd) { static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET }; union sockaddr_union addr = { .un.sun_family = AF_UNIX, }; socklen_t sa_len; int r; assert(c); assert(p); assert(of); assert(ofd >= 0); r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd)); if (r < 0) return log_exec_debug_errno(c, p, r, "Failed to set sockaddr for '%s': %m", of->path); sa_len = r; FOREACH_ELEMENT(i, socket_types) { _cleanup_close_ int fd = -EBADF; fd = socket(AF_UNIX, *i|SOCK_CLOEXEC, 0); if (fd < 0) return log_exec_debug_errno(c, p, errno, "Failed to create socket for '%s': %m", of->path); r = RET_NERRNO(connect(fd, &addr.sa, sa_len)); if (r >= 0) return TAKE_FD(fd); if (r != -EPROTOTYPE) return log_exec_debug_errno(c, p, r, "Failed to connect to socket for '%s': %m", of->path); } return log_exec_debug_errno(c, p, SYNTHETIC_ERRNO(EPROTOTYPE), "No suitable socket type to connect to socket '%s'.", of->path); } static int get_open_file_fd(const ExecContext *c, const ExecParameters *p, const OpenFile *of) { _cleanup_close_ int fd = -EBADF, ofd = -EBADF; struct stat st; assert(c); assert(p); assert(of); ofd = open(of->path, O_PATH | O_CLOEXEC); if (ofd < 0) return log_exec_debug_errno(c, p, errno, "Failed to open '%s' as O_PATH: %m", of->path); if (fstat(ofd, &st) < 0) return log_exec_debug_errno(c, p, errno, "Failed to stat '%s': %m", of->path); if (S_ISSOCK(st.st_mode)) { fd = connect_unix_harder(c, p, of, ofd); if (fd < 0) return fd; if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0) return log_exec_debug_errno(c, p, errno, "Failed to shutdown send for socket '%s': %m", of->path); log_exec_debug(c, p, "Opened socket '%s' as fd %d.", of->path, fd); } else { int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR; if (FLAGS_SET(of->flags, OPENFILE_APPEND)) flags |= O_APPEND; else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE)) flags |= O_TRUNC; fd = fd_reopen(ofd, flags|O_NOCTTY|O_CLOEXEC); if (fd < 0) return log_exec_debug_errno(c, p, fd, "Failed to reopen file '%s': %m", of->path); log_exec_debug(c, p, "Opened file '%s' as fd %d.", of->path, fd); } return TAKE_FD(fd); } static int collect_open_file_fds(const ExecContext *c, ExecParameters *p, size_t *n_fds) { assert(c); assert(p); assert(n_fds); LIST_FOREACH(open_files, of, p->open_files) { _cleanup_close_ int fd = -EBADF; fd = get_open_file_fd(c, p, of); if (fd < 0) { if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) { log_exec_full_errno(c, p, fd == -ENOENT || ERRNO_IS_NEG_PRIVILEGE(fd) ? LOG_DEBUG : LOG_WARNING, fd, "Failed to get OpenFile= file descriptor for '%s', ignoring: %m", of->path); continue; } return log_exec_error_errno(c, p, fd, "Failed to get OpenFile= file descriptor for '%s': %m", of->path); } if (!GREEDY_REALLOC(p->fds, *n_fds + 1)) return log_oom(); if (strv_extend(&p->fd_names, of->fdname) < 0) return log_oom(); p->fds[(*n_fds)++] = TAKE_FD(fd); } return 0; } static void log_command_line( const ExecContext *context, const ExecParameters *params, const char *msg, const char *executable, char **argv) { assert(context); assert(params); assert(msg); assert(executable); if (!DEBUG_LOGGING) return; _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY); log_exec_struct(context, params, LOG_DEBUG, "EXECUTABLE=%s", executable, LOG_EXEC_MESSAGE(params, "%s: %s", msg, strnull(cmdline)), LOG_EXEC_INVOCATION_ID(params)); } static bool exec_context_need_unprivileged_private_users( const ExecContext *context, const ExecParameters *params) { assert(context); assert(params); /* These options require PrivateUsers= when used in user units, as we need to be in a user namespace * to have permission to enable them when not running as root. If we have effective CAP_SYS_ADMIN * (system manager) then we have privileges and don't need this. */ if (params->runtime_scope != RUNTIME_SCOPE_USER) return false; return context->private_users || context->private_tmp != PRIVATE_TMP_OFF || context->private_devices || context->private_network || context->network_namespace_path || context->private_ipc || context->ipc_namespace_path || context->private_mounts > 0 || context->mount_apivfs > 0 || context->n_bind_mounts > 0 || context->n_temporary_filesystems > 0 || context->root_directory || !strv_isempty(context->extension_directories) || context->protect_system != PROTECT_SYSTEM_NO || context->protect_home != PROTECT_HOME_NO || context->protect_kernel_tunables || context->protect_kernel_modules || context->protect_kernel_logs || context->protect_control_groups || context->protect_clock || context->protect_hostname || !strv_isempty(context->read_write_paths) || !strv_isempty(context->read_only_paths) || !strv_isempty(context->inaccessible_paths) || !strv_isempty(context->exec_paths) || !strv_isempty(context->no_exec_paths); } static bool exec_context_shall_confirm_spawn(const ExecContext *context) { assert(context); if (confirm_spawn_disabled()) return false; /* For some reasons units remaining in the same process group * as PID 1 fail to acquire the console even if it's not used * by any process. So skip the confirmation question for them. */ return !context->same_pgrp; } static int exec_context_named_iofds( const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]) { size_t targets; const char* stdio_fdname[3]; size_t n_fds; assert(c); assert(p); assert(named_iofds); targets = (c->std_input == EXEC_INPUT_NAMED_FD) + (c->std_output == EXEC_OUTPUT_NAMED_FD) + (c->std_error == EXEC_OUTPUT_NAMED_FD); for (size_t i = 0; i < 3; i++) stdio_fdname[i] = exec_context_fdname(c, i); n_fds = p->n_storage_fds + p->n_socket_fds; for (size_t i = 0; i < n_fds && targets > 0; i++) if (named_iofds[STDIN_FILENO] < 0 && c->std_input == EXEC_INPUT_NAMED_FD && stdio_fdname[STDIN_FILENO] && streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) { named_iofds[STDIN_FILENO] = p->fds[i]; targets--; } else if (named_iofds[STDOUT_FILENO] < 0 && c->std_output == EXEC_OUTPUT_NAMED_FD && stdio_fdname[STDOUT_FILENO] && streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) { named_iofds[STDOUT_FILENO] = p->fds[i]; targets--; } else if (named_iofds[STDERR_FILENO] < 0 && c->std_error == EXEC_OUTPUT_NAMED_FD && stdio_fdname[STDERR_FILENO] && streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) { named_iofds[STDERR_FILENO] = p->fds[i]; targets--; } return targets == 0 ? 0 : -ENOENT; } static void exec_shared_runtime_close(ExecSharedRuntime *shared) { if (!shared) return; safe_close_pair(shared->netns_storage_socket); safe_close_pair(shared->ipcns_storage_socket); } static void exec_runtime_close(ExecRuntime *rt) { if (!rt) return; safe_close_pair(rt->ephemeral_storage_socket); exec_shared_runtime_close(rt->shared); dynamic_creds_close(rt->dynamic_creds); } static void exec_params_close(ExecParameters *p) { if (!p) return; p->stdin_fd = safe_close(p->stdin_fd); p->stdout_fd = safe_close(p->stdout_fd); p->stderr_fd = safe_close(p->stderr_fd); } static int exec_fd_mark_hot( const ExecContext *c, ExecParameters *p, bool hot, int *reterr_exit_status) { assert(c); assert(p); if (p->exec_fd < 0) return 0; uint8_t x = hot; if (write(p->exec_fd, &x, sizeof(x)) < 0) { if (reterr_exit_status) *reterr_exit_status = EXIT_EXEC; return log_exec_error_errno(c, p, errno, "Failed to mark exec_fd as %s: %m", hot ? "hot" : "cold"); } return 1; } static int send_handoff_timestamp( const ExecContext *c, ExecParameters *p, int *reterr_exit_status) { assert(c); assert(p); if (p->handoff_timestamp_fd < 0) return 0; dual_timestamp dt; dual_timestamp_now(&dt); if (write(p->handoff_timestamp_fd, (const usec_t[2]) { dt.realtime, dt.monotonic }, sizeof(usec_t) * 2) < 0) { if (reterr_exit_status) *reterr_exit_status = EXIT_EXEC; return log_exec_error_errno(c, p, errno, "Failed to send handoff timestamp: %m"); } return 1; } static void prepare_terminal( const ExecContext *context, ExecParameters *p) { _cleanup_close_ int lock_fd = -EBADF; /* This is the "constructive" reset, i.e. is about preparing things for our invocation rather than * cleaning up things from older invocations. */ assert(context); assert(p); /* We only try to reset things if we there's the chance our stdout points to a TTY */ if (!(is_terminal_output(context->std_output) || (context->std_output == EXEC_OUTPUT_INHERIT && is_terminal_input(context->std_input)) || context->std_output == EXEC_OUTPUT_NAMED_FD || p->stdout_fd >= 0)) return; if (context->tty_reset) { /* When we are resetting the TTY, then let's create a lock first, to synchronize access. This * in particular matters as concurrent resets and the TTY size ANSI DSR logic done by the * exec_context_apply_tty_size() below might interfere */ lock_fd = lock_dev_console(); if (lock_fd < 0) log_exec_debug_errno(context, p, lock_fd, "Failed to lock /dev/console, ignoring: %m"); (void) terminal_reset_defensive(STDOUT_FILENO, /* switch_to_text= */ false); } (void) exec_context_apply_tty_size(context, STDIN_FILENO, STDOUT_FILENO, /* tty_path= */ NULL); } int exec_invoke( const ExecCommand *command, const ExecContext *context, ExecParameters *params, ExecRuntime *runtime, const CGroupContext *cgroup_context, int *exit_status) { _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL; int r, ngids = 0; _cleanup_free_ gid_t *supplementary_gids = NULL; const char *username = NULL, *groupname = NULL; _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL; const char *home = NULL, *shell = NULL; char **final_argv = NULL; dev_t journal_stream_dev = 0; ino_t journal_stream_ino = 0; bool userns_set_up = false; bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */ needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */ needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */ needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */ bool keep_seccomp_privileges = false; #if HAVE_SELINUX _cleanup_free_ char *mac_selinux_context_net = NULL; bool use_selinux = false; #endif #if ENABLE_SMACK bool use_smack = false; #endif #if HAVE_APPARMOR bool use_apparmor = false; #endif #if HAVE_SECCOMP uint64_t saved_bset = 0; #endif uid_t saved_uid = getuid(); gid_t saved_gid = getgid(); uid_t uid = UID_INVALID; gid_t gid = GID_INVALID; size_t n_fds, /* fds to pass to the child */ n_keep_fds; /* total number of fds not to close */ int secure_bits; _cleanup_free_ gid_t *gids_after_pam = NULL; int ngids_after_pam = 0; int socket_fd = -EBADF, named_iofds[3] = EBADF_TRIPLET; size_t n_storage_fds, n_socket_fds; assert(command); assert(context); assert(params); assert(exit_status); /* This should be mostly redundant, as the log level is also passed as an argument of the executor, * and is already applied earlier. Just for safety. */ if (params->debug_invocation) log_set_max_level(LOG_PRI(LOG_DEBUG)); else if (context->log_level_max >= 0) log_set_max_level(context->log_level_max); /* Explicitly test for CVE-2021-4034 inspired invocations */ if (!command->path || strv_isempty(command->argv)) { *exit_status = EXIT_EXEC; return log_exec_error_errno( context, params, SYNTHETIC_ERRNO(EINVAL), "Invalid command line arguments."); } LOG_CONTEXT_PUSH_EXEC(context, params); if (context->std_input == EXEC_INPUT_SOCKET || context->std_output == EXEC_OUTPUT_SOCKET || context->std_error == EXEC_OUTPUT_SOCKET) { if (params->n_socket_fds > 1) return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket."); if (params->n_socket_fds == 0) return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(EINVAL), "Got no socket."); socket_fd = params->fds[0]; n_storage_fds = n_socket_fds = 0; } else { n_socket_fds = params->n_socket_fds; n_storage_fds = params->n_storage_fds; } n_fds = n_socket_fds + n_storage_fds; r = exec_context_named_iofds(context, params, named_iofds); if (r < 0) return log_exec_error_errno(context, params, r, "Failed to load a named file descriptor: %m"); rename_process_from_path(command->path); /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially, * both of which will be demoted to SIG_DFL. */ (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE); if (context->ignore_sigpipe) (void) ignore_signals(SIGPIPE); r = reset_signal_mask(); if (r < 0) { *exit_status = EXIT_SIGNAL_MASK; return log_exec_error_errno(context, params, r, "Failed to set process signal mask: %m"); } if (params->idle_pipe) do_idle_pipe_dance(params->idle_pipe); /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have * any fds open we don't really want open during the transition. In order to make logging work, we switch the * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */ log_forget_fds(); log_set_open_when_needed(true); log_settle_target(); /* In case anything used libc syslog(), close this here, too */ closelog(); r = collect_open_file_fds(context, params, &n_fds); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to get OpenFile= file descriptors: %m"); } int keep_fds[n_fds + 4]; memcpy_safe(keep_fds, params->fds, n_fds * sizeof(int)); n_keep_fds = n_fds; r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->exec_fd); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to collect shifted fd: %m"); } r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->handoff_timestamp_fd); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to collect shifted fd: %m"); } #if HAVE_LIBBPF r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->bpf_restrict_fs_map_fd); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to collect shifted fd: %m"); } #endif r = close_remaining_fds(params, runtime, socket_fd, keep_fds, n_keep_fds); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to close unwanted file descriptors: %m"); } if (!context->same_pgrp && setsid() < 0) { *exit_status = EXIT_SETSID; return log_exec_error_errno(context, params, errno, "Failed to create new process session: %m"); } /* Now, reset the TTY associated to this service "destructively" (i.e. possibly even hang up or * disallocate the VT), to get rid of any prior uses of the device. Note that we do not keep any fd * open here, hence some of the settings made here might vanish again, depending on the TTY driver * used. A 2nd ("constructive") initialization after we opened the input/output fds we actually want * will fix this. */ exec_context_tty_reset(context, params); if (params->shall_confirm_spawn && exec_context_shall_confirm_spawn(context)) { _cleanup_free_ char *cmdline = NULL; cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY); if (!cmdline) { *exit_status = EXIT_MEMORY; return log_oom(); } r = ask_for_confirmation(context, params, cmdline); if (r != CONFIRM_EXECUTE) { if (r == CONFIRM_PRETEND_SUCCESS) { *exit_status = EXIT_SUCCESS; return 0; } *exit_status = EXIT_CONFIRM; return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(ECANCELED), "Execution cancelled by the user."); } } /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they * might internally call into other NSS modules that are involved in hostname resolution, we never know. */ if (setenv("SYSTEMD_ACTIVATION_UNIT", params->unit_id, true) != 0 || setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(params->runtime_scope), true) != 0) { *exit_status = EXIT_MEMORY; return log_exec_error_errno(context, params, errno, "Failed to update environment: %m"); } if (context->dynamic_user && runtime && runtime->dynamic_creds) { _cleanup_strv_free_ char **suggested_paths = NULL; /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */ if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, errno, "Failed to update environment: %m"); } r = compile_suggested_paths(context, params, &suggested_paths); if (r < 0) { *exit_status = EXIT_MEMORY; return log_oom(); } r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid); if (r < 0) { *exit_status = EXIT_USER; if (r == -EILSEQ) return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(EOPNOTSUPP), "Failed to update dynamic user credentials: User or group with specified name already exists."); return log_exec_error_errno(context, params, r, "Failed to update dynamic user credentials: %m"); } if (!uid_is_valid(uid)) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\".", uid); } if (!gid_is_valid(gid)) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\".", gid); } if (runtime->dynamic_creds->user) username = runtime->dynamic_creds->user->name; } else { if (context->user) { r = get_fixed_user(context->user, &username, &uid, &gid, &home, &shell); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to determine user credentials: %m"); } } if (context->group) { r = get_fixed_group(context->group, &groupname, &gid); if (r < 0) { *exit_status = EXIT_GROUP; return log_exec_error_errno(context, params, r, "Failed to determine group credentials: %m"); } } } /* Initialize user supplementary groups and get SupplementaryGroups= ones */ r = get_supplementary_groups(context, username, groupname, gid, &supplementary_gids, &ngids); if (r < 0) { *exit_status = EXIT_GROUP; return log_exec_error_errno(context, params, r, "Failed to determine supplementary groups: %m"); } r = send_user_lookup(params->unit_id, params->user_lookup_fd, uid, gid); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to send user credentials to PID1: %m"); } params->user_lookup_fd = safe_close(params->user_lookup_fd); r = acquire_home(context, &home, &home_buffer); if (r < 0) { *exit_status = EXIT_CHDIR; return log_exec_error_errno(context, params, r, "Failed to determine $HOME for user: %m"); } /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */ if (socket_fd >= 0) (void) fd_nonblock(socket_fd, false); /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields. * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */ if (params->cgroup_path) { _cleanup_free_ char *p = NULL; r = exec_params_get_cgroup_path(params, cgroup_context, &p); if (r < 0) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to acquire cgroup path: %m"); } r = cg_attach_everywhere(params->cgroup_supported, p, 0); if (r == -EUCLEAN) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to attach process to cgroup '%s', " "because the cgroup or one of its parents or " "siblings is in the threaded mode.", p); } if (r < 0) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to attach to cgroup %s: %m", p); } } if (context->network_namespace_path && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) { r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET); if (r < 0) { *exit_status = EXIT_NETWORK; return log_exec_error_errno(context, params, r, "Failed to open network namespace path %s: %m", context->network_namespace_path); } } if (context->ipc_namespace_path && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) { r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC); if (r < 0) { *exit_status = EXIT_NAMESPACE; return log_exec_error_errno(context, params, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path); } } r = setup_input(context, params, socket_fd, named_iofds); if (r < 0) { *exit_status = EXIT_STDIN; return log_exec_error_errno(context, params, r, "Failed to set up standard input: %m"); } _cleanup_free_ char *fname = NULL; r = path_extract_filename(command->path, &fname); if (r < 0) { *exit_status = EXIT_STDOUT; return log_exec_error_errno(context, params, r, "Failed to extract filename from path %s: %m", command->path); } r = setup_output(context, params, STDOUT_FILENO, socket_fd, named_iofds, fname, uid, gid, &journal_stream_dev, &journal_stream_ino); if (r < 0) { *exit_status = EXIT_STDOUT; return log_exec_error_errno(context, params, r, "Failed to set up standard output: %m"); } r = setup_output(context, params, STDERR_FILENO, socket_fd, named_iofds, fname, uid, gid, &journal_stream_dev, &journal_stream_ino); if (r < 0) { *exit_status = EXIT_STDERR; return log_exec_error_errno(context, params, r, "Failed to set up standard error output: %m"); } /* Now that stdin/stdout are definiely opened, properly initialize it with our desired * settings. Note: this is a "constructive" reset, it prepares things for us to use. This is * different from the "destructive" TTY reset further up. Also note: we apply this on stdin/stdout in * case this is a tty, regardless if we opened it ourselves or got it passed in pre-opened. */ prepare_terminal(context, params); if (context->oom_score_adjust_set) { /* When we can't make this change due to EPERM, then let's silently skip over it. User * namespaces prohibit write access to this file, and we shouldn't trip up over that. */ r = set_oom_score_adjust(context->oom_score_adjust); if (ERRNO_IS_NEG_PRIVILEGE(r)) log_exec_debug_errno(context, params, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m"); else if (r < 0) { *exit_status = EXIT_OOM_ADJUST; return log_exec_error_errno(context, params, r, "Failed to adjust OOM setting: %m"); } } if (context->coredump_filter_set) { r = set_coredump_filter(context->coredump_filter); if (ERRNO_IS_NEG_PRIVILEGE(r)) log_exec_debug_errno(context, params, r, "Failed to adjust coredump_filter, ignoring: %m"); else if (r < 0) { *exit_status = EXIT_LIMITS; return log_exec_error_errno(context, params, r, "Failed to adjust coredump_filter: %m"); } } if (context->cpu_sched_set) { struct sched_attr attr = { .size = sizeof(attr), .sched_policy = context->cpu_sched_policy, .sched_priority = context->cpu_sched_priority, .sched_flags = context->cpu_sched_reset_on_fork ? SCHED_FLAG_RESET_ON_FORK : 0, }; r = sched_setattr(/* pid= */ 0, &attr, /* flags= */ 0); if (r < 0) { *exit_status = EXIT_SETSCHEDULER; return log_exec_error_errno(context, params, errno, "Failed to set up CPU scheduling: %m"); } } /* * Set nice value _after_ the call to sched_setattr() because struct sched_attr includes sched_nice * which we do not set, thus it will clobber any previously set nice value. Scheduling policy might * be reasonably set together with nice value e.g. in case of SCHED_BATCH (see sched(7)). * It would be ideal to set both with the same call, but we cannot easily do so because of all the * extra logic in setpriority_closest(). */ if (context->nice_set) { r = setpriority_closest(context->nice); if (r < 0) { *exit_status = EXIT_NICE; return log_exec_error_errno(context, params, r, "Failed to set up process scheduling priority (nice level): %m"); } } if (context->cpu_affinity_from_numa || context->cpu_set.set) { _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {}; const CPUSet *cpu_set; if (context->cpu_affinity_from_numa) { r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set); if (r < 0) { *exit_status = EXIT_CPUAFFINITY; return log_exec_error_errno(context, params, r, "Failed to derive CPU affinity mask from NUMA mask: %m"); } cpu_set = &converted_cpu_set; } else cpu_set = &context->cpu_set; if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) { *exit_status = EXIT_CPUAFFINITY; return log_exec_error_errno(context, params, errno, "Failed to set up CPU affinity: %m"); } } if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) { r = apply_numa_policy(&context->numa_policy); if (ERRNO_IS_NEG_NOT_SUPPORTED(r)) log_exec_debug_errno(context, params, r, "NUMA support not available, ignoring."); else if (r < 0) { *exit_status = EXIT_NUMA_POLICY; return log_exec_error_errno(context, params, r, "Failed to set NUMA memory policy: %m"); } } if (context->ioprio_set) if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) { *exit_status = EXIT_IOPRIO; return log_exec_error_errno(context, params, errno, "Failed to set up IO scheduling priority: %m"); } if (context->timer_slack_nsec != NSEC_INFINITY) if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) { *exit_status = EXIT_TIMERSLACK; return log_exec_error_errno(context, params, errno, "Failed to set up timer slack: %m"); } if (context->personality != PERSONALITY_INVALID) { r = safe_personality(context->personality); if (r < 0) { *exit_status = EXIT_PERSONALITY; return log_exec_error_errno(context, params, r, "Failed to set up execution domain (personality): %m"); } } #if ENABLE_UTMP if (context->utmp_id) { _cleanup_free_ char *username_alloc = NULL; if (!username && context->utmp_mode == EXEC_UTMP_USER) { username_alloc = uid_to_name(uid_is_valid(uid) ? uid : saved_uid); if (!username_alloc) { *exit_status = EXIT_USER; return log_oom(); } } const char *line = context->tty_path ? (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) : NULL; utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0), line, context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS : context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS : USER_PROCESS, username ?: username_alloc); } #endif if (uid_is_valid(uid)) { r = chown_terminal(STDIN_FILENO, uid); if (r < 0) { *exit_status = EXIT_STDIN; return log_exec_error_errno(context, params, r, "Failed to change ownership of terminal: %m"); } } if (params->cgroup_path) { /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only * touch a single hierarchy too. */ if (params->flags & EXEC_CGROUP_DELEGATE) { _cleanup_free_ char *p = NULL; r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid); if (r < 0) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to adjust control group access: %m"); } r = exec_params_get_cgroup_path(params, cgroup_context, &p); if (r < 0) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to acquire cgroup path: %m"); } if (r > 0) { r = cg_set_access_recursive(SYSTEMD_CGROUP_CONTROLLER, p, uid, gid); if (r < 0) { *exit_status = EXIT_CGROUP; return log_exec_error_errno(context, params, r, "Failed to adjust control subgroup access: %m"); } } } if (cgroup_context && cg_unified() > 0 && is_pressure_supported() > 0) { if (cgroup_context_want_memory_pressure(cgroup_context)) { r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path); if (r < 0) { *exit_status = EXIT_MEMORY; return log_oom(); } r = chmod_and_chown(memory_pressure_path, 0644, uid, gid); if (r < 0) { log_exec_full_errno(context, params, r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r, "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path); memory_pressure_path = mfree(memory_pressure_path); } } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_OFF) { memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */ if (!memory_pressure_path) { *exit_status = EXIT_MEMORY; return log_oom(); } } } } needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime); for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) { r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status); if (r < 0) return log_exec_error_errno(context, params, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]); } r = exec_setup_credentials(context, params, params->unit_id, uid, gid); if (r < 0) { *exit_status = EXIT_CREDENTIALS; return log_exec_error_errno(context, params, r, "Failed to set up credentials: %m"); } r = build_environment( context, params, cgroup_context, n_fds, home, username, shell, journal_stream_dev, journal_stream_ino, memory_pressure_path, &our_env); if (r < 0) { *exit_status = EXIT_MEMORY; return log_oom(); } r = build_pass_environment(context, &pass_env); if (r < 0) { *exit_status = EXIT_MEMORY; return log_oom(); } /* The $PATH variable is set to the default path in params->environment. However, this is overridden * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does * not specify PATH but the unit has ExecSearchPath. */ if (!strv_isempty(context->exec_search_path)) { _cleanup_free_ char *joined = NULL; joined = strv_join(context->exec_search_path, ":"); if (!joined) { *exit_status = EXIT_MEMORY; return log_oom(); } r = strv_env_assign(&joined_exec_search_path, "PATH", joined); if (r < 0) { *exit_status = EXIT_MEMORY; return log_oom(); } } accum_env = strv_env_merge(params->environment, our_env, joined_exec_search_path, pass_env, context->environment, params->files_env); if (!accum_env) { *exit_status = EXIT_MEMORY; return log_oom(); } accum_env = strv_env_clean(accum_env); (void) umask(context->umask); r = setup_keyring(context, params, uid, gid); if (r < 0) { *exit_status = EXIT_KEYRING; return log_exec_error_errno(context, params, r, "Failed to set up kernel keyring: %m"); } /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted * from it. */ needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED); /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked * for it, and the kernel doesn't actually support ambient caps. */ needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported(); /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not * desired. */ if (needs_ambient_hack) needs_setuid = false; else needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID)); uint64_t capability_ambient_set = context->capability_ambient_set; if (needs_sandboxing) { /* MAC enablement checks need to be done before a new mount ns is created, as they rely on * /sys being present. The actual MAC context application will happen later, as late as * possible, to avoid impacting our own code paths. */ #if HAVE_SELINUX use_selinux = mac_selinux_use(); #endif #if ENABLE_SMACK use_smack = mac_smack_use(); #endif #if HAVE_APPARMOR use_apparmor = mac_apparmor_use(); #endif } if (needs_sandboxing) { int which_failed; /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what * is set here. (See below.) */ r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed); if (r < 0) { *exit_status = EXIT_LIMITS; return log_exec_error_errno(context, params, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed)); } } if (needs_setuid && context->pam_name && username) { /* Let's call into PAM after we set up our own idea of resource limits so that pam_limits * wins here. (See above.) */ /* All fds passed in the fds array will be closed in the pam child process. */ r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, params->fds, n_fds, params->exec_fd); if (r < 0) { *exit_status = EXIT_PAM; return log_exec_error_errno(context, params, r, "Failed to set up PAM session: %m"); } if (ambient_capabilities_supported()) { uint64_t ambient_after_pam; /* PAM modules might have set some ambient caps. Query them here and merge them into * the caps we want to set in the end, so that we don't end up unsetting them. */ r = capability_get_ambient(&ambient_after_pam); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to query ambient caps: %m"); } capability_ambient_set |= ambient_after_pam; } ngids_after_pam = getgroups_alloc(&gids_after_pam); if (ngids_after_pam < 0) { *exit_status = EXIT_GROUP; return log_exec_error_errno(context, params, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m"); } } if (needs_sandboxing && exec_context_need_unprivileged_private_users(context, params)) { /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces. * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to * set up all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */ r = setup_private_users(saved_uid, saved_gid, uid, gid); /* If it was requested explicitly and we can't set it up, fail early. Otherwise, continue and let * the actual requested operations fail (or silently continue). */ if (r < 0 && context->private_users) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to set up user namespacing for unprivileged user: %m"); } if (r < 0) log_exec_info_errno(context, params, r, "Failed to set up user namespacing for unprivileged user, ignoring: %m"); else userns_set_up = true; } if (exec_needs_network_namespace(context) && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) { /* Try to enable network namespacing if network namespacing is available and we have * CAP_NET_ADMIN. We need CAP_NET_ADMIN to be able to configure the loopback device in the * new network namespace. And if we don't have that, then we could only create a network * namespace without the ability to set up "lo". Hence gracefully skip things then. */ if (ns_type_supported(NAMESPACE_NET) && have_effective_cap(CAP_NET_ADMIN) > 0) { r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET); if (ERRNO_IS_NEG_PRIVILEGE(r)) log_exec_notice_errno(context, params, r, "PrivateNetwork=yes is configured, but network namespace setup not permitted, proceeding without: %m"); else if (r < 0) { *exit_status = EXIT_NETWORK; return log_exec_error_errno(context, params, r, "Failed to set up network namespacing: %m"); } } else if (context->network_namespace_path) { *exit_status = EXIT_NETWORK; return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(EOPNOTSUPP), "NetworkNamespacePath= is not supported, refusing."); } else log_exec_notice(context, params, "PrivateNetwork=yes is configured, but the kernel does not support or we lack privileges for network namespace, proceeding without."); } if (exec_needs_ipc_namespace(context) && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) { if (ns_type_supported(NAMESPACE_IPC)) { r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC); if (ERRNO_IS_NEG_PRIVILEGE(r)) log_exec_warning_errno(context, params, r, "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m"); else if (r < 0) { *exit_status = EXIT_NAMESPACE; return log_exec_error_errno(context, params, r, "Failed to set up IPC namespacing: %m"); } } else if (context->ipc_namespace_path) { *exit_status = EXIT_NAMESPACE; return log_exec_error_errno(context, params, SYNTHETIC_ERRNO(EOPNOTSUPP), "IPCNamespacePath= is not supported, refusing."); } else log_exec_warning(context, params, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring."); } if (needs_mount_namespace) { _cleanup_free_ char *error_path = NULL; r = apply_mount_namespace(command->flags, context, params, runtime, memory_pressure_path, needs_sandboxing, &error_path); if (r < 0) { *exit_status = EXIT_NAMESPACE; return log_exec_error_errno(context, params, r, "Failed to set up mount namespacing%s%s: %m", error_path ? ": " : "", strempty(error_path)); } } if (needs_sandboxing) { r = apply_protect_hostname(context, params, exit_status); if (r < 0) return r; } if (context->memory_ksm >= 0) if (prctl(PR_SET_MEMORY_MERGE, context->memory_ksm, 0, 0, 0) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) log_exec_debug_errno(context, params, errno, "KSM support not available, ignoring."); else { *exit_status = EXIT_KSM; return log_exec_error_errno(context, params, errno, "Failed to set KSM: %m"); } } /* Drop groups as early as possible. * This needs to be done after PrivateDevices=yes setup as device nodes should be owned by the host's root. * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */ if (needs_setuid) { _cleanup_free_ gid_t *gids_to_enforce = NULL; int ngids_to_enforce = 0; ngids_to_enforce = merge_gid_lists(supplementary_gids, ngids, gids_after_pam, ngids_after_pam, &gids_to_enforce); if (ngids_to_enforce < 0) { *exit_status = EXIT_GROUP; return log_exec_error_errno(context, params, ngids_to_enforce, "Failed to merge group lists. Group membership might be incorrect: %m"); } r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce); if (r < 0) { *exit_status = EXIT_GROUP; return log_exec_error_errno(context, params, r, "Changing group credentials failed: %m"); } } /* If the user namespace was not set up above, try to do it now. * It's preferred to set up the user namespace later (after all other namespaces) so as not to be * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the * case of mount namespaces being less privileged when the mount point list is copied from a * different user namespace). */ if (needs_sandboxing && context->private_users && !userns_set_up) { r = setup_private_users(saved_uid, saved_gid, uid, gid); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to set up user namespacing: %m"); } } /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we * shall execute. */ _cleanup_free_ char *executable = NULL; _cleanup_close_ int executable_fd = -EBADF; r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd); if (r < 0) { *exit_status = EXIT_EXEC; log_exec_struct_errno(context, params, LOG_NOTICE, r, "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR, LOG_EXEC_MESSAGE(params, "Unable to locate executable '%s': %m", command->path), "EXECUTABLE=%s", command->path); /* If the error will be ignored by manager, tune down the log level here. Missing executable * is very much expected in this case. */ return r != -ENOMEM && FLAGS_SET(command->flags, EXEC_COMMAND_IGNORE_FAILURE) ? 1 : r; } r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, &executable_fd); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to collect shifted fd: %m"); } #if HAVE_SELINUX if (needs_sandboxing && use_selinux && params->selinux_context_net) { int fd = -EBADF; if (socket_fd >= 0) fd = socket_fd; else if (params->n_socket_fds == 1) /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we * use context from that fd to compute the label. */ fd = params->fds[0]; if (fd >= 0) { r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net); if (r < 0) { if (!context->selinux_context_ignore) { *exit_status = EXIT_SELINUX_CONTEXT; return log_exec_error_errno(context, params, r, "Failed to determine SELinux context: %m"); } log_exec_debug_errno(context, params, r, "Failed to determine SELinux context, ignoring: %m"); } } } #endif /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any * more. We do keep exec_fd and handoff_timestamp_fd however, if we have it, since we need to keep * them open until the final execve(). But first, close the remaining sockets in the context * objects. */ exec_runtime_close(runtime); exec_params_close(params); r = close_all_fds(keep_fds, n_keep_fds); if (r >= 0) r = pack_fds(params->fds, n_fds); if (r >= 0) r = flag_fds(params->fds, n_socket_fds, n_fds, context->non_blocking); if (r < 0) { *exit_status = EXIT_FDS; return log_exec_error_errno(context, params, r, "Failed to adjust passed file descriptors: %m"); } /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined, * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we * came this far. */ secure_bits = context->secure_bits; if (needs_sandboxing) { uint64_t bset; /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested. * (Note this is placed after the general resource limit initialization, see above, in order * to take precedence.) */ if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) { if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) { *exit_status = EXIT_LIMITS; return log_exec_error_errno(context, params, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m"); } } #if ENABLE_SMACK /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the * process. This is the latest place before dropping capabilities. Other MAC context are set later. */ if (use_smack && context->smack_process_label) { r = setup_smack(params, context, executable_fd); if (r < 0 && !context->smack_process_label_ignore) { *exit_status = EXIT_SMACK_PROCESS_LABEL; return log_exec_error_errno(context, params, r, "Failed to set SMACK process label: %m"); } } #endif bset = context->capability_bounding_set; /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own, * instead of us doing that */ if (needs_ambient_hack) bset |= (UINT64_C(1) << CAP_SETPCAP) | (UINT64_C(1) << CAP_SETUID) | (UINT64_C(1) << CAP_SETGID); #if HAVE_SECCOMP /* If the service has any form of a seccomp filter and it allows dropping privileges, we'll * keep the needed privileges to apply it even if we're not root. */ if (needs_setuid && uid_is_valid(uid) && context_has_seccomp(context) && seccomp_allows_drop_privileges(context)) { keep_seccomp_privileges = true; if (prctl(PR_SET_KEEPCAPS, 1) < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, errno, "Failed to enable keep capabilities flag: %m"); } /* Save the current bounding set so we can restore it after applying the seccomp * filter */ saved_bset = bset; bset |= (UINT64_C(1) << CAP_SYS_ADMIN) | (UINT64_C(1) << CAP_SETPCAP); } #endif if (!cap_test_all(bset)) { r = capability_bounding_set_drop(bset, /* right_now= */ false); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to drop capabilities: %m"); } } /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with * keep-caps set. * * To be able to raise the ambient capabilities after setresuid() they have to be added to * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid() * the ambient capabilities can be raised as they are present in the permitted and * inhertiable set. However it is possible that someone wants to set ambient capabilities * without changing the user, so we also set the ambient capabilities here. * * The requested ambient capabilities are raised in the inheritable set if the second * argument is true. */ if (!needs_ambient_hack && capability_ambient_set != 0) { r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to apply ambient capabilities (before UID change): %m"); } } } /* chroot to root directory first, before we lose the ability to chroot */ r = apply_root_directory(context, params, runtime, needs_mount_namespace, exit_status); if (r < 0) return log_exec_error_errno(context, params, r, "Chrooting to the requested root directory failed: %m"); if (needs_setuid) { if (uid_is_valid(uid)) { r = enforce_user(context, uid, capability_ambient_set); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to change UID to " UID_FMT ": %m", uid); } if (keep_seccomp_privileges) { if (!FLAGS_SET(capability_ambient_set, (UINT64_C(1) << CAP_SETUID))) { r = drop_capability(CAP_SETUID); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to drop CAP_SETUID: %m"); } } r = keep_capability(CAP_SYS_ADMIN); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to keep CAP_SYS_ADMIN: %m"); } r = keep_capability(CAP_SETPCAP); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to keep CAP_SETPCAP: %m"); } } if (!needs_ambient_hack && capability_ambient_set != 0) { /* Raise the ambient capabilities after user change. */ r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to apply ambient capabilities (after UID change): %m"); } } } } /* Apply working directory here, because the working directory might be on NFS and only the user * running this service might have the correct privilege to change to the working directory. Also, it * is absolutely 💣 crucial 💣 we applied all mount namespacing rearrangements before this, so that * the cwd cannot be used to pin directories outside of the sandbox. */ r = apply_working_directory(context, params, runtime, home, exit_status); if (r < 0) return log_exec_error_errno(context, params, r, "Changing to the requested working directory failed: %m"); if (needs_sandboxing) { /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls * are restricted. */ #if HAVE_SELINUX if (use_selinux) { char *exec_context = mac_selinux_context_net ?: context->selinux_context; if (exec_context) { r = setexeccon(exec_context); if (r < 0) { if (!context->selinux_context_ignore) { *exit_status = EXIT_SELINUX_CONTEXT; return log_exec_error_errno(context, params, r, "Failed to change SELinux context to %s: %m", exec_context); } log_exec_debug_errno(context, params, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context); } } } #endif #if HAVE_APPARMOR if (use_apparmor && context->apparmor_profile) { r = aa_change_onexec(context->apparmor_profile); if (r < 0 && !context->apparmor_profile_ignore) { *exit_status = EXIT_APPARMOR_PROFILE; return log_exec_error_errno(context, params, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile); } } #endif /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits * requires CAP_SETPCAP. */ if (prctl(PR_GET_SECUREBITS) != secure_bits) { /* CAP_SETPCAP is required to set securebits. This capability is raised into the * effective set here. * * The effective set is overwritten during execve() with the following values: * * - ambient set (for non-root processes) * * - (inheritable | bounding) set for root processes) * * Hence there is no security impact to raise it in the effective set before execve */ r = capability_gain_cap_setpcap(/* return_caps= */ NULL); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to gain CAP_SETPCAP for setting secure bits"); } if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) { *exit_status = EXIT_SECUREBITS; return log_exec_error_errno(context, params, errno, "Failed to set process secure bits: %m"); } } if (context_has_no_new_privileges(context)) if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) { *exit_status = EXIT_NO_NEW_PRIVILEGES; return log_exec_error_errno(context, params, errno, "Failed to disable new privileges: %m"); } #if HAVE_SECCOMP r = apply_address_families(context, params); if (r < 0) { *exit_status = EXIT_ADDRESS_FAMILIES; return log_exec_error_errno(context, params, r, "Failed to restrict address families: %m"); } r = apply_memory_deny_write_execute(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to disable writing to executable memory: %m"); } r = apply_restrict_realtime(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply realtime restrictions: %m"); } r = apply_restrict_suid_sgid(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply SUID/SGID restrictions: %m"); } r = apply_restrict_namespaces(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply namespace restrictions: %m"); } r = apply_protect_sysctl(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply sysctl restrictions: %m"); } r = apply_protect_kernel_modules(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply module loading restrictions: %m"); } r = apply_protect_kernel_logs(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply kernel log restrictions: %m"); } r = apply_protect_clock(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply clock restrictions: %m"); } r = apply_private_devices(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to set up private devices: %m"); } r = apply_syscall_archs(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply syscall architecture restrictions: %m"); } r = apply_lock_personality(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to lock personalities: %m"); } r = apply_syscall_log(context, params); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply system call log filters: %m"); } #endif #if HAVE_LIBBPF r = apply_restrict_filesystems(context, params); if (r < 0) { *exit_status = EXIT_BPF; return log_exec_error_errno(context, params, r, "Failed to restrict filesystems: %m"); } #endif #if HAVE_SECCOMP /* This really should remain as close to the execve() as possible, to make sure our own code is affected * by the filter as little as possible. */ r = apply_syscall_filter(context, params, needs_ambient_hack); if (r < 0) { *exit_status = EXIT_SECCOMP; return log_exec_error_errno(context, params, r, "Failed to apply system call filters: %m"); } if (keep_seccomp_privileges) { /* Restore the capability bounding set with what's expected from the service + the * ambient capabilities hack */ if (!cap_test_all(saved_bset)) { r = capability_bounding_set_drop(saved_bset, /* right_now= */ false); if (r < 0) { *exit_status = EXIT_CAPABILITIES; return log_exec_error_errno(context, params, r, "Failed to drop bset capabilities: %m"); } } /* Only drop CAP_SYS_ADMIN if it's not in the bounding set, otherwise we'll break * applications that use it. */ if (!FLAGS_SET(saved_bset, (UINT64_C(1) << CAP_SYS_ADMIN))) { r = drop_capability(CAP_SYS_ADMIN); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to drop CAP_SYS_ADMIN: %m"); } } /* Only drop CAP_SETPCAP if it's not in the bounding set, otherwise we'll break * applications that use it. */ if (!FLAGS_SET(saved_bset, (UINT64_C(1) << CAP_SETPCAP))) { r = drop_capability(CAP_SETPCAP); if (r < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, r, "Failed to drop CAP_SETPCAP: %m"); } } if (prctl(PR_SET_KEEPCAPS, 0) < 0) { *exit_status = EXIT_USER; return log_exec_error_errno(context, params, errno, "Failed to drop keep capabilities flag: %m"); } } #endif } if (!strv_isempty(context->unset_environment)) { char **ee = NULL; ee = strv_env_delete(accum_env, 1, context->unset_environment); if (!ee) { *exit_status = EXIT_MEMORY; return log_oom(); } strv_free_and_replace(accum_env, ee); } if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) { _cleanup_strv_free_ char **unset_variables = NULL, **bad_variables = NULL; r = replace_env_argv(command->argv, accum_env, &replaced_argv, &unset_variables, &bad_variables); if (r < 0) { *exit_status = EXIT_MEMORY; return log_exec_error_errno(context, params, r, "Failed to replace environment variables: %m"); } final_argv = replaced_argv; if (!strv_isempty(unset_variables)) { _cleanup_free_ char *ju = strv_join(unset_variables, ", "); log_exec_warning(context, params, "Referenced but unset environment variable evaluates to an empty string: %s", strna(ju)); } if (!strv_isempty(bad_variables)) { _cleanup_free_ char *jb = strv_join(bad_variables, ", "); log_exec_warning(context, params, "Invalid environment variable name evaluates to an empty string: %s", strna(jb)); } } else final_argv = command->argv; log_command_line(context, params, "Executing", executable, final_argv); /* We have finished with all our initializations. Let's now let the manager know that. From this * point on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */ r = exec_fd_mark_hot(context, params, /* hot= */ true, exit_status); if (r < 0) return r; /* As last thing before the execve(), let's send the handoff timestamp */ r = send_handoff_timestamp(context, params, exit_status); if (r < 0) { /* If this handoff timestamp failed, let's undo the marking as hot */ (void) exec_fd_mark_hot(context, params, /* hot= */ false, /* reterr_exit_status= */ NULL); return r; } /* NB: we leave executable_fd, exec_fd, handoff_timestamp_fd open here. This is safe, because they * have O_CLOEXEC set, and the execve() below will thus automatically close them. In fact, for * exec_fd this is pretty much the whole raison d'etre. */ r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env); /* The execve() failed, let's undo the marking as hot */ (void) exec_fd_mark_hot(context, params, /* hot= */ false, /* reterr_exit_status= */ NULL); *exit_status = EXIT_EXEC; return log_exec_error_errno(context, params, r, "Failed to execute %s: %m", executable); }