/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include "sd-id128.h" #include "sd-messages.h" #include "alloc-util.h" #include "async.h" #include "dbus-job.h" #include "dbus.h" #include "escape.h" #include "job.h" #include "log.h" #include "macro.h" #include "parse-util.h" #include "set.h" #include "special.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" #include "unit.h" #include "virt.h" Job* job_new_raw(Unit *unit) { Job *j; /* used for deserialization */ assert(unit); j = new(Job, 1); if (!j) return NULL; *j = (Job) { .manager = unit->manager, .unit = unit, .type = _JOB_TYPE_INVALID, }; return j; } Job* job_new(Unit *unit, JobType type) { Job *j; assert(type < _JOB_TYPE_MAX); j = job_new_raw(unit); if (!j) return NULL; j->id = j->manager->current_job_id++; j->type = type; /* We don't link it here, that's what job_dependency() is for */ return j; } void job_unlink(Job *j) { assert(j); assert(!j->installed); assert(!j->transaction_prev); assert(!j->transaction_next); assert(!j->subject_list); assert(!j->object_list); if (j->in_run_queue) { LIST_REMOVE(run_queue, j->manager->run_queue, j); j->in_run_queue = false; } if (j->in_dbus_queue) { LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j); j->in_dbus_queue = false; } if (j->in_gc_queue) { LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j); j->in_gc_queue = false; } j->timer_event_source = sd_event_source_unref(j->timer_event_source); } void job_free(Job *j) { assert(j); assert(!j->installed); assert(!j->transaction_prev); assert(!j->transaction_next); assert(!j->subject_list); assert(!j->object_list); job_unlink(j); sd_bus_track_unref(j->bus_track); strv_free(j->deserialized_clients); free(j); } static void job_set_state(Job *j, JobState state) { assert(j); assert(state >= 0); assert(state < _JOB_STATE_MAX); if (j->state == state) return; j->state = state; if (!j->installed) return; if (j->state == JOB_RUNNING) j->unit->manager->n_running_jobs++; else { assert(j->state == JOB_WAITING); assert(j->unit->manager->n_running_jobs > 0); j->unit->manager->n_running_jobs--; if (j->unit->manager->n_running_jobs <= 0) j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source); } } void job_uninstall(Job *j) { Job **pj; assert(j->installed); job_set_state(j, JOB_WAITING); pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; assert(*pj == j); /* Detach from next 'bigger' objects */ /* daemon-reload should be transparent to job observers */ if (!MANAGER_IS_RELOADING(j->manager)) bus_job_send_removed_signal(j); *pj = NULL; unit_add_to_gc_queue(j->unit); hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id)); j->installed = false; } static bool job_type_allows_late_merge(JobType t) { /* Tells whether it is OK to merge a job of type 't' with an already * running job. * Reloads cannot be merged this way. Think of the sequence: * 1. Reload of a daemon is in progress; the daemon has already loaded * its config file, but hasn't completed the reload operation yet. * 2. Edit foo's config file. * 3. Trigger another reload to have the daemon use the new config. * Should the second reload job be merged into the first one, the daemon * would not know about the new config. * JOB_RESTART jobs on the other hand can be merged, because they get * patched into JOB_START after stopping the unit. So if we see a * JOB_RESTART running, it means the unit hasn't stopped yet and at * this time the merge is still allowed. */ return t != JOB_RELOAD; } static void job_merge_into_installed(Job *j, Job *other) { assert(j->installed); assert(j->unit == other->unit); if (j->type != JOB_NOP) assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0); else assert(other->type == JOB_NOP); j->irreversible = j->irreversible || other->irreversible; j->ignore_order = j->ignore_order || other->ignore_order; } Job* job_install(Job *j) { Job **pj; Job *uj; assert(!j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); assert(j->state == JOB_WAITING); pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; uj = *pj; if (uj) { if (job_type_is_conflicting(uj->type, j->type)) job_finish_and_invalidate(uj, JOB_CANCELED, false, false); else { /* not conflicting, i.e. mergeable */ if (uj->state == JOB_WAITING || (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) { job_merge_into_installed(uj, j); log_unit_debug(uj->unit, "Merged into installed job %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); return uj; } else { /* already running and not safe to merge into */ /* Patch uj to become a merged job and re-run it. */ /* XXX It should be safer to queue j to run after uj finishes, but it is * not currently possible to have more than one installed job per unit. */ job_merge_into_installed(uj, j); log_unit_debug(uj->unit, "Merged into running job, re-running: %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); job_set_state(uj, JOB_WAITING); return uj; } } } /* Install the job */ *pj = j; j->installed = true; j->manager->n_installed_jobs++; log_unit_debug(j->unit, "Installed new job %s/%s as %u", j->unit->id, job_type_to_string(j->type), (unsigned) j->id); job_add_to_gc_queue(j); return j; } int job_install_deserialized(Job *j) { Job **pj; assert(!j->installed); if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION) { log_debug("Invalid job type %s in deserialization.", strna(job_type_to_string(j->type))); return -EINVAL; } pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; if (*pj) { log_unit_debug(j->unit, "Unit already has a job installed. Not installing deserialized job."); return -EEXIST; } *pj = j; j->installed = true; j->reloaded = true; if (j->state == JOB_RUNNING) j->unit->manager->n_running_jobs++; log_unit_debug(j->unit, "Reinstalled deserialized job %s/%s as %u", j->unit->id, job_type_to_string(j->type), (unsigned) j->id); return 0; } JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) { JobDependency *l; assert(object); /* Adds a new job link, which encodes that the 'subject' job * needs the 'object' job in some way. If 'subject' is NULL * this means the 'anchor' job (i.e. the one the user * explicitly asked for) is the requester. */ l = new0(JobDependency, 1); if (!l) return NULL; l->subject = subject; l->object = object; l->matters = matters; l->conflicts = conflicts; if (subject) LIST_PREPEND(subject, subject->subject_list, l); LIST_PREPEND(object, object->object_list, l); return l; } void job_dependency_free(JobDependency *l) { assert(l); if (l->subject) LIST_REMOVE(subject, l->subject->subject_list, l); LIST_REMOVE(object, l->object->object_list, l); free(l); } void job_dump(Job *j, FILE*f, const char *prefix) { assert(j); assert(f); prefix = strempty(prefix); fprintf(f, "%s-> Job %u:\n" "%s\tAction: %s -> %s\n" "%s\tState: %s\n" "%s\tIrreversible: %s\n" "%s\tMay GC: %s\n", prefix, j->id, prefix, j->unit->id, job_type_to_string(j->type), prefix, job_state_to_string(j->state), prefix, yes_no(j->irreversible), prefix, yes_no(job_may_gc(j))); } /* * Merging is commutative, so imagine the matrix as symmetric. We store only * its lower triangle to avoid duplication. We don't store the main diagonal, * because A merged with A is simply A. * * If the resulting type is collapsed immediately afterwards (to get rid of * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain), * the following properties hold: * * Merging is associative! A merged with B, and then merged with C is the same * as A merged with the result of B merged with C. * * Mergeability is transitive! If A can be merged with B and B with C then * A also with C. * * Also, if A merged with B cannot be merged with C, then either A or B cannot * be merged with C either. */ static const JobType job_merging_table[] = { /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */ /*********************************************************************************/ /*JOB_START */ /*JOB_VERIFY_ACTIVE */ JOB_START, /*JOB_STOP */ -1, -1, /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1, /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART, }; JobType job_type_lookup_merge(JobType a, JobType b) { assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2); assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING); assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING); if (a == b) return a; if (a < b) { JobType tmp = a; a = b; b = tmp; } return job_merging_table[(a - 1) * a / 2 + b]; } bool job_type_is_redundant(JobType a, UnitActiveState b) { switch (a) { case JOB_START: return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING); case JOB_STOP: return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED); case JOB_VERIFY_ACTIVE: return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING); case JOB_RELOAD: return b == UNIT_RELOADING; case JOB_RESTART: return b == UNIT_ACTIVATING; case JOB_NOP: return true; default: assert_not_reached("Invalid job type"); } } JobType job_type_collapse(JobType t, Unit *u) { UnitActiveState s; switch (t) { case JOB_TRY_RESTART: s = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) return JOB_NOP; return JOB_RESTART; case JOB_TRY_RELOAD: s = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) return JOB_NOP; return JOB_RELOAD; case JOB_RELOAD_OR_START: s = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) return JOB_START; return JOB_RELOAD; default: return t; } } int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) { JobType t; t = job_type_lookup_merge(*a, b); if (t < 0) return -EEXIST; *a = job_type_collapse(t, u); return 0; } static bool job_is_runnable(Job *j) { Iterator i; Unit *other; void *v; assert(j); assert(j->installed); /* Checks whether there is any job running for the units this * job needs to be running after (in the case of a 'positive' * job type) or before (in the case of a 'negative' job * type. */ /* Note that unit types have a say in what is runnable, * too. For example, if they return -EAGAIN from * unit_start() they can indicate they are not * runnable yet. */ /* First check if there is an override */ if (j->ignore_order) return true; if (j->type == JOB_NOP) return true; if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) { /* Immediate result is that the job is or might be * started. In this case let's wait for the * dependencies, regardless whether they are * starting or stopping something. */ HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) if (other->job) return false; } /* Also, if something else is being stopped and we should * change state after it, then let's wait. */ HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) if (other->job && IN_SET(other->job->type, JOB_STOP, JOB_RESTART)) return false; /* This means that for a service a and a service b where b * shall be started after a: * * start a + start b → 1st step start a, 2nd step start b * start a + stop b → 1st step stop b, 2nd step start a * stop a + start b → 1st step stop a, 2nd step start b * stop a + stop b → 1st step stop b, 2nd step stop a * * This has the side effect that restarts are properly * synchronized too. */ return true; } static void job_change_type(Job *j, JobType newtype) { assert(j); log_unit_debug(j->unit, "Converting job %s/%s -> %s/%s", j->unit->id, job_type_to_string(j->type), j->unit->id, job_type_to_string(newtype)); j->type = newtype; } static int job_perform_on_unit(Job **j) { uint32_t id; Manager *m; JobType t; Unit *u; int r; /* While we execute this operation the job might go away (for * example: because it finishes immediately or is replaced by * a new, conflicting job.) To make sure we don't access a * freed job later on we store the id here, so that we can * verify the job is still valid. */ assert(j); assert(*j); m = (*j)->manager; u = (*j)->unit; t = (*j)->type; id = (*j)->id; switch (t) { case JOB_START: r = unit_start(u); break; case JOB_RESTART: t = JOB_STOP; _fallthrough_; case JOB_STOP: r = unit_stop(u); break; case JOB_RELOAD: r = unit_reload(u); break; default: assert_not_reached("Invalid job type"); } /* Log if the job still exists and the start/stop/reload function * actually did something. */ *j = manager_get_job(m, id); if (*j && r > 0) unit_status_emit_starting_stopping_reloading(u, t); return r; } int job_run_and_invalidate(Job *j) { int r; assert(j); assert(j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); assert(j->in_run_queue); LIST_REMOVE(run_queue, j->manager->run_queue, j); j->in_run_queue = false; if (j->state != JOB_WAITING) return 0; if (!job_is_runnable(j)) return -EAGAIN; job_start_timer(j, true); job_set_state(j, JOB_RUNNING); job_add_to_dbus_queue(j); switch (j->type) { case JOB_VERIFY_ACTIVE: { UnitActiveState t = unit_active_state(j->unit); if (UNIT_IS_ACTIVE_OR_RELOADING(t)) r = -EALREADY; else if (t == UNIT_ACTIVATING) r = -EAGAIN; else r = -EBADR; break; } case JOB_START: case JOB_STOP: case JOB_RESTART: r = job_perform_on_unit(&j); /* If the unit type does not support starting/stopping, * then simply wait. */ if (r == -EBADR) r = 0; break; case JOB_RELOAD: r = job_perform_on_unit(&j); break; case JOB_NOP: r = -EALREADY; break; default: assert_not_reached("Unknown job type"); } if (j) { if (r == -EALREADY) r = job_finish_and_invalidate(j, JOB_DONE, true, true); else if (r == -EBADR) r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false); else if (r == -ENOEXEC) r = job_finish_and_invalidate(j, JOB_INVALID, true, false); else if (r == -EPROTO) r = job_finish_and_invalidate(j, JOB_ASSERT, true, false); else if (r == -EOPNOTSUPP) r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false); else if (r == -ENOLINK) r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false); else if (r == -ESTALE) r = job_finish_and_invalidate(j, JOB_ONCE, true, false); else if (r == -EAGAIN) job_set_state(j, JOB_WAITING); else if (r < 0) r = job_finish_and_invalidate(j, JOB_FAILED, true, false); } return r; } _pure_ static const char *job_get_status_message_format(Unit *u, JobType t, JobResult result) { static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = { [JOB_DONE] = "Started %s.", [JOB_TIMEOUT] = "Timed out starting %s.", [JOB_FAILED] = "Failed to start %s.", [JOB_DEPENDENCY] = "Dependency failed for %s.", [JOB_ASSERT] = "Assertion failed for %s.", [JOB_UNSUPPORTED] = "Starting of %s not supported.", [JOB_COLLECTED] = "Unnecessary job for %s was removed.", [JOB_ONCE] = "Unit %s has been started before and cannot be started again." }; static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = { [JOB_DONE] = "Stopped %s.", [JOB_FAILED] = "Stopped (with error) %s.", [JOB_TIMEOUT] = "Timed out stopping %s.", }; static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = { [JOB_DONE] = "Reloaded %s.", [JOB_FAILED] = "Reload failed for %s.", [JOB_TIMEOUT] = "Timed out reloading %s.", }; /* When verify-active detects the unit is inactive, report it. * Most likely a DEPEND warning from a requisiting unit will * occur next and it's nice to see what was requisited. */ static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = { [JOB_SKIPPED] = "%s is not active.", }; const UnitStatusMessageFormats *format_table; const char *format; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) { format_table = &UNIT_VTABLE(u)->status_message_formats; if (format_table) { format = t == JOB_START ? format_table->finished_start_job[result] : format_table->finished_stop_job[result]; if (format) return format; } } /* Return generic strings */ if (t == JOB_START) return generic_finished_start_job[result]; else if (IN_SET(t, JOB_STOP, JOB_RESTART)) return generic_finished_stop_job[result]; else if (t == JOB_RELOAD) return generic_finished_reload_job[result]; else if (t == JOB_VERIFY_ACTIVE) return generic_finished_verify_active_job[result]; return NULL; } static const struct { const char *color, *word; } job_print_status_messages [_JOB_RESULT_MAX] = { [JOB_DONE] = { ANSI_OK_COLOR, " OK " }, [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " }, [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" }, [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" }, [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " }, [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" }, [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" }, /* JOB_COLLECTED */ [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " }, }; static void job_print_status_message(Unit *u, JobType t, JobResult result) { const char *format; const char *status; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); /* Reload status messages have traditionally not been printed to console. */ if (t == JOB_RELOAD) return; if (!job_print_status_messages[result].word) return; format = job_get_status_message_format(u, t, result); if (!format) return; if (log_get_show_color()) status = strjoina(job_print_status_messages[result].color, job_print_status_messages[result].word, ANSI_NORMAL); else status = job_print_status_messages[result].word; if (result != JOB_DONE) manager_flip_auto_status(u->manager, true); DISABLE_WARNING_FORMAT_NONLITERAL; unit_status_printf(u, status, format); REENABLE_WARNING; if (t == JOB_START && result == JOB_FAILED) { _cleanup_free_ char *quoted; quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH); manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted)); } } static void job_log_status_message(Unit *u, JobType t, JobResult result) { const char *format, *mid; char buf[LINE_MAX]; static const int job_result_log_level[_JOB_RESULT_MAX] = { [JOB_DONE] = LOG_INFO, [JOB_CANCELED] = LOG_INFO, [JOB_TIMEOUT] = LOG_ERR, [JOB_FAILED] = LOG_ERR, [JOB_DEPENDENCY] = LOG_WARNING, [JOB_SKIPPED] = LOG_NOTICE, [JOB_INVALID] = LOG_INFO, [JOB_ASSERT] = LOG_WARNING, [JOB_UNSUPPORTED] = LOG_WARNING, [JOB_COLLECTED] = LOG_INFO, [JOB_ONCE] = LOG_ERR, }; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); /* Skip printing if output goes to the console, and job_print_status_message() will actually print something to the console. */ if (log_on_console() && job_print_status_messages[result].word) return; format = job_get_status_message_format(u, t, result); if (!format) return; /* The description might be longer than the buffer, but that's OK, * we'll just truncate it here. Note that we use snprintf() rather than * xsprintf() on purpose here: we are fine with truncation and don't * consider that an error. */ DISABLE_WARNING_FORMAT_NONLITERAL; (void) snprintf(buf, sizeof(buf), format, unit_description(u)); REENABLE_WARNING; switch (t) { case JOB_START: if (result == JOB_DONE) mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR; else mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR; break; case JOB_RELOAD: mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR; break; case JOB_STOP: case JOB_RESTART: mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR; break; default: log_struct(job_result_log_level[result], LOG_MESSAGE("%s", buf), "JOB_TYPE=%s", job_type_to_string(t), "JOB_RESULT=%s", job_result_to_string(result), LOG_UNIT_ID(u), LOG_UNIT_INVOCATION_ID(u)); return; } log_struct(job_result_log_level[result], LOG_MESSAGE("%s", buf), "JOB_TYPE=%s", job_type_to_string(t), "JOB_RESULT=%s", job_result_to_string(result), LOG_UNIT_ID(u), LOG_UNIT_INVOCATION_ID(u), mid); } static void job_emit_status_message(Unit *u, JobType t, JobResult result) { assert(u); /* No message if the job did not actually do anything due to failed condition. */ if (t == JOB_START && result == JOB_DONE && !u->condition_result) return; job_log_status_message(u, t, result); job_print_status_message(u, t, result); } static void job_fail_dependencies(Unit *u, UnitDependency d) { Unit *other; Iterator i; void *v; assert(u); HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) { Job *j = other->job; if (!j) continue; if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE)) continue; job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false); } } static int job_save_pending_finished_job(Job *j) { int r; assert(j); r = set_ensure_allocated(&j->manager->pending_finished_jobs, NULL); if (r < 0) return r; job_unlink(j); return set_put(j->manager->pending_finished_jobs, j); } int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) { Unit *u; Unit *other; JobType t; Iterator i; void *v; assert(j); assert(j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); u = j->unit; t = j->type; j->result = result; log_unit_debug(u, "Job %s/%s finished, result=%s", u->id, job_type_to_string(t), job_result_to_string(result)); /* If this job did nothing to respective unit we don't log the status message */ if (!already) job_emit_status_message(u, t, result); /* Patch restart jobs so that they become normal start jobs */ if (result == JOB_DONE && t == JOB_RESTART) { job_change_type(j, JOB_START); job_set_state(j, JOB_WAITING); job_add_to_dbus_queue(j); job_add_to_run_queue(j); job_add_to_gc_queue(j); goto finish; } if (IN_SET(result, JOB_FAILED, JOB_INVALID)) j->manager->n_failed_jobs++; job_uninstall(j); /* Keep jobs started before the reload to send singal later, free all others */ if (!MANAGER_IS_RELOADING(j->manager) || !j->reloaded || job_save_pending_finished_job(j) < 0) job_free(j); /* Fail depending jobs on failure */ if (result != JOB_DONE && recursive) { if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) { job_fail_dependencies(u, UNIT_REQUIRED_BY); job_fail_dependencies(u, UNIT_REQUISITE_OF); job_fail_dependencies(u, UNIT_BOUND_BY); } else if (t == JOB_STOP) job_fail_dependencies(u, UNIT_CONFLICTED_BY); } /* Trigger OnFailure dependencies that are not generated by * the unit itself. We don't treat JOB_CANCELED as failure in * this context. And JOB_FAILURE is already handled by the * unit itself. */ if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) { log_struct(LOG_NOTICE, "JOB_TYPE=%s", job_type_to_string(t), "JOB_RESULT=%s", job_result_to_string(result), LOG_UNIT_ID(u), LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.", u->id, job_type_to_string(t), job_result_to_string(result))); unit_start_on_failure(u); } unit_trigger_notify(u); finish: /* Try to start the next jobs that can be started */ HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i) if (other->job) { job_add_to_run_queue(other->job); job_add_to_gc_queue(other->job); } HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i) if (other->job) { job_add_to_run_queue(other->job); job_add_to_gc_queue(other->job); } manager_check_finished(u->manager); return 0; } static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) { Job *j = userdata; Unit *u; assert(j); assert(s == j->timer_event_source); log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type)); u = j->unit; job_finish_and_invalidate(j, JOB_TIMEOUT, true, false); emergency_action(u->manager, u->job_timeout_action, EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN, u->job_timeout_reboot_arg, "job timed out"); return 0; } int job_start_timer(Job *j, bool job_running) { int r; usec_t timeout_time, old_timeout_time; if (job_running) { j->begin_running_usec = now(CLOCK_MONOTONIC); if (j->unit->job_running_timeout == USEC_INFINITY) return 0; timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout); if (j->timer_event_source) { /* Update only if JobRunningTimeoutSec= results in earlier timeout */ r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time); if (r < 0) return r; if (old_timeout_time <= timeout_time) return 0; return sd_event_source_set_time(j->timer_event_source, timeout_time); } } else { if (j->timer_event_source) return 0; j->begin_usec = now(CLOCK_MONOTONIC); if (j->unit->job_timeout == USEC_INFINITY) return 0; timeout_time = usec_add(j->begin_usec, j->unit->job_timeout); } r = sd_event_add_time( j->manager->event, &j->timer_event_source, CLOCK_MONOTONIC, timeout_time, 0, job_dispatch_timer, j); if (r < 0) return r; (void) sd_event_source_set_description(j->timer_event_source, "job-start"); return 0; } void job_add_to_run_queue(Job *j) { assert(j); assert(j->installed); if (j->in_run_queue) return; if (!j->manager->run_queue) sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT); LIST_PREPEND(run_queue, j->manager->run_queue, j); j->in_run_queue = true; } void job_add_to_dbus_queue(Job *j) { assert(j); assert(j->installed); if (j->in_dbus_queue) return; /* We don't check if anybody is subscribed here, since this * job might just have been created and not yet assigned to a * connection/client. */ LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j); j->in_dbus_queue = true; } char *job_dbus_path(Job *j) { char *p; assert(j); if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0) return NULL; return p; } int job_serialize(Job *j, FILE *f) { assert(j); assert(f); fprintf(f, "job-id=%u\n", j->id); fprintf(f, "job-type=%s\n", job_type_to_string(j->type)); fprintf(f, "job-state=%s\n", job_state_to_string(j->state)); fprintf(f, "job-irreversible=%s\n", yes_no(j->irreversible)); fprintf(f, "job-sent-dbus-new-signal=%s\n", yes_no(j->sent_dbus_new_signal)); fprintf(f, "job-ignore-order=%s\n", yes_no(j->ignore_order)); if (j->begin_usec > 0) fprintf(f, "job-begin="USEC_FMT"\n", j->begin_usec); if (j->begin_running_usec > 0) fprintf(f, "job-begin-running="USEC_FMT"\n", j->begin_running_usec); bus_track_serialize(j->bus_track, f, "subscribed"); /* End marker */ fputc('\n', f); return 0; } int job_deserialize(Job *j, FILE *f) { assert(j); assert(f); for (;;) { char line[LINE_MAX], *l, *v; size_t k; if (!fgets(line, sizeof(line), f)) { if (feof(f)) return 0; return -errno; } char_array_0(line); l = strstrip(line); /* End marker */ if (l[0] == 0) return 0; k = strcspn(l, "="); if (l[k] == '=') { l[k] = 0; v = l+k+1; } else v = l+k; if (streq(l, "job-id")) { if (safe_atou32(v, &j->id) < 0) log_debug("Failed to parse job id value: %s", v); } else if (streq(l, "job-type")) { JobType t; t = job_type_from_string(v); if (t < 0) log_debug("Failed to parse job type: %s", v); else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION) log_debug("Cannot deserialize job of type: %s", v); else j->type = t; } else if (streq(l, "job-state")) { JobState s; s = job_state_from_string(v); if (s < 0) log_debug("Failed to parse job state: %s", v); else job_set_state(j, s); } else if (streq(l, "job-irreversible")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job irreversible flag: %s", v); else j->irreversible = j->irreversible || b; } else if (streq(l, "job-sent-dbus-new-signal")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v); else j->sent_dbus_new_signal = j->sent_dbus_new_signal || b; } else if (streq(l, "job-ignore-order")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job ignore_order flag: %s", v); else j->ignore_order = j->ignore_order || b; } else if (streq(l, "job-begin")) { unsigned long long ull; if (sscanf(v, "%llu", &ull) != 1) log_debug("Failed to parse job-begin value %s", v); else j->begin_usec = ull; } else if (streq(l, "job-begin-running")) { unsigned long long ull; if (sscanf(v, "%llu", &ull) != 1) log_debug("Failed to parse job-begin-running value %s", v); else j->begin_running_usec = ull; } else if (streq(l, "subscribed")) { if (strv_extend(&j->deserialized_clients, v) < 0) log_oom(); } } } int job_coldplug(Job *j) { int r; usec_t timeout_time = USEC_INFINITY; assert(j); /* After deserialization is complete and the bus connection * set up again, let's start watching our subscribers again */ (void) bus_job_coldplug_bus_track(j); if (j->state == JOB_WAITING) job_add_to_run_queue(j); /* Maybe due to new dependencies we don't actually need this job anymore? */ job_add_to_gc_queue(j); /* Create timer only when job began or began running and the respective timeout is finite. * Follow logic of job_start_timer() if both timeouts are finite */ if (j->begin_usec == 0) return 0; if (j->unit->job_timeout != USEC_INFINITY) timeout_time = usec_add(j->begin_usec, j->unit->job_timeout); if (j->begin_running_usec > 0 && j->unit->job_running_timeout != USEC_INFINITY) timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout)); if (timeout_time == USEC_INFINITY) return 0; j->timer_event_source = sd_event_source_unref(j->timer_event_source); r = sd_event_add_time( j->manager->event, &j->timer_event_source, CLOCK_MONOTONIC, timeout_time, 0, job_dispatch_timer, j); if (r < 0) log_debug_errno(r, "Failed to restart timeout for job: %m"); (void) sd_event_source_set_description(j->timer_event_source, "job-timeout"); return r; } void job_shutdown_magic(Job *j) { assert(j); /* The shutdown target gets some special treatment here: we * tell the kernel to begin with flushing its disk caches, to * optimize shutdown time a bit. Ideally we wouldn't hardcode * this magic into PID 1. However all other processes aren't * options either since they'd exit much sooner than PID 1 and * asynchronous sync() would cause their exit to be * delayed. */ if (j->type != JOB_START) return; if (!MANAGER_IS_SYSTEM(j->unit->manager)) return; if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET)) return; /* In case messages on console has been disabled on boot */ j->unit->manager->no_console_output = false; if (detect_container() > 0) return; (void) asynchronous_sync(NULL); } int job_get_timeout(Job *j, usec_t *timeout) { usec_t x = USEC_INFINITY, y = USEC_INFINITY; Unit *u = j->unit; int r; assert(u); if (j->timer_event_source) { r = sd_event_source_get_time(j->timer_event_source, &x); if (r < 0) return r; } if (UNIT_VTABLE(u)->get_timeout) { r = UNIT_VTABLE(u)->get_timeout(u, &y); if (r < 0) return r; } if (x == USEC_INFINITY && y == USEC_INFINITY) return 0; *timeout = MIN(x, y); return 1; } bool job_may_gc(Job *j) { Unit *other; Iterator i; void *v; assert(j); /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their * own and just track external state. For now the only unit type that qualifies for this are .device units. * Returns true if the job can be collected. */ if (!UNIT_VTABLE(j->unit)->gc_jobs) return false; if (sd_bus_track_count(j->bus_track) > 0) return false; /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once * referenced by one, and reset this whenever we notice that no private bus connections are around. This means * the GC is a bit too conservative when it comes to jobs created by private bus connections. */ if (j->ref_by_private_bus) { if (set_isempty(j->unit->manager->private_buses)) j->ref_by_private_bus = false; else return false; } if (j->type == JOB_NOP) return false; /* If a job is ordered after ours, and is to be started, then it needs to wait for us, regardless if we stop or * start, hence let's not GC in that case. */ HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { if (!other->job) continue; if (other->job->ignore_order) continue; if (IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) return false; } /* If we are going down, but something else is ordered After= us, then it needs to wait for us */ if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { if (!other->job) continue; if (other->job->ignore_order) continue; return false; } /* The logic above is kinda the inverse of the job_is_runnable() logic. Specifically, if the job "we" is * ordered before the job "other": * * we start + other start → stay * we start + other stop → gc * we stop + other start → stay * we stop + other stop → gc * * "we" are ordered after "other": * * we start + other start → gc * we start + other stop → gc * we stop + other start → stay * we stop + other stop → stay */ return true; } void job_add_to_gc_queue(Job *j) { assert(j); if (j->in_gc_queue) return; if (!job_may_gc(j)) return; LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j); j->in_gc_queue = true; } static int job_compare(Job * const *a, Job * const *b) { return CMP((*a)->id, (*b)->id); } static size_t sort_job_list(Job **list, size_t n) { Job *previous = NULL; size_t a, b; /* Order by numeric IDs */ typesafe_qsort(list, n, job_compare); /* Filter out duplicates */ for (a = 0, b = 0; a < n; a++) { if (previous == list[a]) continue; previous = list[b++] = list[a]; } return b; } int job_get_before(Job *j, Job*** ret) { _cleanup_free_ Job** list = NULL; size_t n = 0, n_allocated = 0; Unit *other = NULL; Iterator i; void *v; /* Returns a list of all pending jobs that need to finish before this job may be started. */ assert(j); assert(ret); if (j->ignore_order) { *ret = NULL; return 0; } if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) { HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { if (!other->job) continue; if (!GREEDY_REALLOC(list, n_allocated, n+1)) return -ENOMEM; list[n++] = other->job; } } HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { if (!other->job) continue; if (!IN_SET(other->job->type, JOB_STOP, JOB_RESTART)) continue; if (!GREEDY_REALLOC(list, n_allocated, n+1)) return -ENOMEM; list[n++] = other->job; } n = sort_job_list(list, n); *ret = TAKE_PTR(list); return (int) n; } int job_get_after(Job *j, Job*** ret) { _cleanup_free_ Job** list = NULL; size_t n = 0, n_allocated = 0; Unit *other = NULL; void *v; Iterator i; assert(j); assert(ret); /* Returns a list of all pending jobs that are waiting for this job to finish. */ HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { if (!other->job) continue; if (other->job->ignore_order) continue; if (!IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) continue; if (!GREEDY_REALLOC(list, n_allocated, n+1)) return -ENOMEM; list[n++] = other->job; } if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) { HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { if (!other->job) continue; if (other->job->ignore_order) continue; if (!GREEDY_REALLOC(list, n_allocated, n+1)) return -ENOMEM; list[n++] = other->job; } } n = sort_job_list(list, n); *ret = TAKE_PTR(list); return (int) n; } static const char* const job_state_table[_JOB_STATE_MAX] = { [JOB_WAITING] = "waiting", [JOB_RUNNING] = "running", }; DEFINE_STRING_TABLE_LOOKUP(job_state, JobState); static const char* const job_type_table[_JOB_TYPE_MAX] = { [JOB_START] = "start", [JOB_VERIFY_ACTIVE] = "verify-active", [JOB_STOP] = "stop", [JOB_RELOAD] = "reload", [JOB_RELOAD_OR_START] = "reload-or-start", [JOB_RESTART] = "restart", [JOB_TRY_RESTART] = "try-restart", [JOB_TRY_RELOAD] = "try-reload", [JOB_NOP] = "nop", }; DEFINE_STRING_TABLE_LOOKUP(job_type, JobType); static const char* const job_mode_table[_JOB_MODE_MAX] = { [JOB_FAIL] = "fail", [JOB_REPLACE] = "replace", [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly", [JOB_ISOLATE] = "isolate", [JOB_FLUSH] = "flush", [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies", [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements", }; DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode); static const char* const job_result_table[_JOB_RESULT_MAX] = { [JOB_DONE] = "done", [JOB_CANCELED] = "canceled", [JOB_TIMEOUT] = "timeout", [JOB_FAILED] = "failed", [JOB_DEPENDENCY] = "dependency", [JOB_SKIPPED] = "skipped", [JOB_INVALID] = "invalid", [JOB_ASSERT] = "assert", [JOB_UNSUPPORTED] = "unsupported", [JOB_COLLECTED] = "collected", [JOB_ONCE] = "once", }; DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult); const char* job_type_to_access_method(JobType t) { assert(t >= 0); assert(t < _JOB_TYPE_MAX); if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART)) return "start"; else if (t == JOB_STOP) return "stop"; else return "reload"; }