/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Must be included after */ #include "sd-messages.h" #include "af-list.h" #include "alloc-util.h" #include "async.h" #include "cap-list.h" #include "capability-util.h" #include "cgroup-setup.h" #include "constants.h" #include "cpu-set-util.h" #include "env-file.h" #include "env-util.h" #include "errno-list.h" #include "escape.h" #include "exec-credential.h" #include "execute.h" #include "execute-serialize.h" #include "exit-status.h" #include "fd-util.h" #include "fileio.h" #include "format-util.h" #include "glob-util.h" #include "hexdecoct.h" #include "ioprio-util.h" #include "lock-util.h" #include "log.h" #include "macro.h" #include "manager.h" #include "manager-dump.h" #include "memory-util.h" #include "missing_fs.h" #include "missing_prctl.h" #include "mkdir-label.h" #include "namespace.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "rlimit-util.h" #include "rm-rf.h" #include "seccomp-util.h" #include "securebits-util.h" #include "selinux-util.h" #include "serialize.h" #include "sort-util.h" #include "special.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "syslog-util.h" #include "terminal-util.h" #include "tmpfile-util.h" #include "umask-util.h" #include "unit-serialize.h" #include "user-util.h" #include "utmp-wtmp.h" static bool is_terminal_input(ExecInput i) { return IN_SET(i, EXEC_INPUT_TTY, EXEC_INPUT_TTY_FORCE, EXEC_INPUT_TTY_FAIL); } static bool is_terminal_output(ExecOutput o) { return IN_SET(o, EXEC_OUTPUT_TTY, EXEC_OUTPUT_KMSG_AND_CONSOLE, EXEC_OUTPUT_JOURNAL_AND_CONSOLE); } const char* exec_context_tty_path(const ExecContext *context) { assert(context); if (context->stdio_as_fds) return NULL; if (context->tty_path) return context->tty_path; return "/dev/console"; } int exec_context_apply_tty_size( const ExecContext *context, int input_fd, int output_fd, const char *tty_path) { unsigned rows, cols; int r; assert(context); assert(input_fd >= 0); assert(output_fd >= 0); if (!isatty_safe(output_fd)) return 0; if (!tty_path) tty_path = exec_context_tty_path(context); /* Preferably use explicitly configured data */ rows = context->tty_rows; cols = context->tty_cols; /* Fill in data from kernel command line if anything is unspecified */ if (tty_path && (rows == UINT_MAX || cols == UINT_MAX)) (void) proc_cmdline_tty_size( tty_path, rows == UINT_MAX ? &rows : NULL, cols == UINT_MAX ? &cols : NULL); /* If we got nothing so far and we are talking to a physical device, and the TTY reset logic is on, * then let's query dimensions from the ANSI driver. */ if (rows == UINT_MAX && cols == UINT_MAX && context->tty_reset && terminal_is_pty_fd(output_fd) == 0 && isatty_safe(input_fd)) { r = terminal_get_size_by_dsr(input_fd, output_fd, &rows, &cols); if (r < 0) log_debug_errno(r, "Failed to get terminal size by DSR, ignoring: %m"); } return terminal_set_size_fd(output_fd, tty_path, rows, cols); } void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) { _cleanup_close_ int _fd = -EBADF, lock_fd = -EBADF; int fd, r; assert(context); /* Note that this is potentially a "destructive" reset of a TTY device. It's about getting rid of the * remains of previous uses of the TTY. It's *not* about getting things set up for coming uses. We'll * potentially invalidate the TTY here through hangups or VT disallocations, and hence do not keep a * continuous fd open. */ const char *path = exec_context_tty_path(context); if (p && p->stdout_fd >= 0 && isatty_safe(p->stdout_fd)) fd = p->stdout_fd; else if (path && (context->tty_path || is_terminal_input(context->std_input) || is_terminal_output(context->std_output) || is_terminal_output(context->std_error))) { fd = _fd = open_terminal(path, O_RDWR|O_NOCTTY|O_CLOEXEC|O_NONBLOCK); if (fd < 0) return (void) log_debug_errno(fd, "Failed to open terminal '%s', ignoring: %m", path); } else return; /* nothing to do */ /* Take a synchronization lock for the duration of the setup that we do here. * systemd-vconsole-setup.service also takes the lock to avoid being interrupted. We open a new fd * that will be closed automatically, and operate on it for convenience. */ lock_fd = lock_dev_console(); if (ERRNO_IS_NEG_PRIVILEGE(lock_fd)) log_debug_errno(lock_fd, "No privileges to lock /dev/console, proceeding without lock: %m"); else if (ERRNO_IS_NEG_DEVICE_ABSENT(lock_fd)) log_debug_errno(lock_fd, "Device /dev/console does not exist, proceeding without lock: %m"); else if (lock_fd < 0) log_warning_errno(lock_fd, "Failed to lock /dev/console, proceeding without lock: %m"); if (context->tty_reset) (void) terminal_reset_defensive(fd, /* switch_to_text= */ true); r = exec_context_apply_tty_size(context, fd, fd, path); if (r < 0) log_debug_errno(r, "Failed to configure TTY dimensions, ignoring: %m"); if (context->tty_vhangup) (void) terminal_vhangup_fd(fd); /* We don't need the fd anymore now, and it potentially points to a hungup TTY anyway, let's close it * hence. */ _fd = safe_close(_fd); if (context->tty_vt_disallocate && path) (void) vt_disallocate(path); } bool exec_needs_network_namespace(const ExecContext *context) { assert(context); return context->private_network || context->network_namespace_path; } static bool exec_needs_ephemeral(const ExecContext *context) { return (context->root_image || context->root_directory) && context->root_ephemeral; } bool exec_needs_ipc_namespace(const ExecContext *context) { assert(context); return context->private_ipc || context->ipc_namespace_path; } bool exec_needs_mount_namespace( const ExecContext *context, const ExecParameters *params, const ExecRuntime *runtime) { assert(context); if (context->root_image) return true; if (!strv_isempty(context->read_write_paths) || !strv_isempty(context->read_only_paths) || !strv_isempty(context->inaccessible_paths) || !strv_isempty(context->exec_paths) || !strv_isempty(context->no_exec_paths)) return true; if (context->n_bind_mounts > 0) return true; if (context->n_temporary_filesystems > 0) return true; if (context->n_mount_images > 0) return true; if (context->n_extension_images > 0) return true; if (!strv_isempty(context->extension_directories)) return true; if (!IN_SET(context->mount_propagation_flag, 0, MS_SHARED)) return true; if (context->private_tmp == PRIVATE_TMP_DISCONNECTED) return true; if (context->private_tmp == PRIVATE_TMP_CONNECTED && runtime && runtime->shared && (runtime->shared->tmp_dir || runtime->shared->var_tmp_dir)) return true; if (context->private_devices || context->private_mounts > 0 || (context->private_mounts < 0 && exec_needs_network_namespace(context)) || context->protect_system != PROTECT_SYSTEM_NO || context->protect_home != PROTECT_HOME_NO || context->protect_kernel_tunables || context->protect_kernel_modules || context->protect_kernel_logs || context->protect_control_groups || context->protect_proc != PROTECT_PROC_DEFAULT || context->proc_subset != PROC_SUBSET_ALL || exec_needs_ipc_namespace(context)) return true; if (context->root_directory) { if (exec_context_get_effective_mount_apivfs(context)) return true; for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { if (params && !params->prefix[t]) continue; if (context->directories[t].n_items > 0) return true; } } if (context->dynamic_user && (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 || context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 || context->directories[EXEC_DIRECTORY_LOGS].n_items > 0)) return true; if (exec_context_get_effective_bind_log_sockets(context)) return true; return false; } bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) { assert(context); if (!context->dynamic_user) return false; if (type == EXEC_DIRECTORY_CONFIGURATION) return false; if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO) return false; return true; } int exec_params_get_cgroup_path( const ExecParameters *params, const CGroupContext *c, char **ret) { const char *subgroup = NULL; char *p; assert(params); assert(ret); if (!params->cgroup_path) return -EINVAL; /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control * processes started after the main unit's process in the unit's main cgroup because it is now an inner one, * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process, * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=, * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre= * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP * flag, which is only passed for the former statements, not for the latter. */ if (FLAGS_SET(params->flags, EXEC_CGROUP_DELEGATE) && (FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP) || c->delegate_subgroup)) { if (FLAGS_SET(params->flags, EXEC_IS_CONTROL)) subgroup = ".control"; else subgroup = c->delegate_subgroup; } if (subgroup) p = path_join(params->cgroup_path, subgroup); else p = strdup(params->cgroup_path); if (!p) return -ENOMEM; *ret = p; return !!subgroup; } bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) { assert(c); return c->cpu_affinity_from_numa; } static void log_command_line(Unit *unit, const char *msg, const char *executable, char **argv) { assert(unit); assert(msg); assert(executable); if (!DEBUG_LOGGING) return; _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY); log_unit_struct(unit, LOG_DEBUG, "EXECUTABLE=%s", executable, LOG_UNIT_MESSAGE(unit, "%s: %s", msg, strnull(cmdline)), LOG_UNIT_INVOCATION_ID(unit)); } static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l); int exec_spawn( Unit *unit, ExecCommand *command, const ExecContext *context, ExecParameters *params, ExecRuntime *runtime, const CGroupContext *cgroup_context, PidRef *ret) { _cleanup_free_ char *subcgroup_path = NULL, *max_log_levels = NULL, *executor_path = NULL; _cleanup_fdset_free_ FDSet *fdset = NULL; _cleanup_fclose_ FILE *f = NULL; int r; assert(unit); assert(unit->manager); assert(unit->manager->executor_fd >= 0); assert(command); assert(context); assert(params); assert(!params->fds || FLAGS_SET(params->flags, EXEC_PASS_FDS)); assert(params->fds || (params->n_socket_fds + params->n_storage_fds + params->n_extra_fds == 0)); assert(!params->files_env); /* We fill this field, ensure it comes NULL-initialized to us */ assert(ret); LOG_CONTEXT_PUSH_UNIT(unit); r = exec_context_load_environment(unit, context, ¶ms->files_env); if (r < 0) return log_unit_error_errno(unit, r, "Failed to load environment files: %m"); /* We won't know the real executable path until we create the mount namespace in the child, but we want to log from the parent, so we use the possibly inaccurate path here. */ log_command_line(unit, "About to execute", command->path, command->argv); if (params->cgroup_path) { r = exec_params_get_cgroup_path(params, cgroup_context, &subcgroup_path); if (r < 0) return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m"); if (r > 0) { /* If there's a subcgroup, then let's create it here now (the main cgroup was already * realized by the unit logic) */ r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path); if (r < 0) return log_unit_error_errno(unit, r, "Failed to create subcgroup '%s': %m", subcgroup_path); } } /* In order to avoid copy-on-write traps and OOM-kills when pid1's memory.current is above the * child's memory.max, serialize all the state needed to start the unit, and pass it to the * systemd-executor binary. clone() with CLONE_VM + CLONE_VFORK will pause the parent until the exec * and ensure all memory is shared. The child immediately execs the new binary so the delay should * be minimal. If glibc 2.39 is available pidfd_spawn() is used in order to get a race-free pid fd * and to clone directly into the target cgroup (if we booted with cgroupv2). */ r = open_serialization_file("sd-executor-state", &f); if (r < 0) return log_unit_error_errno(unit, r, "Failed to open serialization stream: %m"); fdset = fdset_new(); if (!fdset) return log_oom(); r = exec_serialize_invocation(f, fdset, context, command, params, runtime, cgroup_context); if (r < 0) return log_unit_error_errno(unit, r, "Failed to serialize parameters: %m"); if (fseeko(f, 0, SEEK_SET) < 0) return log_unit_error_errno(unit, errno, "Failed to reseek on serialization stream: %m"); r = fd_cloexec(fileno(f), false); if (r < 0) return log_unit_error_errno(unit, r, "Failed to set O_CLOEXEC on serialization fd: %m"); r = fdset_cloexec(fdset, false); if (r < 0) return log_unit_error_errno(unit, r, "Failed to set O_CLOEXEC on serialized fds: %m"); /* If LogLevelMax= is specified, then let's use the specified log level at the beginning of the * executor process. To achieve that the specified log level is passed as an argument, rather than * the one for the manager process. */ r = log_max_levels_to_string(context->log_level_max >= 0 ? context->log_level_max : log_get_max_level(), &max_log_levels); if (r < 0) return log_unit_error_errno(unit, r, "Failed to convert max log levels to string: %m"); r = fd_get_path(unit->manager->executor_fd, &executor_path); if (r < 0) return log_unit_error_errno(unit, r, "Failed to get executor path from fd: %m"); char serialization_fd_number[DECIMAL_STR_MAX(int)]; xsprintf(serialization_fd_number, "%i", fileno(f)); _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; dual_timestamp start_timestamp; /* Restore the original ambient capability set the manager was started with to pass it to * sd-executor. */ r = capability_ambient_set_apply(unit->manager->saved_ambient_set, /* also_inherit= */ false); if (r < 0) return log_unit_error_errno(unit, r, "Failed to apply the starting ambient set: %m"); /* Record the start timestamp before we fork so that it is guaranteed to be earlier than the * handoff timestamp. */ dual_timestamp_now(&start_timestamp); /* The executor binary is pinned, to avoid compatibility problems during upgrades. */ r = posix_spawn_wrapper( FORMAT_PROC_FD_PATH(unit->manager->executor_fd), STRV_MAKE(executor_path, "--deserialize", serialization_fd_number, "--log-level", max_log_levels, "--log-target", log_target_to_string(manager_get_executor_log_target(unit->manager))), environ, cg_unified() > 0 ? subcgroup_path : NULL, &pidref); /* Drop the ambient set again, so no processes other than sd-executore spawned from the manager inherit it. */ (void) capability_ambient_set_apply(0, /* also_inherit= */ false); if (r == -EUCLEAN && subcgroup_path) return log_unit_error_errno(unit, r, "Failed to spawn process into cgroup '%s', because the cgroup " "or one of its parents or siblings is in the threaded mode.", subcgroup_path); if (r < 0) return log_unit_error_errno(unit, r, "Failed to spawn executor: %m"); /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the * process will be killed too). */ if (r == 0 && subcgroup_path) (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pidref.pid); /* r > 0: Already in the right cgroup thanks to CLONE_INTO_CGROUP */ log_unit_debug(unit, "Forked %s as " PID_FMT " (%s CLONE_INTO_CGROUP)", command->path, pidref.pid, r > 0 ? "via" : "without"); exec_status_start(&command->exec_status, pidref.pid, &start_timestamp); *ret = TAKE_PIDREF(pidref); return 0; } void exec_context_init(ExecContext *c) { assert(c); /* When initializing a bool member to 'true', make sure to serialize in execute-serialize.c using * serialize_bool() instead of serialize_bool_elide(). */ *c = (ExecContext) { .umask = 0022, .ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO, .cpu_sched_policy = SCHED_OTHER, .syslog_priority = LOG_DAEMON|LOG_INFO, .syslog_level_prefix = true, .ignore_sigpipe = true, .timer_slack_nsec = NSEC_INFINITY, .personality = PERSONALITY_INVALID, .timeout_clean_usec = USEC_INFINITY, .capability_bounding_set = CAP_MASK_UNSET, .restrict_namespaces = NAMESPACE_FLAGS_INITIAL, .log_level_max = -1, #if HAVE_SECCOMP .syscall_errno = SECCOMP_ERROR_NUMBER_KILL, #endif .tty_rows = UINT_MAX, .tty_cols = UINT_MAX, .private_mounts = -1, .mount_apivfs = -1, .bind_log_sockets = -1, .memory_ksm = -1, .set_login_environment = -1, }; FOREACH_ARRAY(d, c->directories, _EXEC_DIRECTORY_TYPE_MAX) d->mode = 0755; numa_policy_reset(&c->numa_policy); assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL); } void exec_context_done(ExecContext *c) { assert(c); c->environment = strv_free(c->environment); c->environment_files = strv_free(c->environment_files); c->pass_environment = strv_free(c->pass_environment); c->unset_environment = strv_free(c->unset_environment); rlimit_free_all(c->rlimit); for (size_t l = 0; l < 3; l++) { c->stdio_fdname[l] = mfree(c->stdio_fdname[l]); c->stdio_file[l] = mfree(c->stdio_file[l]); } c->working_directory = mfree(c->working_directory); c->root_directory = mfree(c->root_directory); c->root_image = mfree(c->root_image); c->root_image_options = mount_options_free_all(c->root_image_options); c->root_hash = mfree(c->root_hash); c->root_hash_size = 0; c->root_hash_path = mfree(c->root_hash_path); c->root_hash_sig = mfree(c->root_hash_sig); c->root_hash_sig_size = 0; c->root_hash_sig_path = mfree(c->root_hash_sig_path); c->root_verity = mfree(c->root_verity); c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images); c->extension_directories = strv_free(c->extension_directories); c->tty_path = mfree(c->tty_path); c->syslog_identifier = mfree(c->syslog_identifier); c->user = mfree(c->user); c->group = mfree(c->group); c->supplementary_groups = strv_free(c->supplementary_groups); c->pam_name = mfree(c->pam_name); c->read_only_paths = strv_free(c->read_only_paths); c->read_write_paths = strv_free(c->read_write_paths); c->inaccessible_paths = strv_free(c->inaccessible_paths); c->exec_paths = strv_free(c->exec_paths); c->no_exec_paths = strv_free(c->no_exec_paths); c->exec_search_path = strv_free(c->exec_search_path); bind_mount_free_many(c->bind_mounts, c->n_bind_mounts); c->bind_mounts = NULL; c->n_bind_mounts = 0; temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems); c->temporary_filesystems = NULL; c->n_temporary_filesystems = 0; c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images); cpu_set_reset(&c->cpu_set); numa_policy_reset(&c->numa_policy); c->utmp_id = mfree(c->utmp_id); c->selinux_context = mfree(c->selinux_context); c->apparmor_profile = mfree(c->apparmor_profile); c->smack_process_label = mfree(c->smack_process_label); c->restrict_filesystems = set_free_free(c->restrict_filesystems); c->syscall_filter = hashmap_free(c->syscall_filter); c->syscall_archs = set_free(c->syscall_archs); c->address_families = set_free(c->address_families); FOREACH_ARRAY(d, c->directories, _EXEC_DIRECTORY_TYPE_MAX) exec_directory_done(d); c->log_level_max = -1; exec_context_free_log_extra_fields(c); c->log_filter_allowed_patterns = set_free_free(c->log_filter_allowed_patterns); c->log_filter_denied_patterns = set_free_free(c->log_filter_denied_patterns); c->log_ratelimit = (RateLimit) {}; c->stdin_data = mfree(c->stdin_data); c->stdin_data_size = 0; c->network_namespace_path = mfree(c->network_namespace_path); c->ipc_namespace_path = mfree(c->ipc_namespace_path); c->log_namespace = mfree(c->log_namespace); c->load_credentials = hashmap_free(c->load_credentials); c->set_credentials = hashmap_free(c->set_credentials); c->import_credentials = ordered_set_free(c->import_credentials); c->root_image_policy = image_policy_free(c->root_image_policy); c->mount_image_policy = image_policy_free(c->mount_image_policy); c->extension_image_policy = image_policy_free(c->extension_image_policy); } int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) { assert(c); if (!runtime_prefix) return 0; FOREACH_ARRAY(i, c->directories[EXEC_DIRECTORY_RUNTIME].items, c->directories[EXEC_DIRECTORY_RUNTIME].n_items) { _cleanup_free_ char *p = NULL; if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME)) p = path_join(runtime_prefix, "private", i->path); else p = path_join(runtime_prefix, i->path); if (!p) return -ENOMEM; /* We execute this synchronously, since we need to be sure this is gone when we start the * service next. */ (void) rm_rf(p, REMOVE_ROOT); STRV_FOREACH(symlink, i->symlinks) { _cleanup_free_ char *symlink_abs = NULL; if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME)) symlink_abs = path_join(runtime_prefix, "private", *symlink); else symlink_abs = path_join(runtime_prefix, *symlink); if (!symlink_abs) return -ENOMEM; (void) unlink(symlink_abs); } } return 0; } int exec_context_destroy_mount_ns_dir(Unit *u) { _cleanup_free_ char *p = NULL; if (!u || !MANAGER_IS_SYSTEM(u->manager)) return 0; p = path_join("/run/systemd/propagate/", u->id); if (!p) return -ENOMEM; /* This is only filled transiently (see mount_in_namespace()), should be empty or even non-existent*/ if (rmdir(p) < 0 && errno != ENOENT) log_unit_debug_errno(u, errno, "Unable to remove propagation dir '%s', ignoring: %m", p); return 0; } void exec_command_done(ExecCommand *c) { assert(c); c->path = mfree(c->path); c->argv = strv_free(c->argv); } void exec_command_done_array(ExecCommand *c, size_t n) { FOREACH_ARRAY(i, c, n) exec_command_done(i); } ExecCommand* exec_command_free(ExecCommand *c) { if (!c) return NULL; exec_command_done(c); return mfree(c); } ExecCommand* exec_command_free_list(ExecCommand *c) { ExecCommand *i; while ((i = LIST_POP(command, c))) exec_command_free(i); return NULL; } void exec_command_free_array(ExecCommand **c, size_t n) { FOREACH_ARRAY(i, c, n) *i = exec_command_free_list(*i); } void exec_command_reset_status_array(ExecCommand *c, size_t n) { FOREACH_ARRAY(i, c, n) exec_status_reset(&i->exec_status); } void exec_command_reset_status_list_array(ExecCommand **c, size_t n) { FOREACH_ARRAY(i, c, n) LIST_FOREACH(command, z, *i) exec_status_reset(&z->exec_status); } typedef struct InvalidEnvInfo { const Unit *unit; const char *path; } InvalidEnvInfo; static void invalid_env(const char *p, void *userdata) { InvalidEnvInfo *info = userdata; log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path); } const char* exec_context_fdname(const ExecContext *c, int fd_index) { assert(c); switch (fd_index) { case STDIN_FILENO: if (c->std_input != EXEC_INPUT_NAMED_FD) return NULL; return c->stdio_fdname[STDIN_FILENO] ?: "stdin"; case STDOUT_FILENO: if (c->std_output != EXEC_OUTPUT_NAMED_FD) return NULL; return c->stdio_fdname[STDOUT_FILENO] ?: "stdout"; case STDERR_FILENO: if (c->std_error != EXEC_OUTPUT_NAMED_FD) return NULL; return c->stdio_fdname[STDERR_FILENO] ?: "stderr"; default: return NULL; } } static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) { _cleanup_strv_free_ char **v = NULL; int r; assert(c); assert(ret); STRV_FOREACH(i, c->environment_files) { _cleanup_globfree_ glob_t pglob = {}; bool ignore = false; char *fn = *i; if (fn[0] == '-') { ignore = true; fn++; } if (!path_is_absolute(fn)) { if (ignore) continue; return -EINVAL; } /* Filename supports globbing, take all matching files */ r = safe_glob(fn, 0, &pglob); if (r < 0) { if (ignore) continue; return r; } /* When we don't match anything, -ENOENT should be returned */ assert(pglob.gl_pathc > 0); FOREACH_ARRAY(path, pglob.gl_pathv, pglob.gl_pathc) { _cleanup_strv_free_ char **p = NULL; r = load_env_file(NULL, *path, &p); if (r < 0) { if (ignore) continue; return r; } /* Log invalid environment variables with filename */ if (p) { InvalidEnvInfo info = { .unit = unit, .path = *path, }; p = strv_env_clean_with_callback(p, invalid_env, &info); } if (!v) v = TAKE_PTR(p); else { char **m = strv_env_merge(v, p); if (!m) return -ENOMEM; strv_free_and_replace(v, m); } } } *ret = TAKE_PTR(v); return 0; } static bool tty_may_match_dev_console(const char *tty) { _cleanup_free_ char *resolved = NULL; if (!tty) return true; tty = skip_dev_prefix(tty); /* trivial identity? */ if (streq(tty, "console")) return true; if (resolve_dev_console(&resolved) < 0) return true; /* if we could not resolve, assume it may */ /* "tty0" means the active VC, so it may be the same sometimes */ return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty)); } static bool exec_context_may_touch_tty(const ExecContext *ec) { assert(ec); return ec->tty_reset || ec->tty_vhangup || ec->tty_vt_disallocate || is_terminal_input(ec->std_input) || is_terminal_output(ec->std_output) || is_terminal_output(ec->std_error); } bool exec_context_may_touch_console(const ExecContext *ec) { return exec_context_may_touch_tty(ec) && tty_may_match_dev_console(exec_context_tty_path(ec)); } static void strv_fprintf(FILE *f, char **l) { assert(f); STRV_FOREACH(g, l) fprintf(f, " %s", *g); } static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) { assert(f); assert(prefix); assert(name); if (!strv_isempty(strv)) { fprintf(f, "%s%s:", prefix, name); strv_fprintf(f, strv); fputs("\n", f); } } void exec_params_dump(const ExecParameters *p, FILE* f, const char *prefix) { assert(p); assert(f); prefix = strempty(prefix); fprintf(f, "%sRuntimeScope: %s\n" "%sExecFlags: %u\n" "%sSELinuxContextNetwork: %s\n" "%sCgroupSupportedMask: %u\n" "%sCgroupPath: %s\n" "%sCrededentialsDirectory: %s\n" "%sEncryptedCredentialsDirectory: %s\n" "%sConfirmSpawn: %s\n" "%sShallConfirmSpawn: %s\n" "%sWatchdogUSec: " USEC_FMT "\n" "%sNotifySocket: %s\n" "%sDebugInvocation: %s\n" "%sFallbackSmackProcessLabel: %s\n", prefix, runtime_scope_to_string(p->runtime_scope), prefix, p->flags, prefix, yes_no(p->selinux_context_net), prefix, p->cgroup_supported, prefix, p->cgroup_path, prefix, strempty(p->received_credentials_directory), prefix, strempty(p->received_encrypted_credentials_directory), prefix, strempty(p->confirm_spawn), prefix, yes_no(p->shall_confirm_spawn), prefix, p->watchdog_usec, prefix, strempty(p->notify_socket), prefix, yes_no(p->debug_invocation), prefix, strempty(p->fallback_smack_process_label)); strv_dump(f, prefix, "FdNames", p->fd_names); strv_dump(f, prefix, "Environment", p->environment); strv_dump(f, prefix, "Prefix", p->prefix); LIST_FOREACH(open_files, file, p->open_files) fprintf(f, "%sOpenFile: %s %s", prefix, file->path, open_file_flags_to_string(file->flags)); strv_dump(f, prefix, "FilesEnv", p->files_env); } void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) { int r; assert(c); assert(f); prefix = strempty(prefix); fprintf(f, "%sUMask: %04o\n" "%sWorkingDirectory: %s\n" "%sRootDirectory: %s\n" "%sRootEphemeral: %s\n" "%sNonBlocking: %s\n" "%sPrivateTmp: %s\n" "%sPrivateDevices: %s\n" "%sProtectKernelTunables: %s\n" "%sProtectKernelModules: %s\n" "%sProtectKernelLogs: %s\n" "%sProtectClock: %s\n" "%sProtectControlGroups: %s\n" "%sPrivateNetwork: %s\n" "%sPrivateUsers: %s\n" "%sProtectHome: %s\n" "%sProtectSystem: %s\n" "%sMountAPIVFS: %s\n" "%sBindLogSockets: %s\n" "%sIgnoreSIGPIPE: %s\n" "%sMemoryDenyWriteExecute: %s\n" "%sRestrictRealtime: %s\n" "%sRestrictSUIDSGID: %s\n" "%sKeyringMode: %s\n" "%sProtectHostname: %s\n" "%sProtectProc: %s\n" "%sProcSubset: %s\n", prefix, c->umask, prefix, empty_to_root(c->working_directory), prefix, empty_to_root(c->root_directory), prefix, yes_no(c->root_ephemeral), prefix, yes_no(c->non_blocking), prefix, private_tmp_to_string(c->private_tmp), prefix, yes_no(c->private_devices), prefix, yes_no(c->protect_kernel_tunables), prefix, yes_no(c->protect_kernel_modules), prefix, yes_no(c->protect_kernel_logs), prefix, yes_no(c->protect_clock), prefix, yes_no(c->protect_control_groups), prefix, yes_no(c->private_network), prefix, private_users_to_string(c->private_users), prefix, protect_home_to_string(c->protect_home), prefix, protect_system_to_string(c->protect_system), prefix, yes_no(exec_context_get_effective_mount_apivfs(c)), prefix, yes_no(exec_context_get_effective_bind_log_sockets(c)), prefix, yes_no(c->ignore_sigpipe), prefix, yes_no(c->memory_deny_write_execute), prefix, yes_no(c->restrict_realtime), prefix, yes_no(c->restrict_suid_sgid), prefix, exec_keyring_mode_to_string(c->keyring_mode), prefix, yes_no(c->protect_hostname), prefix, protect_proc_to_string(c->protect_proc), prefix, proc_subset_to_string(c->proc_subset)); if (c->set_login_environment >= 0) fprintf(f, "%sSetLoginEnvironment: %s\n", prefix, yes_no(c->set_login_environment > 0)); if (c->root_image) fprintf(f, "%sRootImage: %s\n", prefix, c->root_image); if (c->root_image_options) { fprintf(f, "%sRootImageOptions:", prefix); LIST_FOREACH(mount_options, o, c->root_image_options) if (!isempty(o->options)) fprintf(f, " %s:%s", partition_designator_to_string(o->partition_designator), o->options); fprintf(f, "\n"); } if (c->root_hash) { _cleanup_free_ char *encoded = NULL; encoded = hexmem(c->root_hash, c->root_hash_size); if (encoded) fprintf(f, "%sRootHash: %s\n", prefix, encoded); } if (c->root_hash_path) fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path); if (c->root_hash_sig) { _cleanup_free_ char *encoded = NULL; ssize_t len; len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded); if (len) fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded); } if (c->root_hash_sig_path) fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path); if (c->root_verity) fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity); STRV_FOREACH(e, c->environment) fprintf(f, "%sEnvironment: %s\n", prefix, *e); STRV_FOREACH(e, c->environment_files) fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e); STRV_FOREACH(e, c->pass_environment) fprintf(f, "%sPassEnvironment: %s\n", prefix, *e); STRV_FOREACH(e, c->unset_environment) fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e); fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode)); for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) { fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode); for (size_t i = 0; i < c->directories[dt].n_items; i++) { fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path); STRV_FOREACH(d, c->directories[dt].items[i].symlinks) fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d); } } fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC)); if (c->memory_ksm >= 0) fprintf(f, "%sMemoryKSM: %s\n", prefix, yes_no(c->memory_ksm > 0)); if (c->nice_set) fprintf(f, "%sNice: %i\n", prefix, c->nice); if (c->oom_score_adjust_set) fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust); if (c->coredump_filter_set) fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter); for (unsigned i = 0; i < RLIM_NLIMITS; i++) if (c->rlimit[i]) { fprintf(f, "%sLimit%s: " RLIM_FMT "\n", prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max); fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n", prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur); } if (c->ioprio_set) { _cleanup_free_ char *class_str = NULL; r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str); if (r >= 0) fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str); fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio)); } if (c->cpu_sched_set) { _cleanup_free_ char *policy_str = NULL; r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str); if (r >= 0) fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str); fprintf(f, "%sCPUSchedulingPriority: %i\n" "%sCPUSchedulingResetOnFork: %s\n", prefix, c->cpu_sched_priority, prefix, yes_no(c->cpu_sched_reset_on_fork)); } if (c->cpu_set.set) { _cleanup_free_ char *affinity = NULL; affinity = cpu_set_to_range_string(&c->cpu_set); fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity); } if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) { _cleanup_free_ char *nodes = NULL; nodes = cpu_set_to_range_string(&c->numa_policy.nodes); fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy))); fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes)); } if (c->timer_slack_nsec != NSEC_INFINITY) fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec); fprintf(f, "%sStandardInput: %s\n" "%sStandardOutput: %s\n" "%sStandardError: %s\n", prefix, exec_input_to_string(c->std_input), prefix, exec_output_to_string(c->std_output), prefix, exec_output_to_string(c->std_error)); if (c->std_input == EXEC_INPUT_NAMED_FD) fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]); if (c->std_output == EXEC_OUTPUT_NAMED_FD) fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]); if (c->std_error == EXEC_OUTPUT_NAMED_FD) fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]); if (c->std_input == EXEC_INPUT_FILE) fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]); if (c->std_output == EXEC_OUTPUT_FILE) fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]); if (c->std_output == EXEC_OUTPUT_FILE_APPEND) fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]); if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE) fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]); if (c->std_error == EXEC_OUTPUT_FILE) fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]); if (c->std_error == EXEC_OUTPUT_FILE_APPEND) fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]); if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE) fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]); if (c->tty_path) fprintf(f, "%sTTYPath: %s\n" "%sTTYReset: %s\n" "%sTTYVHangup: %s\n" "%sTTYVTDisallocate: %s\n" "%sTTYRows: %u\n" "%sTTYColumns: %u\n", prefix, c->tty_path, prefix, yes_no(c->tty_reset), prefix, yes_no(c->tty_vhangup), prefix, yes_no(c->tty_vt_disallocate), prefix, c->tty_rows, prefix, c->tty_cols); if (IN_SET(c->std_output, EXEC_OUTPUT_KMSG, EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_KMSG_AND_CONSOLE, EXEC_OUTPUT_JOURNAL_AND_CONSOLE) || IN_SET(c->std_error, EXEC_OUTPUT_KMSG, EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_KMSG_AND_CONSOLE, EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) { _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL; r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str); if (r >= 0) fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str); r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str); if (r >= 0) fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str); } if (c->log_level_max >= 0) { _cleanup_free_ char *t = NULL; (void) log_level_to_string_alloc(c->log_level_max, &t); fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t)); } if (c->log_ratelimit.interval > 0) fprintf(f, "%sLogRateLimitIntervalSec: %s\n", prefix, FORMAT_TIMESPAN(c->log_ratelimit.interval, USEC_PER_SEC)); if (c->log_ratelimit.burst > 0) fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit.burst); if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) { fprintf(f, "%sLogFilterPatterns:", prefix); char *pattern; SET_FOREACH(pattern, c->log_filter_allowed_patterns) fprintf(f, " %s", pattern); SET_FOREACH(pattern, c->log_filter_denied_patterns) fprintf(f, " ~%s", pattern); fputc('\n', f); } FOREACH_ARRAY(field, c->log_extra_fields, c->n_log_extra_fields) { fprintf(f, "%sLogExtraFields: ", prefix); fwrite(field->iov_base, 1, field->iov_len, f); fputc('\n', f); } if (c->log_namespace) fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace); if (c->secure_bits) { _cleanup_free_ char *str = NULL; r = secure_bits_to_string_alloc(c->secure_bits, &str); if (r >= 0) fprintf(f, "%sSecure Bits: %s\n", prefix, str); } if (c->capability_bounding_set != CAP_MASK_UNSET) { _cleanup_free_ char *str = NULL; r = capability_set_to_string(c->capability_bounding_set, &str); if (r >= 0) fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str); } if (c->capability_ambient_set != 0) { _cleanup_free_ char *str = NULL; r = capability_set_to_string(c->capability_ambient_set, &str); if (r >= 0) fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str); } if (c->user) fprintf(f, "%sUser: %s\n", prefix, c->user); if (c->group) fprintf(f, "%sGroup: %s\n", prefix, c->group); fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user)); strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups); if (c->pam_name) fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name); strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths); strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths); strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths); strv_dump(f, prefix, "ExecPaths", c->exec_paths); strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths); strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path); FOREACH_ARRAY(mount, c->bind_mounts, c->n_bind_mounts) fprintf(f, "%s%s: %s%s:%s:%s\n", prefix, mount->read_only ? "BindReadOnlyPaths" : "BindPaths", mount->ignore_enoent ? "-": "", mount->source, mount->destination, mount->recursive ? "rbind" : "norbind"); FOREACH_ARRAY(tmpfs, c->temporary_filesystems, c->n_temporary_filesystems) fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix, tmpfs->path, isempty(tmpfs->options) ? "" : ":", strempty(tmpfs->options)); if (c->utmp_id) fprintf(f, "%sUtmpIdentifier: %s\n", prefix, c->utmp_id); if (c->selinux_context) fprintf(f, "%sSELinuxContext: %s%s\n", prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context); if (c->apparmor_profile) fprintf(f, "%sAppArmorProfile: %s%s\n", prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile); if (c->smack_process_label) fprintf(f, "%sSmackProcessLabel: %s%s\n", prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label); if (c->personality != PERSONALITY_INVALID) fprintf(f, "%sPersonality: %s\n", prefix, strna(personality_to_string(c->personality))); fprintf(f, "%sLockPersonality: %s\n", prefix, yes_no(c->lock_personality)); if (c->syscall_filter) { fprintf(f, "%sSystemCallFilter: ", prefix); if (!c->syscall_allow_list) fputc('~', f); #if HAVE_SECCOMP void *id, *val; bool first = true; HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) { _cleanup_free_ char *name = NULL; const char *errno_name = NULL; int num = PTR_TO_INT(val); if (first) first = false; else fputc(' ', f); name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1); fputs(strna(name), f); if (num >= 0) { errno_name = seccomp_errno_or_action_to_string(num); if (errno_name) fprintf(f, ":%s", errno_name); else fprintf(f, ":%d", num); } } #endif fputc('\n', f); } if (c->syscall_archs) { fprintf(f, "%sSystemCallArchitectures:", prefix); #if HAVE_SECCOMP void *id; SET_FOREACH(id, c->syscall_archs) fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1))); #endif fputc('\n', f); } if (exec_context_restrict_namespaces_set(c)) { _cleanup_free_ char *s = NULL; r = namespace_flags_to_string(c->restrict_namespaces, &s); if (r >= 0) fprintf(f, "%sRestrictNamespaces: %s\n", prefix, strna(s)); } #if HAVE_LIBBPF if (exec_context_restrict_filesystems_set(c)) { char *fs; SET_FOREACH(fs, c->restrict_filesystems) fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs); } #endif if (c->network_namespace_path) fprintf(f, "%sNetworkNamespacePath: %s\n", prefix, c->network_namespace_path); if (c->syscall_errno > 0) { fprintf(f, "%sSystemCallErrorNumber: ", prefix); #if HAVE_SECCOMP const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno); if (errno_name) fputs(errno_name, f); else fprintf(f, "%d", c->syscall_errno); #endif fputc('\n', f); } FOREACH_ARRAY(mount, c->mount_images, c->n_mount_images) { fprintf(f, "%sMountImages: %s%s:%s", prefix, mount->ignore_enoent ? "-": "", mount->source, mount->destination); LIST_FOREACH(mount_options, o, mount->mount_options) fprintf(f, ":%s:%s", partition_designator_to_string(o->partition_designator), strempty(o->options)); fprintf(f, "\n"); } FOREACH_ARRAY(mount, c->extension_images, c->n_extension_images) { fprintf(f, "%sExtensionImages: %s%s", prefix, mount->ignore_enoent ? "-": "", mount->source); LIST_FOREACH(mount_options, o, mount->mount_options) fprintf(f, ":%s:%s", partition_designator_to_string(o->partition_designator), strempty(o->options)); fprintf(f, "\n"); } strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories); } bool exec_context_maintains_privileges(const ExecContext *c) { assert(c); /* Returns true if the process forked off would run under * an unchanged UID or as root. */ if (!c->user) return true; if (STR_IN_SET(c->user, "root", "0")) return true; return false; } int exec_context_get_effective_ioprio(const ExecContext *c) { int p; assert(c); if (c->ioprio_set) return c->ioprio; p = ioprio_get(IOPRIO_WHO_PROCESS, 0); if (p < 0) return IOPRIO_DEFAULT_CLASS_AND_PRIO; return ioprio_normalize(p); } bool exec_context_get_effective_mount_apivfs(const ExecContext *c) { assert(c); /* Explicit setting wins */ if (c->mount_apivfs >= 0) return c->mount_apivfs > 0; /* Default to "yes" if root directory or image are specified */ if (exec_context_with_rootfs(c)) return true; return false; } bool exec_context_get_effective_bind_log_sockets(const ExecContext *c) { assert(c); /* If log namespace is specified, "/run/systemd/journal.namespace/" would be bind mounted to * "/run/systemd/journal/", which effectively means BindLogSockets=yes */ if (c->log_namespace) return true; if (c->bind_log_sockets >= 0) return c->bind_log_sockets > 0; if (exec_context_get_effective_mount_apivfs(c)) return true; /* When PrivateDevices=yes, /dev/log gets symlinked to /run/systemd/journal/dev-log */ if (exec_context_with_rootfs(c) && c->private_devices) return true; return false; } void exec_context_free_log_extra_fields(ExecContext *c) { assert(c); FOREACH_ARRAY(field, c->log_extra_fields, c->n_log_extra_fields) free(field->iov_base); c->log_extra_fields = mfree(c->log_extra_fields); c->n_log_extra_fields = 0; } void exec_context_revert_tty(ExecContext *c) { _cleanup_close_ int fd = -EBADF; const char *path; struct stat st; int r; assert(c); /* First, reset the TTY (possibly kicking everybody else from the TTY) */ exec_context_tty_reset(c, /* parameters= */ NULL); /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */ if (!exec_context_may_touch_tty(c)) return; path = exec_context_tty_path(c); if (!path) return; fd = open(path, O_PATH|O_CLOEXEC); /* Pin the inode */ if (fd < 0) return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno, "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m", path); if (fstat(fd, &st) < 0) return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path); /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check * if things are a character device, since a proper check either means we'd have to open the TTY and * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother * with this at all? → https://github.com/systemd/systemd/issues/19213 */ if (!S_ISCHR(st.st_mode)) return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path); r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID); if (r < 0) log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s to " UID_FMT ":" GID_FMT ", ignoring: %m", path, (uid_t) 0, (gid_t) TTY_GID); } int exec_context_get_clean_directories( ExecContext *c, char **prefix, ExecCleanMask mask, char ***ret) { _cleanup_strv_free_ char **l = NULL; int r; assert(c); assert(prefix); assert(ret); for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { if (!FLAGS_SET(mask, 1U << t)) continue; if (!prefix[t]) continue; FOREACH_ARRAY(i, c->directories[t].items, c->directories[t].n_items) { char *j; j = path_join(prefix[t], i->path); if (!j) return -ENOMEM; r = strv_consume(&l, j); if (r < 0) return r; /* Also remove private directories unconditionally. */ if (t != EXEC_DIRECTORY_CONFIGURATION) { j = path_join(prefix[t], "private", i->path); if (!j) return -ENOMEM; r = strv_consume(&l, j); if (r < 0) return r; } STRV_FOREACH(symlink, i->symlinks) { j = path_join(prefix[t], *symlink); if (!j) return -ENOMEM; r = strv_consume(&l, j); if (r < 0) return r; } } } *ret = TAKE_PTR(l); return 0; } int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) { ExecCleanMask mask = 0; assert(c); assert(ret); for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) if (c->directories[t].n_items > 0) mask |= 1U << t; *ret = mask; return 0; } int exec_context_get_oom_score_adjust(const ExecContext *c) { int n = 0, r; assert(c); if (c->oom_score_adjust_set) return c->oom_score_adjust; r = get_oom_score_adjust(&n); if (r < 0) log_debug_errno(r, "Failed to read /proc/self/oom_score_adj, ignoring: %m"); return n; } uint64_t exec_context_get_coredump_filter(const ExecContext *c) { _cleanup_free_ char *t = NULL; uint64_t n = COREDUMP_FILTER_MASK_DEFAULT; int r; assert(c); if (c->coredump_filter_set) return c->coredump_filter; r = read_one_line_file("/proc/self/coredump_filter", &t); if (r < 0) log_debug_errno(r, "Failed to read /proc/self/coredump_filter, ignoring: %m"); else { r = safe_atoux64(t, &n); if (r < 0) log_debug_errno(r, "Failed to parse \"%s\" from /proc/self/coredump_filter, ignoring: %m", t); } return n; } int exec_context_get_nice(const ExecContext *c) { int n; assert(c); if (c->nice_set) return c->nice; errno = 0; n = getpriority(PRIO_PROCESS, 0); if (errno > 0) { log_debug_errno(errno, "Failed to get process nice value, ignoring: %m"); n = 0; } return n; } int exec_context_get_cpu_sched_policy(const ExecContext *c) { int n; assert(c); if (c->cpu_sched_set) return c->cpu_sched_policy; n = sched_getscheduler(0); if (n < 0) log_debug_errno(errno, "Failed to get scheduler policy, ignoring: %m"); return n < 0 ? SCHED_OTHER : n; } int exec_context_get_cpu_sched_priority(const ExecContext *c) { struct sched_param p = {}; int r; assert(c); if (c->cpu_sched_set) return c->cpu_sched_priority; r = sched_getparam(0, &p); if (r < 0) log_debug_errno(errno, "Failed to get scheduler priority, ignoring: %m"); return r >= 0 ? p.sched_priority : 0; } uint64_t exec_context_get_timer_slack_nsec(const ExecContext *c) { int r; assert(c); if (c->timer_slack_nsec != NSEC_INFINITY) return c->timer_slack_nsec; r = prctl(PR_GET_TIMERSLACK); if (r < 0) log_debug_errno(r, "Failed to get timer slack, ignoring: %m"); return (uint64_t) MAX(r, 0); } bool exec_context_get_set_login_environment(const ExecContext *c) { assert(c); if (c->set_login_environment >= 0) return c->set_login_environment; return c->user || c->dynamic_user || c->pam_name; } char** exec_context_get_syscall_filter(const ExecContext *c) { _cleanup_strv_free_ char **l = NULL; assert(c); #if HAVE_SECCOMP void *id, *val; HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) { _cleanup_free_ char *name = NULL; const char *e = NULL; char *s; int num = PTR_TO_INT(val); if (c->syscall_allow_list && num >= 0) /* syscall with num >= 0 in allow-list is denied. */ continue; name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1); if (!name) continue; if (num >= 0) { e = seccomp_errno_or_action_to_string(num); if (e) { s = strjoin(name, ":", e); if (!s) return NULL; } else { if (asprintf(&s, "%s:%d", name, num) < 0) return NULL; } } else s = TAKE_PTR(name); if (strv_consume(&l, s) < 0) return NULL; } strv_sort(l); #endif return l ? TAKE_PTR(l) : strv_new(NULL); } char** exec_context_get_syscall_archs(const ExecContext *c) { _cleanup_strv_free_ char **l = NULL; assert(c); #if HAVE_SECCOMP void *id; SET_FOREACH(id, c->syscall_archs) { const char *name; name = seccomp_arch_to_string(PTR_TO_UINT32(id) - 1); if (!name) continue; if (strv_extend(&l, name) < 0) return NULL; } strv_sort(l); #endif return l ? TAKE_PTR(l) : strv_new(NULL); } char** exec_context_get_syscall_log(const ExecContext *c) { _cleanup_strv_free_ char **l = NULL; assert(c); #if HAVE_SECCOMP void *id, *val; HASHMAP_FOREACH_KEY(val, id, c->syscall_log) { char *name = NULL; name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1); if (!name) continue; if (strv_consume(&l, name) < 0) return NULL; } strv_sort(l); #endif return l ? TAKE_PTR(l) : strv_new(NULL); } char** exec_context_get_address_families(const ExecContext *c) { _cleanup_strv_free_ char **l = NULL; void *af; assert(c); SET_FOREACH(af, c->address_families) { const char *name; name = af_to_name(PTR_TO_INT(af)); if (!name) continue; if (strv_extend(&l, name) < 0) return NULL; } strv_sort(l); return l ? TAKE_PTR(l) : strv_new(NULL); } char** exec_context_get_restrict_filesystems(const ExecContext *c) { _cleanup_strv_free_ char **l = NULL; assert(c); #if HAVE_LIBBPF l = set_get_strv(c->restrict_filesystems); if (!l) return NULL; strv_sort(l); #endif return l ? TAKE_PTR(l) : strv_new(NULL); } void exec_status_start(ExecStatus *s, pid_t pid, const dual_timestamp *ts) { assert(s); *s = (ExecStatus) { .pid = pid, }; if (ts) s->start_timestamp = *ts; else dual_timestamp_now(&s->start_timestamp); } void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) { assert(s); if (s->pid != pid) *s = (ExecStatus) { .pid = pid, }; dual_timestamp_now(&s->exit_timestamp); s->code = code; s->status = status; if (context && context->utmp_id) (void) utmp_put_dead_process(context->utmp_id, pid, code, status); } void exec_status_handoff(ExecStatus *s, const struct ucred *ucred, const dual_timestamp *ts) { assert(s); assert(ucred); assert(ts); if (ucred->pid != s->pid) *s = (ExecStatus) { .pid = ucred->pid, }; s->handoff_timestamp = *ts; } void exec_status_reset(ExecStatus *s) { assert(s); *s = (ExecStatus) {}; } void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) { assert(s); assert(f); if (s->pid <= 0) return; prefix = strempty(prefix); fprintf(f, "%sPID: "PID_FMT"\n", prefix, s->pid); if (dual_timestamp_is_set(&s->start_timestamp)) fprintf(f, "%sStart Timestamp: %s\n", prefix, FORMAT_TIMESTAMP_STYLE(s->start_timestamp.realtime, TIMESTAMP_US)); if (dual_timestamp_is_set(&s->handoff_timestamp) && dual_timestamp_is_set(&s->start_timestamp) && s->handoff_timestamp.monotonic > s->start_timestamp.monotonic) fprintf(f, "%sHandoff Timestamp: %s since start\n", prefix, FORMAT_TIMESPAN(usec_sub_unsigned(s->handoff_timestamp.monotonic, s->start_timestamp.monotonic), 1)); else fprintf(f, "%sHandoff Timestamp: %s\n", prefix, FORMAT_TIMESTAMP_STYLE(s->handoff_timestamp.realtime, TIMESTAMP_US)); if (dual_timestamp_is_set(&s->exit_timestamp)) { if (dual_timestamp_is_set(&s->handoff_timestamp) && s->exit_timestamp.monotonic > s->handoff_timestamp.monotonic) fprintf(f, "%sExit Timestamp: %s since handoff\n", prefix, FORMAT_TIMESPAN(usec_sub_unsigned(s->exit_timestamp.monotonic, s->handoff_timestamp.monotonic), 1)); else if (dual_timestamp_is_set(&s->start_timestamp) && s->exit_timestamp.monotonic > s->start_timestamp.monotonic) fprintf(f, "%sExit Timestamp: %s since start\n", prefix, FORMAT_TIMESPAN(usec_sub_unsigned(s->exit_timestamp.monotonic, s->start_timestamp.monotonic), 1)); else fprintf(f, "%sExit Timestamp: %s\n", prefix, FORMAT_TIMESTAMP_STYLE(s->exit_timestamp.realtime, TIMESTAMP_US)); fprintf(f, "%sExit Code: %s\n" "%sExit Status: %i\n", prefix, sigchld_code_to_string(s->code), prefix, s->status); } } void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) { _cleanup_free_ char *cmd = NULL; const char *prefix2; assert(c); assert(f); prefix = strempty(prefix); prefix2 = strjoina(prefix, "\t"); cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY); fprintf(f, "%sCommand Line: %s\n", prefix, strnull(cmd)); exec_status_dump(&c->exec_status, f, prefix2); } void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) { assert(f); prefix = strempty(prefix); LIST_FOREACH(command, i, c) exec_command_dump(i, f, prefix); } void exec_command_append_list(ExecCommand **l, ExecCommand *e) { ExecCommand *end; assert(l); assert(e); if (*l) { /* It's kind of important, that we keep the order here */ end = LIST_FIND_TAIL(command, *l); LIST_INSERT_AFTER(command, *l, end, e); } else *l = e; } int exec_command_set(ExecCommand *c, const char *path, ...) { va_list ap; char **l, *p; assert(c); assert(path); va_start(ap, path); l = strv_new_ap(path, ap); va_end(ap); if (!l) return -ENOMEM; p = strdup(path); if (!p) { strv_free(l); return -ENOMEM; } free_and_replace(c->path, p); return strv_free_and_replace(c->argv, l); } int exec_command_append(ExecCommand *c, const char *path, ...) { char **l; va_list ap; int r; assert(c); assert(path); va_start(ap, path); l = strv_new_ap(path, ap); va_end(ap); if (!l) return -ENOMEM; r = strv_extend_strv_consume(&c->argv, l, /* filter_duplicates = */ false); if (r < 0) return r; return 0; } static char *destroy_tree(char *path) { if (!path) return NULL; if (!path_equal(path, RUN_SYSTEMD_EMPTY)) { log_debug("Spawning process to nuke '%s'", path); (void) asynchronous_rm_rf(path, REMOVE_ROOT|REMOVE_SUBVOLUME|REMOVE_PHYSICAL); } return mfree(path); } void exec_shared_runtime_done(ExecSharedRuntime *rt) { assert(rt); if (rt->manager) (void) hashmap_remove(rt->manager->exec_shared_runtime_by_id, rt->id); rt->id = mfree(rt->id); rt->tmp_dir = mfree(rt->tmp_dir); rt->var_tmp_dir = mfree(rt->var_tmp_dir); safe_close_pair(rt->netns_storage_socket); safe_close_pair(rt->ipcns_storage_socket); } static ExecSharedRuntime* exec_shared_runtime_free(ExecSharedRuntime *rt) { if (!rt) return NULL; exec_shared_runtime_done(rt); return mfree(rt); } DEFINE_TRIVIAL_UNREF_FUNC(ExecSharedRuntime, exec_shared_runtime, exec_shared_runtime_free); DEFINE_TRIVIAL_CLEANUP_FUNC(ExecSharedRuntime*, exec_shared_runtime_free); ExecSharedRuntime* exec_shared_runtime_destroy(ExecSharedRuntime *rt) { if (!rt) return NULL; assert(rt->n_ref > 0); rt->n_ref--; if (rt->n_ref > 0) return NULL; rt->tmp_dir = destroy_tree(rt->tmp_dir); rt->var_tmp_dir = destroy_tree(rt->var_tmp_dir); return exec_shared_runtime_free(rt); } static int exec_shared_runtime_allocate(ExecSharedRuntime **ret, const char *id) { _cleanup_free_ char *id_copy = NULL; ExecSharedRuntime *n; assert(ret); id_copy = strdup(id); if (!id_copy) return -ENOMEM; n = new(ExecSharedRuntime, 1); if (!n) return -ENOMEM; *n = (ExecSharedRuntime) { .id = TAKE_PTR(id_copy), .netns_storage_socket = EBADF_PAIR, .ipcns_storage_socket = EBADF_PAIR, }; *ret = n; return 0; } static int exec_shared_runtime_add( Manager *m, const char *id, char **tmp_dir, char **var_tmp_dir, int netns_storage_socket[2], int ipcns_storage_socket[2], ExecSharedRuntime **ret) { _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt = NULL; int r; assert(m); assert(id); /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */ r = exec_shared_runtime_allocate(&rt, id); if (r < 0) return r; r = hashmap_ensure_put(&m->exec_shared_runtime_by_id, &string_hash_ops, rt->id, rt); if (r < 0) return r; assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */ rt->tmp_dir = TAKE_PTR(*tmp_dir); rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir); if (netns_storage_socket) { rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]); rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]); } if (ipcns_storage_socket) { rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]); rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]); } rt->manager = m; if (ret) *ret = rt; /* do not remove created ExecSharedRuntime object when the operation succeeds. */ TAKE_PTR(rt); return 0; } static int exec_shared_runtime_make( Manager *m, const ExecContext *c, const char *id, ExecSharedRuntime **ret) { _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL; _cleanup_close_pair_ int netns_storage_socket[2] = EBADF_PAIR, ipcns_storage_socket[2] = EBADF_PAIR; int r; assert(m); assert(c); assert(id); /* It is not necessary to create ExecSharedRuntime object. */ if (!exec_needs_network_namespace(c) && !exec_needs_ipc_namespace(c) && c->private_tmp != PRIVATE_TMP_CONNECTED) { *ret = NULL; return 0; } if (c->private_tmp == PRIVATE_TMP_CONNECTED && !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") && (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") || prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) { r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir); if (r < 0) return r; } if (exec_needs_network_namespace(c)) if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0) return -errno; if (exec_needs_ipc_namespace(c)) if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0) return -errno; r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret); if (r < 0) return r; return 1; } int exec_shared_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecSharedRuntime **ret) { ExecSharedRuntime *rt; int r; assert(m); assert(id); assert(ret); rt = hashmap_get(m->exec_shared_runtime_by_id, id); if (rt) /* We already have an ExecSharedRuntime object, let's increase the ref count and reuse it */ goto ref; if (!create) { *ret = NULL; return 0; } /* If not found, then create a new object. */ r = exec_shared_runtime_make(m, c, id, &rt); if (r < 0) return r; if (r == 0) { /* When r == 0, it is not necessary to create ExecSharedRuntime object. */ *ret = NULL; return 0; } ref: /* increment reference counter. */ rt->n_ref++; *ret = rt; return 1; } int exec_shared_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) { ExecSharedRuntime *rt; assert(m); assert(f); assert(fds); HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) { fprintf(f, "exec-runtime=%s", rt->id); if (rt->tmp_dir) fprintf(f, " tmp-dir=%s", rt->tmp_dir); if (rt->var_tmp_dir) fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir); if (rt->netns_storage_socket[0] >= 0) { int copy; copy = fdset_put_dup(fds, rt->netns_storage_socket[0]); if (copy < 0) return copy; fprintf(f, " netns-socket-0=%i", copy); } if (rt->netns_storage_socket[1] >= 0) { int copy; copy = fdset_put_dup(fds, rt->netns_storage_socket[1]); if (copy < 0) return copy; fprintf(f, " netns-socket-1=%i", copy); } if (rt->ipcns_storage_socket[0] >= 0) { int copy; copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]); if (copy < 0) return copy; fprintf(f, " ipcns-socket-0=%i", copy); } if (rt->ipcns_storage_socket[1] >= 0) { int copy; copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]); if (copy < 0) return copy; fprintf(f, " ipcns-socket-1=%i", copy); } fputc('\n', f); } return 0; } int exec_shared_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) { _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt_create = NULL; ExecSharedRuntime *rt = NULL; int r; /* This is for the migration from old (v237 or earlier) deserialization text. * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=. * Even if the ExecSharedRuntime object originally created by the other unit, we cannot judge * so or not from the serialized text, then we always creates a new object owned by this. */ assert(u); assert(key); assert(value); /* Manager manages ExecSharedRuntime objects by the unit id. * So, we omit the serialized text when the unit does not have id (yet?)... */ if (isempty(u->id)) { log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter."); return 0; } if (u->manager) { if (hashmap_ensure_allocated(&u->manager->exec_shared_runtime_by_id, &string_hash_ops) < 0) return log_oom(); rt = hashmap_get(u->manager->exec_shared_runtime_by_id, u->id); } if (!rt) { if (exec_shared_runtime_allocate(&rt_create, u->id) < 0) return log_oom(); rt = rt_create; } if (streq(key, "tmp-dir")) { if (free_and_strdup_warn(&rt->tmp_dir, value) < 0) return -ENOMEM; } else if (streq(key, "var-tmp-dir")) { if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0) return -ENOMEM; } else if (streq(key, "netns-socket-0")) { safe_close(rt->netns_storage_socket[0]); rt->netns_storage_socket[0] = deserialize_fd(fds, value); if (rt->netns_storage_socket[0] < 0) return 0; } else if (streq(key, "netns-socket-1")) { safe_close(rt->netns_storage_socket[1]); rt->netns_storage_socket[1] = deserialize_fd(fds, value); if (rt->netns_storage_socket[1] < 0) return 0; } else return 0; /* If the object is newly created, then put it to the hashmap which manages ExecSharedRuntime objects. */ if (rt_create && u->manager) { r = hashmap_put(u->manager->exec_shared_runtime_by_id, rt_create->id, rt_create); if (r < 0) { log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m"); return 0; } rt_create->manager = u->manager; /* Avoid cleanup */ TAKE_PTR(rt_create); } return 1; } int exec_shared_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) { _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL; char *id = NULL; int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1}; const char *p, *v = ASSERT_PTR(value); size_t n; assert(m); assert(fds); n = strcspn(v, " "); id = strndupa_safe(v, n); if (v[n] != ' ') goto finalize; p = v + n + 1; v = startswith(p, "tmp-dir="); if (v) { n = strcspn(v, " "); tmp_dir = strndup(v, n); if (!tmp_dir) return log_oom(); if (v[n] != ' ') goto finalize; p = v + n + 1; } v = startswith(p, "var-tmp-dir="); if (v) { n = strcspn(v, " "); var_tmp_dir = strndup(v, n); if (!var_tmp_dir) return log_oom(); if (v[n] != ' ') goto finalize; p = v + n + 1; } v = startswith(p, "netns-socket-0="); if (v) { char *buf; n = strcspn(v, " "); buf = strndupa_safe(v, n); netns_fdpair[0] = deserialize_fd(fds, buf); if (netns_fdpair[0] < 0) return netns_fdpair[0]; if (v[n] != ' ') goto finalize; p = v + n + 1; } v = startswith(p, "netns-socket-1="); if (v) { char *buf; n = strcspn(v, " "); buf = strndupa_safe(v, n); netns_fdpair[1] = deserialize_fd(fds, buf); if (netns_fdpair[1] < 0) return netns_fdpair[1]; if (v[n] != ' ') goto finalize; p = v + n + 1; } v = startswith(p, "ipcns-socket-0="); if (v) { char *buf; n = strcspn(v, " "); buf = strndupa_safe(v, n); ipcns_fdpair[0] = deserialize_fd(fds, buf); if (ipcns_fdpair[0] < 0) return ipcns_fdpair[0]; if (v[n] != ' ') goto finalize; p = v + n + 1; } v = startswith(p, "ipcns-socket-1="); if (v) { char *buf; n = strcspn(v, " "); buf = strndupa_safe(v, n); ipcns_fdpair[1] = deserialize_fd(fds, buf); if (ipcns_fdpair[1] < 0) return ipcns_fdpair[1]; } finalize: r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL); if (r < 0) return log_debug_errno(r, "Failed to add exec-runtime: %m"); return 0; } void exec_shared_runtime_vacuum(Manager *m) { ExecSharedRuntime *rt; assert(m); /* Free unreferenced ExecSharedRuntime objects. This is used after manager deserialization process. */ HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) { if (rt->n_ref > 0) continue; (void) exec_shared_runtime_free(rt); } } int exec_runtime_make( const Unit *unit, const ExecContext *context, ExecSharedRuntime *shared, DynamicCreds *creds, ExecRuntime **ret) { _cleanup_close_pair_ int ephemeral_storage_socket[2] = EBADF_PAIR; _cleanup_free_ char *ephemeral = NULL; _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL; int r; assert(unit); assert(context); assert(ret); if (!shared && !creds && !exec_needs_ephemeral(context)) { *ret = NULL; return 0; } if (exec_needs_ephemeral(context)) { r = mkdir_p("/var/lib/systemd/ephemeral-trees", 0755); if (r < 0) return r; r = tempfn_random_child("/var/lib/systemd/ephemeral-trees", unit->id, &ephemeral); if (r < 0) return r; if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ephemeral_storage_socket) < 0) return -errno; } rt = new(ExecRuntime, 1); if (!rt) return -ENOMEM; *rt = (ExecRuntime) { .shared = shared, .dynamic_creds = creds, .ephemeral_copy = TAKE_PTR(ephemeral), .ephemeral_storage_socket[0] = TAKE_FD(ephemeral_storage_socket[0]), .ephemeral_storage_socket[1] = TAKE_FD(ephemeral_storage_socket[1]), }; *ret = TAKE_PTR(rt); return 1; } ExecRuntime* exec_runtime_free(ExecRuntime *rt) { if (!rt) return NULL; exec_shared_runtime_unref(rt->shared); dynamic_creds_unref(rt->dynamic_creds); rt->ephemeral_copy = destroy_tree(rt->ephemeral_copy); safe_close_pair(rt->ephemeral_storage_socket); return mfree(rt); } ExecRuntime* exec_runtime_destroy(ExecRuntime *rt) { if (!rt) return NULL; rt->shared = exec_shared_runtime_destroy(rt->shared); rt->dynamic_creds = dynamic_creds_destroy(rt->dynamic_creds); return exec_runtime_free(rt); } void exec_runtime_clear(ExecRuntime *rt) { if (!rt) return; safe_close_pair(rt->ephemeral_storage_socket); rt->ephemeral_copy = mfree(rt->ephemeral_copy); } void exec_params_shallow_clear(ExecParameters *p) { if (!p) return; /* This is called on the PID1 side, as many of the struct's FDs are only borrowed, and actually * owned by the manager or other objects, and reused across multiple units. */ p->environment = strv_free(p->environment); p->fd_names = strv_free(p->fd_names); p->files_env = strv_free(p->files_env); p->fds = mfree(p->fds); p->exec_fd = safe_close(p->exec_fd); p->user_lookup_fd = -EBADF; p->bpf_restrict_fs_map_fd = -EBADF; p->unit_id = mfree(p->unit_id); p->invocation_id = SD_ID128_NULL; p->invocation_id_string[0] = '\0'; p->confirm_spawn = mfree(p->confirm_spawn); } void exec_params_deep_clear(ExecParameters *p) { if (!p) return; /* This is called on the sd-executor side, where everything received is owned by the process and has * to be fully cleaned up to make sanitizers and analyzers happy, as opposed as the shallow clean * function above. */ close_many_unset(p->fds, p->n_socket_fds + p->n_storage_fds + p->n_extra_fds); p->cgroup_path = mfree(p->cgroup_path); if (p->prefix) { free_many_charp(p->prefix, _EXEC_DIRECTORY_TYPE_MAX); p->prefix = mfree(p->prefix); } p->received_credentials_directory = mfree(p->received_credentials_directory); p->received_encrypted_credentials_directory = mfree(p->received_encrypted_credentials_directory); if (p->idle_pipe) { close_many_and_free(p->idle_pipe, 4); p->idle_pipe = NULL; } p->stdin_fd = safe_close(p->stdin_fd); p->stdout_fd = safe_close(p->stdout_fd); p->stderr_fd = safe_close(p->stderr_fd); p->notify_socket = mfree(p->notify_socket); open_file_free_many(&p->open_files); p->fallback_smack_process_label = mfree(p->fallback_smack_process_label); exec_params_shallow_clear(p); } void exec_directory_done(ExecDirectory *d) { if (!d) return; FOREACH_ARRAY(i, d->items, d->n_items) { free(i->path); strv_free(i->symlinks); } d->items = mfree(d->items); d->n_items = 0; d->mode = 0755; } static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) { assert(d); assert(path); FOREACH_ARRAY(i, d->items, d->n_items) if (path_equal(i->path, path)) return i; return NULL; } int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) { _cleanup_strv_free_ char **s = NULL; _cleanup_free_ char *p = NULL; ExecDirectoryItem *existing; int r; assert(d); assert(path); existing = exec_directory_find(d, path); if (existing) { r = strv_extend(&existing->symlinks, symlink); if (r < 0) return r; return 0; /* existing item is updated */ } p = strdup(path); if (!p) return -ENOMEM; if (symlink) { s = strv_new(symlink); if (!s) return -ENOMEM; } if (!GREEDY_REALLOC(d->items, d->n_items + 1)) return -ENOMEM; d->items[d->n_items++] = (ExecDirectoryItem) { .path = TAKE_PTR(p), .symlinks = TAKE_PTR(s), }; return 1; /* new item is added */ } static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) { assert(a); assert(b); return path_compare(a->path, b->path); } void exec_directory_sort(ExecDirectory *d) { assert(d); /* Sort the exec directories to make always parent directories processed at first in * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first, * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the * list. See also comments in setup_exec_directory() and issue #24783. */ if (d->n_items <= 1) return; typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func); for (size_t i = 1; i < d->n_items; i++) for (size_t j = 0; j < i; j++) if (path_startswith(d->items[i].path, d->items[j].path)) { d->items[i].only_create = true; break; } } ExecCleanMask exec_clean_mask_from_string(const char *s) { ExecDirectoryType t; assert(s); if (streq(s, "all")) return EXEC_CLEAN_ALL; if (streq(s, "fdstore")) return EXEC_CLEAN_FDSTORE; t = exec_resource_type_from_string(s); if (t < 0) return (ExecCleanMask) t; return 1U << t; } static const char* const exec_input_table[_EXEC_INPUT_MAX] = { [EXEC_INPUT_NULL] = "null", [EXEC_INPUT_TTY] = "tty", [EXEC_INPUT_TTY_FORCE] = "tty-force", [EXEC_INPUT_TTY_FAIL] = "tty-fail", [EXEC_INPUT_SOCKET] = "socket", [EXEC_INPUT_NAMED_FD] = "fd", [EXEC_INPUT_DATA] = "data", [EXEC_INPUT_FILE] = "file", }; DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput); static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = { [EXEC_OUTPUT_INHERIT] = "inherit", [EXEC_OUTPUT_NULL] = "null", [EXEC_OUTPUT_TTY] = "tty", [EXEC_OUTPUT_KMSG] = "kmsg", [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console", [EXEC_OUTPUT_JOURNAL] = "journal", [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console", [EXEC_OUTPUT_SOCKET] = "socket", [EXEC_OUTPUT_NAMED_FD] = "fd", [EXEC_OUTPUT_FILE] = "file", [EXEC_OUTPUT_FILE_APPEND] = "append", [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate", }; DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput); static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = { [EXEC_UTMP_INIT] = "init", [EXEC_UTMP_LOGIN] = "login", [EXEC_UTMP_USER] = "user", }; DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode); static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = { [EXEC_PRESERVE_NO] = "no", [EXEC_PRESERVE_YES] = "yes", [EXEC_PRESERVE_RESTART] = "restart", }; DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES); /* This table maps ExecDirectoryType to the setting it is configured with in the unit */ static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory", [EXEC_DIRECTORY_STATE] = "StateDirectory", [EXEC_DIRECTORY_CACHE] = "CacheDirectory", [EXEC_DIRECTORY_LOGS] = "LogsDirectory", [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory", }; DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType); /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */ static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink", [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink", [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink", [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink", [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink", }; DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType); static const char* const exec_directory_type_mode_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectoryMode", [EXEC_DIRECTORY_STATE] = "StateDirectoryMode", [EXEC_DIRECTORY_CACHE] = "CacheDirectoryMode", [EXEC_DIRECTORY_LOGS] = "LogsDirectoryMode", [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectoryMode", }; DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_mode, ExecDirectoryType); /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit * directories, specifically .timer units with their timestamp touch file. */ static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = "runtime", [EXEC_DIRECTORY_STATE] = "state", [EXEC_DIRECTORY_CACHE] = "cache", [EXEC_DIRECTORY_LOGS] = "logs", [EXEC_DIRECTORY_CONFIGURATION] = "configuration", }; DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType); static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = { [EXEC_KEYRING_INHERIT] = "inherit", [EXEC_KEYRING_PRIVATE] = "private", [EXEC_KEYRING_SHARED] = "shared", }; DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);