/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #if HAVE_VALGRIND_VALGRIND_H # include #endif #include "sd-bus.h" #include "sd-daemon.h" #include "sd-messages.h" #include "alloc-util.h" #include "apparmor-setup.h" #include "architecture.h" #include "argv-util.h" #if HAVE_LIBBPF #include "bpf-restrict-fs.h" #endif #include "build.h" #include "bus-error.h" #include "bus-util.h" #include "capability-util.h" #include "cgroup-setup.h" #include "cgroup-util.h" #include "chase.h" #include "clock-util.h" #include "clock-warp.h" #include "conf-parser.h" #include "confidential-virt.h" #include "copy.h" #include "cpu-set-util.h" #include "crash-handler.h" #include "dbus-manager.h" #include "dbus.h" #include "constants.h" #include "dev-setup.h" #include "efi-random.h" #include "efivars.h" #include "emergency-action.h" #include "env-util.h" #include "exit-status.h" #include "fd-util.h" #include "fdset.h" #include "fileio.h" #include "format-util.h" #include "fs-util.h" #include "getopt-defs.h" #include "hexdecoct.h" #include "hostname-setup.h" #include "ima-setup.h" #include "import-creds.h" #include "initrd-util.h" #include "ipe-setup.h" #include "killall.h" #include "kmod-setup.h" #include "limits-util.h" #include "load-fragment.h" #include "log.h" #include "loopback-setup.h" #include "machine-id-setup.h" #include "main.h" #include "manager.h" #include "manager-dump.h" #include "manager-serialize.h" #include "mkdir-label.h" #include "mount-setup.h" #include "mount-util.h" #include "os-util.h" #include "pager.h" #include "parse-argument.h" #include "parse-util.h" #include "path-util.h" #include "pretty-print.h" #include "proc-cmdline.h" #include "process-util.h" #include "psi-util.h" #include "random-util.h" #include "rlimit-util.h" #include "rm-rf.h" #include "seccomp-util.h" #include "selinux-setup.h" #include "selinux-util.h" #include "signal-util.h" #include "smack-setup.h" #include "special.h" #include "stat-util.h" #include "stdio-util.h" #include "string-table.h" #include "strv.h" #include "switch-root.h" #include "sysctl-util.h" #include "terminal-util.h" #include "time-util.h" #include "umask-util.h" #include "user-util.h" #include "version.h" #include "virt.h" #include "watchdog.h" #if HAS_FEATURE_ADDRESS_SANITIZER #include #endif static enum { ACTION_RUN, ACTION_HELP, ACTION_VERSION, ACTION_TEST, ACTION_DUMP_CONFIGURATION_ITEMS, ACTION_DUMP_BUS_PROPERTIES, ACTION_BUS_INTROSPECT, } arg_action = ACTION_RUN; static const char *arg_bus_introspect = NULL; /* Those variables are initialized to 0 automatically, so we avoid uninitialized memory access. Real * defaults are assigned in reset_arguments() below. */ static char *arg_default_unit; static RuntimeScope arg_runtime_scope; bool arg_dump_core; int arg_crash_chvt; bool arg_crash_shell; CrashAction arg_crash_action; static char *arg_confirm_spawn; static ShowStatus arg_show_status; static StatusUnitFormat arg_status_unit_format; static bool arg_switched_root; static PagerFlags arg_pager_flags; static bool arg_service_watchdogs; static UnitDefaults arg_defaults; static usec_t arg_runtime_watchdog; static usec_t arg_reboot_watchdog; static usec_t arg_kexec_watchdog; static usec_t arg_pretimeout_watchdog; static char *arg_early_core_pattern; static char *arg_watchdog_pretimeout_governor; static char *arg_watchdog_device; static char **arg_default_environment; static char **arg_manager_environment; static uint64_t arg_capability_bounding_set; static bool arg_no_new_privs; static int arg_protect_system; static nsec_t arg_timer_slack_nsec; static Set* arg_syscall_archs; static FILE* arg_serialization; static sd_id128_t arg_machine_id; static bool arg_machine_id_from_firmware = false; static EmergencyAction arg_cad_burst_action; static CPUSet arg_cpu_affinity; static NUMAPolicy arg_numa_policy; static usec_t arg_clock_usec; static void *arg_random_seed; static size_t arg_random_seed_size; static usec_t arg_reload_limit_interval_sec; static unsigned arg_reload_limit_burst; /* A copy of the original environment block */ static char **saved_env = NULL; static int parse_configuration(const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock); static const char* const crash_action_table[_CRASH_ACTION_MAX] = { [CRASH_FREEZE] = "freeze", [CRASH_REBOOT] = "reboot", [CRASH_POWEROFF] = "poweroff", }; DEFINE_STRING_TABLE_LOOKUP(crash_action, CrashAction); static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_crash_action, crash_action, CrashAction, CRASH_FREEZE); static int manager_find_user_config_paths(char ***ret_files, char ***ret_dirs) { _cleanup_free_ char *base = NULL; _cleanup_strv_free_ char **files = NULL, **dirs = NULL; int r; r = xdg_user_config_dir("/systemd", &base); if (r < 0) return r; r = strv_extendf(&files, "%s/user.conf", base); if (r < 0) return r; r = strv_extend(&files, PKGSYSCONFDIR "/user.conf"); if (r < 0) return r; r = strv_consume(&dirs, TAKE_PTR(base)); if (r < 0) return r; r = strv_extend_strv(&dirs, CONF_PATHS_STRV("systemd"), false); if (r < 0) return r; *ret_files = TAKE_PTR(files); *ret_dirs = TAKE_PTR(dirs); return 0; } static int save_console_winsize_in_environment(int tty_fd) { int r; assert(tty_fd >= 0); struct winsize ws = {}; if (ioctl(tty_fd, TIOCGWINSZ, &ws) < 0) { log_debug_errno(errno, "Failed to acquire console window size, ignoring."); goto unset; } if (ws.ws_col <= 0 && ws.ws_row <= 0) { log_debug("No console window size set, ignoring."); goto unset; } r = setenvf("COLUMNS", /* overwrite= */ true, "%u", ws.ws_col); if (r < 0) { log_debug_errno(r, "Failed to set $COLUMNS, ignoring: %m"); goto unset; } r = setenvf("LINES", /* overwrite= */ true, "%u", ws.ws_row); if (r < 0) { log_debug_errno(r, "Failed to set $LINES, ignoring: %m"); goto unset; } log_debug("Recorded console dimensions in environment: $COLUMNS=%u $LINES=%u.", ws.ws_col, ws.ws_row); return 1; unset: (void) unsetenv("COLUMNS"); (void) unsetenv("LINES"); return 0; } static int console_setup(void) { if (getpid_cached() != 1) return 0; _cleanup_close_ int tty_fd = -EBADF; tty_fd = open_terminal("/dev/console", O_RDWR|O_NOCTTY|O_CLOEXEC); if (tty_fd < 0) return log_error_errno(tty_fd, "Failed to open /dev/console: %m"); /* We don't want to force text mode. Plymouth may be showing pictures already from initrd. */ reset_dev_console_fd(tty_fd, /* switch_to_text= */ false); save_console_winsize_in_environment(tty_fd); return 0; } static int parse_proc_cmdline_item(const char *key, const char *value, void *data) { int r; assert(key); if (STR_IN_SET(key, "systemd.unit", "rd.systemd.unit")) { if (proc_cmdline_value_missing(key, value)) return 0; if (!unit_name_is_valid(value, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) log_warning("Unit name specified on %s= is not valid, ignoring: %s", key, value); else if (in_initrd() == !!startswith(key, "rd.")) return free_and_strdup_warn(&arg_default_unit, value); } else if (proc_cmdline_key_streq(key, "systemd.dump_core")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse dump core switch %s, ignoring: %m", value); else arg_dump_core = r; } else if (proc_cmdline_key_streq(key, "systemd.early_core_pattern")) { if (proc_cmdline_value_missing(key, value)) return 0; if (path_is_absolute(value)) (void) parse_path_argument(value, false, &arg_early_core_pattern); else log_warning("Specified core pattern '%s' is not an absolute path, ignoring.", value); } else if (proc_cmdline_key_streq(key, "systemd.crash_chvt")) { if (!value) arg_crash_chvt = 0; /* turn on */ else { r = parse_crash_chvt(value, &arg_crash_chvt); if (r < 0) log_warning_errno(r, "Failed to parse crash chvt switch %s, ignoring: %m", value); } } else if (proc_cmdline_key_streq(key, "systemd.crash_shell")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse crash shell switch %s, ignoring: %m", value); else arg_crash_shell = r; } else if (proc_cmdline_key_streq(key, "systemd.crash_reboot")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse crash reboot switch %s, ignoring: %m", value); else arg_crash_action = r ? CRASH_REBOOT : CRASH_FREEZE; } else if (proc_cmdline_key_streq(key, "systemd.crash_action")) { if (proc_cmdline_value_missing(key, value)) return 0; r = crash_action_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse crash action switch %s, ignoring: %m", value); else arg_crash_action = r; } else if (proc_cmdline_key_streq(key, "systemd.confirm_spawn")) { char *s; r = parse_confirm_spawn(value, &s); if (r < 0) log_warning_errno(r, "Failed to parse confirm_spawn switch %s, ignoring: %m", value); else free_and_replace(arg_confirm_spawn, s); } else if (proc_cmdline_key_streq(key, "systemd.service_watchdogs")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse service watchdog switch %s, ignoring: %m", value); else arg_service_watchdogs = r; } else if (proc_cmdline_key_streq(key, "systemd.show_status")) { if (value) { r = parse_show_status(value, &arg_show_status); if (r < 0) log_warning_errno(r, "Failed to parse show status switch %s, ignoring: %m", value); } else arg_show_status = SHOW_STATUS_YES; } else if (proc_cmdline_key_streq(key, "systemd.status_unit_format")) { if (proc_cmdline_value_missing(key, value)) return 0; r = status_unit_format_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse %s=%s, ignoring: %m", key, value); else arg_status_unit_format = r; } else if (proc_cmdline_key_streq(key, "systemd.default_standard_output")) { if (proc_cmdline_value_missing(key, value)) return 0; r = exec_output_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse default standard output switch %s, ignoring: %m", value); else arg_defaults.std_output = r; } else if (proc_cmdline_key_streq(key, "systemd.default_standard_error")) { if (proc_cmdline_value_missing(key, value)) return 0; r = exec_output_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse default standard error switch %s, ignoring: %m", value); else arg_defaults.std_error = r; } else if (streq(key, "systemd.setenv")) { if (proc_cmdline_value_missing(key, value)) return 0; if (!env_assignment_is_valid(value)) log_warning("Environment variable assignment '%s' is not valid. Ignoring.", value); else { r = strv_env_replace_strdup(&arg_default_environment, value); if (r < 0) return log_oom(); } } else if (proc_cmdline_key_streq(key, "systemd.machine_id")) { if (proc_cmdline_value_missing(key, value)) return 0; if (streq(value, "firmware")) arg_machine_id_from_firmware = true; else { r = id128_from_string_nonzero(value, &arg_machine_id); if (r < 0) log_warning_errno(r, "MachineID '%s' is not valid, ignoring: %m", value); else arg_machine_id_from_firmware = false; } } else if (proc_cmdline_key_streq(key, "systemd.default_timeout_start_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_sec(value, &arg_defaults.timeout_start_usec); if (r < 0) log_warning_errno(r, "Failed to parse default start timeout '%s', ignoring: %m", value); if (arg_defaults.timeout_start_usec <= 0) arg_defaults.timeout_start_usec = USEC_INFINITY; } else if (proc_cmdline_key_streq(key, "systemd.default_device_timeout_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_sec(value, &arg_defaults.device_timeout_usec); if (r < 0) log_warning_errno(r, "Failed to parse default device timeout '%s', ignoring: %m", value); if (arg_defaults.device_timeout_usec <= 0) arg_defaults.device_timeout_usec = USEC_INFINITY; } else if (proc_cmdline_key_streq(key, "systemd.cpu_affinity")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_cpu_set(value, &arg_cpu_affinity); if (r < 0) log_warning_errno(r, "Failed to parse CPU affinity mask '%s', ignoring: %m", value); } else if (proc_cmdline_key_streq(key, "systemd.watchdog_device")) { if (proc_cmdline_value_missing(key, value)) return 0; (void) parse_path_argument(value, false, &arg_watchdog_device); } else if (proc_cmdline_key_streq(key, "systemd.watchdog_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; if (streq(value, "default")) arg_runtime_watchdog = USEC_INFINITY; else if (streq(value, "off")) arg_runtime_watchdog = 0; else { r = parse_sec(value, &arg_runtime_watchdog); if (r < 0) { log_warning_errno(r, "Failed to parse systemd.watchdog_sec= argument '%s', ignoring: %m", value); return 0; } } arg_kexec_watchdog = arg_reboot_watchdog = arg_runtime_watchdog; } else if (proc_cmdline_key_streq(key, "systemd.watchdog_pre_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; if (streq(value, "default")) arg_pretimeout_watchdog = USEC_INFINITY; else if (streq(value, "off")) arg_pretimeout_watchdog = 0; else { r = parse_sec(value, &arg_pretimeout_watchdog); if (r < 0) { log_warning_errno(r, "Failed to parse systemd.watchdog_pre_sec= argument '%s', ignoring: %m", value); return 0; } } } else if (proc_cmdline_key_streq(key, "systemd.watchdog_pretimeout_governor")) { if (proc_cmdline_value_missing(key, value) || isempty(value)) { arg_watchdog_pretimeout_governor = mfree(arg_watchdog_pretimeout_governor); return 0; } if (!string_is_safe(value)) { log_warning("Watchdog pretimeout governor '%s' is not valid, ignoring.", value); return 0; } return free_and_strdup_warn(&arg_watchdog_pretimeout_governor, value); } else if (proc_cmdline_key_streq(key, "systemd.clock_usec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = safe_atou64(value, &arg_clock_usec); if (r < 0) log_warning_errno(r, "Failed to parse systemd.clock_usec= argument, ignoring: %s", value); } else if (proc_cmdline_key_streq(key, "systemd.random_seed")) { void *p; size_t sz; if (proc_cmdline_value_missing(key, value)) return 0; r = unbase64mem(value, &p, &sz); if (r < 0) log_warning_errno(r, "Failed to parse systemd.random_seed= argument, ignoring: %s", value); free(arg_random_seed); arg_random_seed = sz > 0 ? p : mfree(p); arg_random_seed_size = sz; } else if (proc_cmdline_key_streq(key, "systemd.reload_limit_interval_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_sec(value, &arg_reload_limit_interval_sec); if (r < 0) { log_warning_errno(r, "Failed to parse systemd.reload_limit_interval_sec= argument '%s', ignoring: %m", value); return 0; } } else if (proc_cmdline_key_streq(key, "systemd.reload_limit_burst")) { if (proc_cmdline_value_missing(key, value)) return 0; r = safe_atou(value, &arg_reload_limit_burst); if (r < 0) { log_warning_errno(r, "Failed to parse systemd.reload_limit_burst= argument '%s', ignoring: %m", value); return 0; } } else if (streq(key, "quiet") && !value) { if (arg_show_status == _SHOW_STATUS_INVALID) arg_show_status = SHOW_STATUS_ERROR; } else if (streq(key, "debug") && !value) { /* Note that log_parse_environment() handles 'debug' * too, and sets the log level to LOG_DEBUG. */ if (detect_container() > 0) log_set_target(LOG_TARGET_CONSOLE); } else if (!value) { const char *target; /* Compatible with SysV, but supported independently even if SysV compatibility is disabled. */ target = runlevel_to_target(key); if (target) return free_and_strdup_warn(&arg_default_unit, target); } return 0; } #define DEFINE_SETTER(name, func, descr) \ static int name(const char *unit, \ const char *filename, \ unsigned line, \ const char *section, \ unsigned section_line, \ const char *lvalue, \ int ltype, \ const char *rvalue, \ void *data, \ void *userdata) { \ \ int r; \ \ assert(filename); \ assert(lvalue); \ assert(rvalue); \ \ r = func(rvalue); \ if (r < 0) \ log_syntax(unit, LOG_ERR, filename, line, r, \ "Invalid " descr "'%s': %m", \ rvalue); \ \ return 0; \ } DEFINE_SETTER(config_parse_level2, log_set_max_level_from_string, "log level"); DEFINE_SETTER(config_parse_target, log_set_target_from_string, "target"); DEFINE_SETTER(config_parse_color, log_show_color_from_string, "color"); DEFINE_SETTER(config_parse_location, log_show_location_from_string, "location"); DEFINE_SETTER(config_parse_time, log_show_time_from_string, "time"); static int config_parse_default_timeout_abort( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { int r; r = config_parse_timeout_abort( unit, filename, line, section, section_line, lvalue, ltype, rvalue, &arg_defaults.timeout_abort_usec, userdata); if (r >= 0) arg_defaults.timeout_abort_set = r; return 0; } static int config_parse_oom_score_adjust( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { int oa, r; if (isempty(rvalue)) { arg_defaults.oom_score_adjust_set = false; return 0; } r = parse_oom_score_adjust(rvalue, &oa); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse the OOM score adjust value '%s', ignoring: %m", rvalue); return 0; } arg_defaults.oom_score_adjust = oa; arg_defaults.oom_score_adjust_set = true; return 0; } static int config_parse_protect_system_pid1( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { int *v = ASSERT_PTR(data), r; /* This is modelled after the per-service ProtectSystem= setting, but a bit more restricted on one * hand, and more automatic in another. i.e. we currently only support yes/no (not "strict" or * "full"). And we will enable this automatically for the initrd unless configured otherwise. * * We might extend this later to match more closely what the per-service ProtectSystem= can do, but * this is not trivial, due to ordering constraints: besides /usr/ we don't really have much mounted * at the moment we enable this logic. */ if (isempty(rvalue) || streq(rvalue, "auto")) { *v = -1; return 0; } r = parse_boolean(rvalue); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse ProtectSystem= argument '%s', ignoring: %m", rvalue); return 0; } *v = r; return 0; } static int config_parse_crash_reboot( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { CrashAction *v = ASSERT_PTR(data); int r; if (isempty(rvalue)) { *v = CRASH_REBOOT; return 0; } r = parse_boolean(rvalue); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse CrashReboot= argument '%s', ignoring: %m", rvalue); return 0; } *v = r > 0 ? CRASH_REBOOT : CRASH_FREEZE; return 0; } static int parse_config_file(void) { const ConfigTableItem items[] = { { "Manager", "LogLevel", config_parse_level2, 0, NULL }, { "Manager", "LogTarget", config_parse_target, 0, NULL }, { "Manager", "LogColor", config_parse_color, 0, NULL }, { "Manager", "LogLocation", config_parse_location, 0, NULL }, { "Manager", "LogTime", config_parse_time, 0, NULL }, { "Manager", "DumpCore", config_parse_bool, 0, &arg_dump_core }, { "Manager", "CrashChVT", /* legacy */ config_parse_crash_chvt, 0, &arg_crash_chvt }, { "Manager", "CrashChangeVT", config_parse_crash_chvt, 0, &arg_crash_chvt }, { "Manager", "CrashShell", config_parse_bool, 0, &arg_crash_shell }, { "Manager", "CrashReboot", config_parse_crash_reboot, 0, &arg_crash_action }, { "Manager", "CrashAction", config_parse_crash_action, 0, &arg_crash_action }, { "Manager", "ShowStatus", config_parse_show_status, 0, &arg_show_status }, { "Manager", "StatusUnitFormat", config_parse_status_unit_format, 0, &arg_status_unit_format }, { "Manager", "CPUAffinity", config_parse_cpu_affinity2, 0, &arg_cpu_affinity }, { "Manager", "NUMAPolicy", config_parse_numa_policy, 0, &arg_numa_policy.type }, { "Manager", "NUMAMask", config_parse_numa_mask, 0, &arg_numa_policy }, { "Manager", "JoinControllers", config_parse_warn_compat, DISABLED_LEGACY, NULL }, { "Manager", "RuntimeWatchdogSec", config_parse_watchdog_sec, 0, &arg_runtime_watchdog }, { "Manager", "RuntimeWatchdogPreSec", config_parse_watchdog_sec, 0, &arg_pretimeout_watchdog }, { "Manager", "RebootWatchdogSec", config_parse_watchdog_sec, 0, &arg_reboot_watchdog }, { "Manager", "ShutdownWatchdogSec", config_parse_watchdog_sec, 0, &arg_reboot_watchdog }, /* obsolete alias */ { "Manager", "KExecWatchdogSec", config_parse_watchdog_sec, 0, &arg_kexec_watchdog }, { "Manager", "WatchdogDevice", config_parse_path, 0, &arg_watchdog_device }, { "Manager", "RuntimeWatchdogPreGovernor", config_parse_string, CONFIG_PARSE_STRING_SAFE, &arg_watchdog_pretimeout_governor }, { "Manager", "CapabilityBoundingSet", config_parse_capability_set, 0, &arg_capability_bounding_set }, { "Manager", "NoNewPrivileges", config_parse_bool, 0, &arg_no_new_privs }, { "Manager", "ProtectSystem", config_parse_protect_system_pid1, 0, &arg_protect_system }, #if HAVE_SECCOMP { "Manager", "SystemCallArchitectures", config_parse_syscall_archs, 0, &arg_syscall_archs }, #else { "Manager", "SystemCallArchitectures", config_parse_warn_compat, DISABLED_CONFIGURATION, NULL }, #endif { "Manager", "TimerSlackNSec", config_parse_nsec, 0, &arg_timer_slack_nsec }, { "Manager", "DefaultTimerAccuracySec", config_parse_sec, 0, &arg_defaults.timer_accuracy_usec }, { "Manager", "DefaultStandardOutput", config_parse_output_restricted, 0, &arg_defaults.std_output }, { "Manager", "DefaultStandardError", config_parse_output_restricted, 0, &arg_defaults.std_error }, { "Manager", "DefaultTimeoutStartSec", config_parse_sec, 0, &arg_defaults.timeout_start_usec }, { "Manager", "DefaultTimeoutStopSec", config_parse_sec, 0, &arg_defaults.timeout_stop_usec }, { "Manager", "DefaultTimeoutAbortSec", config_parse_default_timeout_abort, 0, NULL }, { "Manager", "DefaultDeviceTimeoutSec", config_parse_sec, 0, &arg_defaults.device_timeout_usec }, { "Manager", "DefaultRestartSec", config_parse_sec, 0, &arg_defaults.restart_usec }, { "Manager", "DefaultStartLimitInterval", config_parse_sec, 0, &arg_defaults.start_limit.interval}, /* obsolete alias */ { "Manager", "DefaultStartLimitIntervalSec", config_parse_sec, 0, &arg_defaults.start_limit.interval}, { "Manager", "DefaultStartLimitBurst", config_parse_unsigned, 0, &arg_defaults.start_limit.burst }, { "Manager", "DefaultEnvironment", config_parse_environ, arg_runtime_scope, &arg_default_environment }, { "Manager", "ManagerEnvironment", config_parse_environ, arg_runtime_scope, &arg_manager_environment }, { "Manager", "DefaultLimitCPU", config_parse_rlimit, RLIMIT_CPU, arg_defaults.rlimit }, { "Manager", "DefaultLimitFSIZE", config_parse_rlimit, RLIMIT_FSIZE, arg_defaults.rlimit }, { "Manager", "DefaultLimitDATA", config_parse_rlimit, RLIMIT_DATA, arg_defaults.rlimit }, { "Manager", "DefaultLimitSTACK", config_parse_rlimit, RLIMIT_STACK, arg_defaults.rlimit }, { "Manager", "DefaultLimitCORE", config_parse_rlimit, RLIMIT_CORE, arg_defaults.rlimit }, { "Manager", "DefaultLimitRSS", config_parse_rlimit, RLIMIT_RSS, arg_defaults.rlimit }, { "Manager", "DefaultLimitNOFILE", config_parse_rlimit, RLIMIT_NOFILE, arg_defaults.rlimit }, { "Manager", "DefaultLimitAS", config_parse_rlimit, RLIMIT_AS, arg_defaults.rlimit }, { "Manager", "DefaultLimitNPROC", config_parse_rlimit, RLIMIT_NPROC, arg_defaults.rlimit }, { "Manager", "DefaultLimitMEMLOCK", config_parse_rlimit, RLIMIT_MEMLOCK, arg_defaults.rlimit }, { "Manager", "DefaultLimitLOCKS", config_parse_rlimit, RLIMIT_LOCKS, arg_defaults.rlimit }, { "Manager", "DefaultLimitSIGPENDING", config_parse_rlimit, RLIMIT_SIGPENDING, arg_defaults.rlimit }, { "Manager", "DefaultLimitMSGQUEUE", config_parse_rlimit, RLIMIT_MSGQUEUE, arg_defaults.rlimit }, { "Manager", "DefaultLimitNICE", config_parse_rlimit, RLIMIT_NICE, arg_defaults.rlimit }, { "Manager", "DefaultLimitRTPRIO", config_parse_rlimit, RLIMIT_RTPRIO, arg_defaults.rlimit }, { "Manager", "DefaultLimitRTTIME", config_parse_rlimit, RLIMIT_RTTIME, arg_defaults.rlimit }, { "Manager", "DefaultCPUAccounting", config_parse_bool, 0, &arg_defaults.cpu_accounting }, { "Manager", "DefaultIOAccounting", config_parse_bool, 0, &arg_defaults.io_accounting }, { "Manager", "DefaultIPAccounting", config_parse_bool, 0, &arg_defaults.ip_accounting }, { "Manager", "DefaultBlockIOAccounting", config_parse_bool, 0, &arg_defaults.blockio_accounting }, { "Manager", "DefaultMemoryAccounting", config_parse_bool, 0, &arg_defaults.memory_accounting }, { "Manager", "DefaultTasksAccounting", config_parse_bool, 0, &arg_defaults.tasks_accounting }, { "Manager", "DefaultTasksMax", config_parse_tasks_max, 0, &arg_defaults.tasks_max }, { "Manager", "DefaultMemoryPressureThresholdSec", config_parse_sec, 0, &arg_defaults.memory_pressure_threshold_usec }, { "Manager", "DefaultMemoryPressureWatch", config_parse_memory_pressure_watch, 0, &arg_defaults.memory_pressure_watch }, { "Manager", "CtrlAltDelBurstAction", config_parse_emergency_action, arg_runtime_scope, &arg_cad_burst_action }, { "Manager", "DefaultOOMPolicy", config_parse_oom_policy, 0, &arg_defaults.oom_policy }, { "Manager", "DefaultOOMScoreAdjust", config_parse_oom_score_adjust, 0, NULL }, { "Manager", "ReloadLimitIntervalSec", config_parse_sec, 0, &arg_reload_limit_interval_sec }, { "Manager", "ReloadLimitBurst", config_parse_unsigned, 0, &arg_reload_limit_burst }, #if ENABLE_SMACK { "Manager", "DefaultSmackProcessLabel", config_parse_string, 0, &arg_defaults.smack_process_label }, #else { "Manager", "DefaultSmackProcessLabel", config_parse_warn_compat, DISABLED_CONFIGURATION, NULL }, #endif {} }; if (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM) (void) config_parse_standard_file_with_dropins( "systemd/system.conf", "Manager\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, /* userdata= */ NULL); else { _cleanup_strv_free_ char **files = NULL, **dirs = NULL; int r; assert(arg_runtime_scope == RUNTIME_SCOPE_USER); r = manager_find_user_config_paths(&files, &dirs); if (r < 0) return log_error_errno(r, "Failed to determine config file paths: %m"); (void) config_parse_many( (const char* const*) files, (const char* const*) dirs, "user.conf.d", /* root = */ NULL, "Manager\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL, NULL, NULL); } /* Traditionally "0" was used to turn off the default unit timeouts. Fix this up so that we use * USEC_INFINITY like everywhere else. */ if (arg_defaults.timeout_start_usec <= 0) arg_defaults.timeout_start_usec = USEC_INFINITY; if (arg_defaults.timeout_stop_usec <= 0) arg_defaults.timeout_stop_usec = USEC_INFINITY; return 0; } static void set_manager_defaults(Manager *m) { int r; assert(m); /* Propagates the various default unit property settings into the manager object, i.e. properties * that do not affect the manager itself, but are just what newly allocated units will have set if * they haven't set anything else. (Also see set_manager_settings() for the settings that affect the * manager's own behaviour) */ r = manager_set_unit_defaults(m, &arg_defaults); if (r < 0) log_warning_errno(r, "Failed to set manager defaults, ignoring: %m"); r = manager_default_environment(m); if (r < 0) log_warning_errno(r, "Failed to set manager default environment, ignoring: %m"); r = manager_transient_environment_add(m, arg_default_environment); if (r < 0) log_warning_errno(r, "Failed to add to transient environment, ignoring: %m"); } static void set_manager_settings(Manager *m) { int r; assert(m); /* Propagates the various manager settings into the manager object, i.e. properties that * effect the manager itself (as opposed to just being inherited into newly allocated * units, see set_manager_defaults() above). */ m->confirm_spawn = arg_confirm_spawn; m->service_watchdogs = arg_service_watchdogs; m->cad_burst_action = arg_cad_burst_action; /* Note that we don't do structured initialization here, otherwise it will reset the rate limit * counter on every daemon-reload. */ m->reload_reexec_ratelimit.interval = arg_reload_limit_interval_sec; m->reload_reexec_ratelimit.burst = arg_reload_limit_burst; manager_set_watchdog(m, WATCHDOG_RUNTIME, arg_runtime_watchdog); manager_set_watchdog(m, WATCHDOG_REBOOT, arg_reboot_watchdog); manager_set_watchdog(m, WATCHDOG_KEXEC, arg_kexec_watchdog); manager_set_watchdog(m, WATCHDOG_PRETIMEOUT, arg_pretimeout_watchdog); r = manager_set_watchdog_pretimeout_governor(m, arg_watchdog_pretimeout_governor); if (r < 0) log_warning_errno(r, "Failed to set watchdog pretimeout governor to '%s', ignoring: %m", arg_watchdog_pretimeout_governor); manager_set_show_status(m, arg_show_status, "command line"); m->status_unit_format = arg_status_unit_format; } static int parse_argv(int argc, char *argv[]) { enum { COMMON_GETOPT_ARGS, SYSTEMD_GETOPT_ARGS, }; static const struct option options[] = { COMMON_GETOPT_OPTIONS, SYSTEMD_GETOPT_OPTIONS, {} }; int c, r; bool user_arg_seen = false; assert(argc >= 1); assert(argv); if (getpid_cached() == 1) opterr = 0; while ((c = getopt_long(argc, argv, SYSTEMD_GETOPT_SHORT_OPTIONS, options, NULL)) >= 0) switch (c) { case ARG_LOG_LEVEL: r = log_set_max_level_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log level \"%s\": %m", optarg); break; case ARG_LOG_TARGET: r = log_set_target_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log target \"%s\": %m", optarg); break; case ARG_LOG_COLOR: if (optarg) { r = log_show_color_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log color setting \"%s\": %m", optarg); } else log_show_color(true); break; case ARG_LOG_LOCATION: if (optarg) { r = log_show_location_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log location setting \"%s\": %m", optarg); } else log_show_location(true); break; case ARG_LOG_TIME: if (optarg) { r = log_show_time_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log time setting \"%s\": %m", optarg); } else log_show_time(true); break; case ARG_DEFAULT_STD_OUTPUT: r = exec_output_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse default standard output setting \"%s\": %m", optarg); arg_defaults.std_output = r; break; case ARG_DEFAULT_STD_ERROR: r = exec_output_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse default standard error output setting \"%s\": %m", optarg); arg_defaults.std_error = r; break; case ARG_UNIT: r = free_and_strdup(&arg_default_unit, optarg); if (r < 0) return log_error_errno(r, "Failed to set default unit \"%s\": %m", optarg); break; case ARG_SYSTEM: arg_runtime_scope = RUNTIME_SCOPE_SYSTEM; break; case ARG_USER: arg_runtime_scope = RUNTIME_SCOPE_USER; user_arg_seen = true; break; case ARG_TEST: arg_action = ACTION_TEST; break; case ARG_NO_PAGER: arg_pager_flags |= PAGER_DISABLE; break; case ARG_VERSION: arg_action = ACTION_VERSION; break; case ARG_DUMP_CONFIGURATION_ITEMS: arg_action = ACTION_DUMP_CONFIGURATION_ITEMS; break; case ARG_DUMP_BUS_PROPERTIES: arg_action = ACTION_DUMP_BUS_PROPERTIES; break; case ARG_BUS_INTROSPECT: arg_bus_introspect = optarg; arg_action = ACTION_BUS_INTROSPECT; break; case ARG_DUMP_CORE: r = parse_boolean_argument("--dump-core", optarg, &arg_dump_core); if (r < 0) return r; break; case ARG_CRASH_CHVT: r = parse_crash_chvt(optarg, &arg_crash_chvt); if (r < 0) return log_error_errno(r, "Failed to parse crash virtual terminal index: \"%s\": %m", optarg); break; case ARG_CRASH_SHELL: r = parse_boolean_argument("--crash-shell", optarg, &arg_crash_shell); if (r < 0) return r; break; case ARG_CRASH_REBOOT: r = parse_boolean_argument("--crash-reboot", optarg, NULL); if (r < 0) return r; arg_crash_action = r > 0 ? CRASH_REBOOT : CRASH_FREEZE; break; case ARG_CRASH_ACTION: r = crash_action_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse crash action \"%s\": %m", optarg); arg_crash_action = r; break; case ARG_CONFIRM_SPAWN: arg_confirm_spawn = mfree(arg_confirm_spawn); r = parse_confirm_spawn(optarg, &arg_confirm_spawn); if (r < 0) return log_error_errno(r, "Failed to parse confirm spawn option: \"%s\": %m", optarg); break; case ARG_SERVICE_WATCHDOGS: r = parse_boolean_argument("--service-watchdogs=", optarg, &arg_service_watchdogs); if (r < 0) return r; break; case ARG_SHOW_STATUS: if (optarg) { r = parse_show_status(optarg, &arg_show_status); if (r < 0) return log_error_errno(r, "Failed to parse show status boolean: \"%s\": %m", optarg); } else arg_show_status = SHOW_STATUS_YES; break; case ARG_DESERIALIZE: { int fd; FILE *f; fd = parse_fd(optarg); if (fd < 0) return log_error_errno(fd, "Failed to parse serialization fd \"%s\": %m", optarg); (void) fd_cloexec(fd, true); f = fdopen(fd, "r"); if (!f) return log_error_errno(errno, "Failed to open serialization fd %d: %m", fd); safe_fclose(arg_serialization); arg_serialization = f; break; } case ARG_SWITCHED_ROOT: arg_switched_root = true; break; case ARG_MACHINE_ID: r = id128_from_string_nonzero(optarg, &arg_machine_id); if (r < 0) return log_error_errno(r, "MachineID '%s' is not valid: %m", optarg); break; case 'h': arg_action = ACTION_HELP; break; case 'D': log_set_max_level(LOG_DEBUG); break; case 'b': case 's': case 'z': /* Just to eat away the sysvinit kernel cmdline args that we'll parse in * parse_proc_cmdline_item() or ignore, without any getopt() error messages. */ case '?': if (getpid_cached() != 1) return -EINVAL; else return 0; default: assert_not_reached(); } if (optind < argc && getpid_cached() != 1) /* Hmm, when we aren't run as init system let's complain about excess arguments */ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Excess arguments."); if (arg_action == ACTION_RUN && arg_runtime_scope == RUNTIME_SCOPE_USER && !user_arg_seen) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Explicit --user argument required to run as user manager."); return 0; } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...]\n\n" "%sStarts and monitors system and user services.%s\n\n" "This program takes no positional arguments.\n\n" "%sOptions%s:\n" " -h --help Show this help\n" " --version Show version\n" " --test Determine initial transaction, dump it and exit\n" " --system Combined with --test: operate in system mode\n" " --user Combined with --test: operate in user mode\n" " --dump-configuration-items Dump understood unit configuration items\n" " --dump-bus-properties Dump exposed bus properties\n" " --bus-introspect=PATH Write XML introspection data\n" " --unit=UNIT Set default unit\n" " --dump-core[=BOOL] Dump core on crash\n" " --crash-vt=NR Change to specified VT on crash\n" " --crash-action=ACTION Specify what to do on crash\n" " --crash-shell[=BOOL] Run shell on crash\n" " --confirm-spawn[=BOOL] Ask for confirmation when spawning processes\n" " --show-status[=BOOL] Show status updates on the console during boot\n" " --log-target=TARGET Set log target (console, journal, kmsg,\n" " journal-or-kmsg, null)\n" " --log-level=LEVEL Set log level (debug, info, notice, warning,\n" " err, crit, alert, emerg)\n" " --log-color[=BOOL] Highlight important log messages\n" " --log-location[=BOOL] Include code location in log messages\n" " --log-time[=BOOL] Prefix log messages with current time\n" " --default-standard-output= Set default standard output for services\n" " --default-standard-error= Set default standard error output for services\n" " --no-pager Do not pipe output into a pager\n" "\nSee the %s for details.\n", program_invocation_short_name, ansi_highlight(), ansi_normal(), ansi_underline(), ansi_normal(), link); return 0; } static int prepare_reexecute( Manager *m, FILE **ret_f, FDSet **ret_fds, bool switching_root) { _cleanup_fdset_free_ FDSet *fds = NULL; _cleanup_fclose_ FILE *f = NULL; int r; assert(m); assert(ret_f); assert(ret_fds); r = manager_open_serialization(m, &f); if (r < 0) return log_error_errno(r, "Failed to create serialization file: %m"); /* Make sure nothing is really destructed when we shut down */ m->n_reloading++; bus_manager_send_reloading(m, true); fds = fdset_new(); if (!fds) return log_oom(); r = manager_serialize(m, f, fds, switching_root); if (r < 0) return r; if (fseeko(f, 0, SEEK_SET) < 0) return log_error_errno(errno, "Failed to rewind serialization fd: %m"); r = fd_cloexec(fileno(f), false); if (r < 0) return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization: %m"); r = fdset_cloexec(fds, false); if (r < 0) return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization fds: %m"); *ret_f = TAKE_PTR(f); *ret_fds = TAKE_PTR(fds); return 0; } static void bump_file_max_and_nr_open(void) { /* Let's bump fs.file-max and fs.nr_open to their respective maximums. On current kernels large * numbers of file descriptors are no longer a performance problem and their memory is properly * tracked by memcg, thus counting them and limiting them in another two layers of limits is * unnecessary and just complicates things. This function hence turns off 2 of the 4 levels of limits * on file descriptors, and makes RLIMIT_NOLIMIT (soft + hard) the only ones that really matter. */ #if BUMP_PROC_SYS_FS_FILE_MAX || BUMP_PROC_SYS_FS_NR_OPEN int r; #endif #if BUMP_PROC_SYS_FS_FILE_MAX /* The maximum the kernel allows for this since 5.2 is LONG_MAX, use that. (Previously things were * different, but the operation would fail silently.) */ r = sysctl_write("fs/file-max", LONG_MAX_STR); if (r < 0) log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.file-max, ignoring: %m"); #endif #if BUMP_PROC_SYS_FS_NR_OPEN int v = INT_MAX; /* Argh! The kernel enforces maximum and minimum values on the fs.nr_open, but we don't really know * what they are. The expression by which the maximum is determined is dependent on the architecture, * and is something we don't really want to copy to userspace, as it is dependent on implementation * details of the kernel. Since the kernel doesn't expose the maximum value to us, we can only try * and hope. Hence, let's start with INT_MAX, and then keep halving the value until we find one that * works. Ugly? Yes, absolutely, but kernel APIs are kernel APIs, so what do can we do... 🤯 */ for (;;) { int k; v &= ~(__SIZEOF_POINTER__ - 1); /* Round down to next multiple of the pointer size */ if (v < 1024) { log_warning("Can't bump fs.nr_open, value too small."); break; } k = read_nr_open(); if (k < 0) { log_error_errno(k, "Failed to read fs.nr_open: %m"); break; } if (k >= v) { /* Already larger */ log_debug("Skipping bump, value is already larger."); break; } r = sysctl_writef("fs/nr_open", "%i", v); if (r == -EINVAL) { log_debug("Couldn't write fs.nr_open as %i, halving it.", v); v /= 2; continue; } if (r < 0) { log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.nr_open, ignoring: %m"); break; } log_debug("Successfully bumped fs.nr_open to %i", v); break; } #endif } static int bump_rlimit_nofile(const struct rlimit *saved_rlimit) { struct rlimit new_rlimit; int r, nr; /* Get the underlying absolute limit the kernel enforces */ nr = read_nr_open(); /* Calculate the new limits to use for us. Never lower from what we inherited. */ new_rlimit = (struct rlimit) { .rlim_cur = MAX((rlim_t) nr, saved_rlimit->rlim_cur), .rlim_max = MAX((rlim_t) nr, saved_rlimit->rlim_max), }; /* Shortcut if nothing changes. */ if (saved_rlimit->rlim_max >= new_rlimit.rlim_max && saved_rlimit->rlim_cur >= new_rlimit.rlim_cur) { log_debug("RLIMIT_NOFILE is already as high or higher than we need it, not bumping."); return 0; } /* Bump up the resource limit for ourselves substantially, all the way to the maximum the kernel allows, for * both hard and soft. */ r = setrlimit_closest(RLIMIT_NOFILE, &new_rlimit); if (r < 0) return log_warning_errno(r, "Setting RLIMIT_NOFILE failed, ignoring: %m"); return 0; } static int bump_rlimit_memlock(const struct rlimit *saved_rlimit) { struct rlimit new_rlimit; uint64_t mm; int r; /* BPF_MAP_TYPE_LPM_TRIE bpf maps are charged against RLIMIT_MEMLOCK, even if we have CAP_IPC_LOCK * which should normally disable such checks. We need them to implement IPAddressAllow= and * IPAddressDeny=, hence let's bump the value high enough for our user. */ /* Using MAX() on resource limits only is safe if RLIM_INFINITY is > 0. POSIX declares that rlim_t * must be unsigned, hence this is a given, but let's make this clear here. */ assert_cc(RLIM_INFINITY > 0); mm = physical_memory_scale(1, 8); /* Let's scale how much we allow to be locked by the amount of * physical RAM. We allow an eighth to be locked by us, just to * pick a value. */ new_rlimit = (struct rlimit) { .rlim_cur = MAX3(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_cur, mm), .rlim_max = MAX3(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_max, mm), }; if (saved_rlimit->rlim_max >= new_rlimit.rlim_cur && saved_rlimit->rlim_cur >= new_rlimit.rlim_max) { log_debug("RLIMIT_MEMLOCK is already as high or higher than we need it, not bumping."); return 0; } r = setrlimit_closest(RLIMIT_MEMLOCK, &new_rlimit); if (r < 0) return log_warning_errno(r, "Setting RLIMIT_MEMLOCK failed, ignoring: %m"); return 0; } static int enforce_syscall_archs(Set *archs) { #if HAVE_SECCOMP int r; if (!is_seccomp_available()) return 0; r = seccomp_restrict_archs(arg_syscall_archs); if (r < 0) return log_error_errno(r, "Failed to enforce system call architecture restriction: %m"); #endif return 0; } static int os_release_status(void) { _cleanup_free_ char *pretty_name = NULL, *name = NULL, *version = NULL, *ansi_color = NULL, *support_end = NULL; int r; r = parse_os_release(NULL, "PRETTY_NAME", &pretty_name, "NAME", &name, "VERSION", &version, "ANSI_COLOR", &ansi_color, "SUPPORT_END", &support_end); if (r < 0) return log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r, "Failed to read os-release file, ignoring: %m"); const char *label = os_release_pretty_name(pretty_name, name); const char *color = empty_to_null(ansi_color) ?: "1"; if (show_status_on(arg_show_status)) { if (in_initrd()) { if (log_get_show_color()) status_printf(NULL, 0, ANSI_HIGHLIGHT "Booting initrd of " ANSI_NORMAL "\x1B[%sm%s" ANSI_NORMAL ANSI_HIGHLIGHT "." ANSI_NORMAL, color, label); else status_printf(NULL, 0, "Booting initrd of %s...", label); } else { if (log_get_show_color()) status_printf(NULL, 0, "\n" ANSI_HIGHLIGHT "Welcome to " ANSI_NORMAL "\x1B[%sm%s" ANSI_NORMAL ANSI_HIGHLIGHT "!" ANSI_NORMAL "\n", color, label); else status_printf(NULL, 0, "\nWelcome to %s!\n", label); } } if (support_end && os_release_support_ended(support_end, /* quiet */ false, NULL) > 0) /* pretty_name may include the version already, so we'll print the version only if we * have it and we're not using pretty_name. */ status_printf(ANSI_HIGHLIGHT_RED " !! " ANSI_NORMAL, 0, "This OS version (%s%s%s) is past its end-of-support date (%s)", label, (pretty_name || !version) ? "" : " version ", (pretty_name || !version) ? "" : version, support_end); return 0; } static int setup_os_release(RuntimeScope scope) { char os_release_dst[STRLEN("/run/user//systemd/propagate/.os-release-stage/os-release") + DECIMAL_STR_MAX(uid_t)] = "/run/systemd/propagate/.os-release-stage/os-release"; const char *os_release_src = "/etc/os-release"; int r; assert(IN_SET(scope, RUNTIME_SCOPE_SYSTEM, RUNTIME_SCOPE_USER)); if (access("/etc/os-release", F_OK) < 0) { if (errno != ENOENT) log_debug_errno(errno, "Failed to check if /etc/os-release exists, ignoring: %m"); os_release_src = "/usr/lib/os-release"; } if (scope == RUNTIME_SCOPE_USER) xsprintf(os_release_dst, "/run/user/" UID_FMT "/systemd/propagate/.os-release-stage/os-release", geteuid()); r = mkdir_parents_label(os_release_dst, 0755); if (r < 0) return log_debug_errno(r, "Failed to create parent directory of '%s', ignoring: %m", os_release_dst); r = copy_file_atomic(os_release_src, os_release_dst, 0644, COPY_MAC_CREATE|COPY_REPLACE); if (r < 0) return log_debug_errno(r, "Failed to copy '%s' to '%s', ignoring: %m", os_release_src, os_release_dst); return 0; } static int write_container_id(void) { const char *c; int r = 0; /* avoid false maybe-uninitialized warning */ c = getenv("container"); if (isempty(c)) return 0; WITH_UMASK(0022) r = write_string_file("/run/systemd/container", c, WRITE_STRING_FILE_CREATE); if (r < 0) return log_warning_errno(r, "Failed to write /run/systemd/container, ignoring: %m"); return 1; } static int bump_unix_max_dgram_qlen(void) { _cleanup_free_ char *qlen = NULL; unsigned long v; int r; /* Let's bump the net.unix.max_dgram_qlen sysctl. The kernel default of 16 is simply too low. We set * the value really really early during boot, so that it is actually applied to all our sockets, * including the $NOTIFY_SOCKET one. */ r = read_one_line_file("/proc/sys/net/unix/max_dgram_qlen", &qlen); if (r < 0) return log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r, "Failed to read AF_UNIX datagram queue length, ignoring: %m"); r = safe_atolu(qlen, &v); if (r < 0) return log_warning_errno(r, "Failed to parse AF_UNIX datagram queue length '%s', ignoring: %m", qlen); if (v >= DEFAULT_UNIX_MAX_DGRAM_QLEN) return 0; r = sysctl_write("net/unix/max_dgram_qlen", STRINGIFY(DEFAULT_UNIX_MAX_DGRAM_QLEN)); if (r < 0) return log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump AF_UNIX datagram queue length, ignoring: %m"); return 1; } static int fixup_environment(void) { _cleanup_free_ char *term = NULL; const char *t; int r; /* Only fix up the environment when we are started as PID 1 */ if (getpid_cached() != 1) return 0; /* We expect the environment to be set correctly if run inside a container. */ if (detect_container() > 0) return 0; /* When started as PID1, the kernel uses /dev/console for our stdios and uses TERM=linux whatever the * backend device used by the console. We try to make a better guess here since some consoles might * not have support for color mode for example. * * However if TERM was configured through the kernel command line then leave it alone. */ r = proc_cmdline_get_key("TERM", 0, &term); if (r < 0) return r; if (r == 0) { r = proc_cmdline_get_key("systemd.tty.term.console", 0, &term); if (r < 0) return r; } t = term ?: default_term_for_tty("/dev/console"); if (setenv("TERM", t, 1) < 0) return -errno; /* The kernels sets HOME=/ for init. Let's undo this. */ if (path_equal(getenv("HOME"), "/")) assert_se(unsetenv("HOME") == 0); return 0; } static void redirect_telinit(int argc, char *argv[]) { /* This is compatibility support for SysV, where calling init as a user is identical to telinit. */ #if HAVE_SYSV_COMPAT if (getpid_cached() == 1) return; if (!invoked_as(argv, "init")) return; execv(SYSTEMCTL_BINARY_PATH, argv); log_error_errno(errno, "Failed to exec " SYSTEMCTL_BINARY_PATH ": %m"); exit(EXIT_FAILURE); #endif } static int become_shutdown(int objective, int retval) { static const char* const table[_MANAGER_OBJECTIVE_MAX] = { [MANAGER_EXIT] = "exit", [MANAGER_REBOOT] = "reboot", [MANAGER_POWEROFF] = "poweroff", [MANAGER_HALT] = "halt", [MANAGER_KEXEC] = "kexec", }; char timeout[STRLEN("--timeout=") + DECIMAL_STR_MAX(usec_t) + STRLEN("us")], exit_code[STRLEN("--exit-code=") + DECIMAL_STR_MAX(uint8_t)]; _cleanup_strv_free_ char **env_block = NULL; _cleanup_free_ char *max_log_levels = NULL; usec_t watchdog_timer = 0; int r; assert(objective >= 0 && objective < _MANAGER_OBJECTIVE_MAX); assert(table[objective]); xsprintf(timeout, "--timeout=%" PRI_USEC "us", arg_defaults.timeout_stop_usec); const char* command_line[11] = { SYSTEMD_SHUTDOWN_BINARY_PATH, table[objective], timeout, /* Note that the last position is a terminator and must contain NULL. */ }; size_t pos = 3; assert(command_line[pos-1]); assert(!command_line[pos]); (void) log_max_levels_to_string(log_get_max_level(), &max_log_levels); if (max_log_levels) { command_line[pos++] = "--log-level"; command_line[pos++] = max_log_levels; } switch (log_get_target()) { case LOG_TARGET_KMSG: case LOG_TARGET_JOURNAL_OR_KMSG: case LOG_TARGET_SYSLOG_OR_KMSG: command_line[pos++] = "--log-target=kmsg"; break; case LOG_TARGET_NULL: command_line[pos++] = "--log-target=null"; break; case LOG_TARGET_CONSOLE: default: command_line[pos++] = "--log-target=console"; break; }; if (log_get_show_color()) command_line[pos++] = "--log-color"; if (log_get_show_location()) command_line[pos++] = "--log-location"; if (log_get_show_time()) command_line[pos++] = "--log-time"; xsprintf(exit_code, "--exit-code=%d", retval); command_line[pos++] = exit_code; assert(pos < ELEMENTSOF(command_line)); /* The watchdog: */ if (objective == MANAGER_REBOOT) watchdog_timer = arg_reboot_watchdog; else if (objective == MANAGER_KEXEC) watchdog_timer = arg_kexec_watchdog; /* If we reboot or kexec let's set the shutdown watchdog and tell the * shutdown binary to repeatedly ping it. * Disable the pretimeout watchdog, as we do not support it from the shutdown binary. */ (void) watchdog_setup_pretimeout(0); (void) watchdog_setup_pretimeout_governor(NULL); r = watchdog_setup(watchdog_timer); watchdog_close(/* disarm= */ r < 0); /* The environment block: */ env_block = strv_copy(environ); /* Tell the binary how often to ping, ignore failure */ (void) strv_extendf(&env_block, "WATCHDOG_USEC="USEC_FMT, watchdog_timer); /* Make sure that tools that look for $WATCHDOG_USEC (and might get started by the exitrd) don't get * confused by the variable, because the sd_watchdog_enabled() protocol uses the same variable for * the same purposes. */ (void) strv_extendf(&env_block, "WATCHDOG_PID=" PID_FMT, getpid_cached()); if (arg_watchdog_device) (void) strv_extendf(&env_block, "WATCHDOG_DEVICE=%s", arg_watchdog_device); /* Avoid the creation of new processes forked by the kernel; at this * point, we will not listen to the signals anyway */ if (detect_container() <= 0) (void) cg_uninstall_release_agent(SYSTEMD_CGROUP_CONTROLLER); execve(SYSTEMD_SHUTDOWN_BINARY_PATH, (char **) command_line, env_block); return -errno; } static void initialize_clock_timewarp(void) { int r; /* This is called very early on, before we parse the kernel command line or otherwise figure out why * we are running, but only once. */ if (clock_is_localtime(NULL) > 0) { int min; /* The very first call of settimeofday() also does a time warp in the kernel. * * In the rtc-in-local time mode, we set the kernel's timezone, and rely on external tools to * take care of maintaining the RTC and do all adjustments. This matches the behavior of * Windows, which leaves the RTC alone if the registry tells that the RTC runs in UTC. */ r = clock_set_timezone(&min); if (r < 0) log_error_errno(r, "Failed to apply local time delta, ignoring: %m"); else log_info("RTC configured in localtime, applying delta of %i minutes to system time.", min); } else if (!in_initrd()) /* * Do a dummy very first call to seal the kernel's time warp magic. * * Do not call this from inside the initrd. The initrd might not carry /etc/adjtime with * LOCAL, but the real system could be set up that way. In such case, we need to delay the * time-warp or the sealing until we reach the real system. * * Do no set the kernel's timezone. The concept of local time cannot be supported reliably, * the time will jump or be incorrect at every daylight saving time change. All kernel local * time concepts will be treated as UTC that way. */ (void) clock_reset_timewarp(); } static void apply_clock_update(void) { /* This is called later than clock_apply_epoch(), i.e. after we have parsed * configuration files/kernel command line and such. */ if (arg_clock_usec == 0) return; if (getpid_cached() != 1) return; if (clock_settime(CLOCK_REALTIME, TIMESPEC_STORE(arg_clock_usec)) < 0) log_error_errno(errno, "Failed to set system clock to time specified on kernel command line: %m"); else log_info("Set system clock to %s, as specified on the kernel command line.", FORMAT_TIMESTAMP(arg_clock_usec)); } static void cmdline_take_random_seed(void) { size_t suggested; int r; if (arg_random_seed_size == 0) return; if (getpid_cached() != 1) return; assert(arg_random_seed); suggested = random_pool_size(); if (arg_random_seed_size < suggested) log_warning("Random seed specified on kernel command line has size %zu, but %zu bytes required to fill entropy pool.", arg_random_seed_size, suggested); r = random_write_entropy(-1, arg_random_seed, arg_random_seed_size, true); if (r < 0) { log_warning_errno(r, "Failed to credit entropy specified on kernel command line, ignoring: %m"); return; } log_notice("Successfully credited entropy passed on kernel command line.\n" "Note that the seed provided this way is accessible to unprivileged programs. " "This functionality should not be used outside of testing environments."); } static void initialize_coredump(bool skip_setup) { if (getpid_cached() != 1) return; /* Don't limit the core dump size, so that coredump handlers such as systemd-coredump (which honour * the limit) will process core dumps for system services by default. */ if (setrlimit(RLIMIT_CORE, &RLIMIT_MAKE_CONST(RLIM_INFINITY)) < 0) log_warning_errno(errno, "Failed to set RLIMIT_CORE: %m"); /* But at the same time, turn off the core_pattern logic by default, so that no coredumps are stored * until the systemd-coredump tool is enabled via sysctl. However it can be changed via the kernel * command line later so core dumps can still be generated during early startup and in initrd. */ if (!skip_setup) disable_coredumps(); } static void initialize_core_pattern(bool skip_setup) { int r; if (skip_setup || !arg_early_core_pattern) return; if (getpid_cached() != 1) return; r = write_string_file("/proc/sys/kernel/core_pattern", arg_early_core_pattern, WRITE_STRING_FILE_DISABLE_BUFFER); if (r < 0) log_warning_errno(r, "Failed to write '%s' to /proc/sys/kernel/core_pattern, ignoring: %m", arg_early_core_pattern); } static void apply_protect_system(bool skip_setup) { int r; if (skip_setup || getpid_cached() != 1 || arg_protect_system == 0) return; if (arg_protect_system < 0 && !in_initrd()) { log_debug("ProtectSystem=auto selected, but not running in an initrd, skipping."); return; } r = make_mount_point("/usr"); if (r < 0) { log_warning_errno(r, "Failed to make /usr/ a mount point, ignoring: %m"); return; } if (mount_nofollow_verbose( LOG_WARNING, /* what= */ NULL, "/usr", /* fstype= */ NULL, MS_BIND|MS_REMOUNT|MS_RDONLY, /* options= */ NULL) < 0) return; log_info("Successfully made /usr/ read-only."); } static void update_cpu_affinity(bool skip_setup) { _cleanup_free_ char *mask = NULL; if (skip_setup || !arg_cpu_affinity.set) return; assert(arg_cpu_affinity.allocated > 0); mask = cpu_set_to_range_string(&arg_cpu_affinity); log_debug("Setting CPU affinity to {%s}.", strnull(mask)); if (sched_setaffinity(0, arg_cpu_affinity.allocated, arg_cpu_affinity.set) < 0) log_warning_errno(errno, "Failed to set CPU affinity, ignoring: %m"); } static void update_numa_policy(bool skip_setup) { int r; _cleanup_free_ char *nodes = NULL; const char * policy = NULL; if (skip_setup || !mpol_is_valid(numa_policy_get_type(&arg_numa_policy))) return; if (DEBUG_LOGGING) { policy = mpol_to_string(numa_policy_get_type(&arg_numa_policy)); nodes = cpu_set_to_range_string(&arg_numa_policy.nodes); log_debug("Setting NUMA policy to %s, with nodes {%s}.", strnull(policy), strnull(nodes)); } r = apply_numa_policy(&arg_numa_policy); if (r == -EOPNOTSUPP) log_debug_errno(r, "NUMA support not available, ignoring."); else if (r < 0) log_warning_errno(r, "Failed to set NUMA memory policy, ignoring: %m"); } static void filter_args( const char* dst[], size_t *dst_index, char **src, int argc) { assert(dst); assert(dst_index); /* Copy some filtered arguments into the dst array from src. */ for (int i = 1; i < argc; i++) { if (STR_IN_SET(src[i], "--switched-root", "--system", "--user")) continue; if (startswith(src[i], "--deserialize=")) continue; if (streq(src[i], "--deserialize")) { i++; /* Skip the argument too */ continue; } /* Skip target unit designators. We already acted upon this information and have queued * appropriate jobs. We don't want to redo all this after reexecution. */ if (startswith(src[i], "--unit=")) continue; if (streq(src[i], "--unit")) { i++; /* Skip the argument too */ continue; } /* Seems we have a good old option. Let's pass it over to the new instance. */ dst[(*dst_index)++] = src[i]; } } static void finish_remaining_processes(ManagerObjective objective) { assert(objective >= 0 && objective < _MANAGER_OBJECTIVE_MAX); /* Kill all remaining processes from the initrd, but don't wait for them, so that we can handle the * SIGCHLD for them after deserializing. */ if (IN_SET(objective, MANAGER_SWITCH_ROOT, MANAGER_SOFT_REBOOT)) broadcast_signal(SIGTERM, /* wait_for_exit= */ false, /* send_sighup= */ true, arg_defaults.timeout_stop_usec); /* On soft reboot really make sure nothing is left. Note that this will skip cgroups * of units that were configured with SurviveFinalKillSignal=yes. */ if (objective == MANAGER_SOFT_REBOOT) broadcast_signal(SIGKILL, /* wait_for_exit= */ false, /* send_sighup= */ false, arg_defaults.timeout_stop_usec); } static int do_reexecute( ManagerObjective objective, int argc, char* argv[], const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock, FDSet *fds, const char *switch_root_dir, const char *switch_root_init, uint64_t saved_capability_ambient_set, const char **ret_error_message) { size_t i, args_size; const char **args; int r; assert(IN_SET(objective, MANAGER_REEXECUTE, MANAGER_SWITCH_ROOT, MANAGER_SOFT_REBOOT)); assert(argc >= 0); assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); assert(ret_error_message); if (switch_root_init) { r = chase(switch_root_init, switch_root_dir, CHASE_PREFIX_ROOT, NULL, NULL); if (r < 0) log_warning_errno(r, "Failed to chase configured init %s/%s: %m", strempty(switch_root_dir), switch_root_init); } else { r = chase(SYSTEMD_BINARY_PATH, switch_root_dir, CHASE_PREFIX_ROOT, NULL, NULL); if (r < 0) log_debug_errno(r, "Failed to chase our own binary %s/%s: %m", strempty(switch_root_dir), SYSTEMD_BINARY_PATH); } if (r < 0) { r = chase("/sbin/init", switch_root_dir, CHASE_PREFIX_ROOT, NULL, NULL); if (r < 0) return log_error_errno(r, "Failed to chase %s/sbin/init", strempty(switch_root_dir)); } /* Close and disarm the watchdog, so that the new instance can reinitialize it, but doesn't get * rebooted while we do that */ watchdog_close(true); /* Reset RLIMIT_NOFILE + RLIMIT_MEMLOCK back to the kernel defaults, so that the new systemd can pass * the kernel default to its child processes */ if (saved_rlimit_nofile->rlim_cur != 0) (void) setrlimit(RLIMIT_NOFILE, saved_rlimit_nofile); if (saved_rlimit_memlock->rlim_cur != RLIM_INFINITY) (void) setrlimit(RLIMIT_MEMLOCK, saved_rlimit_memlock); finish_remaining_processes(objective); if (!switch_root_dir && objective == MANAGER_SOFT_REBOOT) { /* If no switch root dir is specified, then check if /run/nextroot/ qualifies and use that */ r = path_is_os_tree("/run/nextroot"); if (r < 0 && r != -ENOENT) log_debug_errno(r, "Failed to determine if /run/nextroot/ is a valid OS tree, ignoring: %m"); else if (r > 0) switch_root_dir = "/run/nextroot"; } if (switch_root_dir) { r = switch_root(/* new_root= */ switch_root_dir, /* old_root_after= */ NULL, /* flags= */ (objective == MANAGER_SWITCH_ROOT ? SWITCH_ROOT_DESTROY_OLD_ROOT : 0) | (objective == MANAGER_SOFT_REBOOT ? 0 : SWITCH_ROOT_RECURSIVE_RUN)); if (r < 0) log_error_errno(r, "Failed to switch root, trying to continue: %m"); } r = capability_ambient_set_apply(saved_capability_ambient_set, /* also_inherit= */ false); if (r < 0) log_warning_errno(r, "Failed to apply the starting ambient set, ignoring: %m"); args_size = argc + 5; args = newa(const char*, args_size); if (!switch_root_init) { char sfd[STRLEN("--deserialize=") + DECIMAL_STR_MAX(int)]; /* First try to spawn ourselves with the right path, and with full serialization. We do this * only if the user didn't specify an explicit init to spawn. */ assert(arg_serialization); assert(fds); xsprintf(sfd, "--deserialize=%i", fileno(arg_serialization)); i = 1; /* Leave args[0] empty for now. */ /* Put our stuff first to make sure it always gets parsed in case * we get weird stuff from the kernel cmdline (like --) */ if (IN_SET(objective, MANAGER_SWITCH_ROOT, MANAGER_SOFT_REBOOT)) args[i++] = "--switched-root"; args[i++] = runtime_scope_cmdline_option_to_string(arg_runtime_scope); args[i++] = sfd; filter_args(args, &i, argv, argc); args[i++] = NULL; assert(i <= args_size); /* * We want valgrind to print its memory usage summary before reexecution. Valgrind won't do * this is on its own on exec(), but it will do it on exit(). Hence, to ensure we get a * summary here, fork() off a child, let it exit() cleanly, so that it prints the summary, * and wait() for it in the parent, before proceeding into the exec(). */ valgrind_summary_hack(); args[0] = SYSTEMD_BINARY_PATH; (void) execv(args[0], (char* const*) args); if (objective == MANAGER_REEXECUTE) { *ret_error_message = "Failed to execute our own binary"; return log_error_errno(errno, "Failed to execute our own binary %s: %m", args[0]); } log_debug_errno(errno, "Failed to execute our own binary %s, trying fallback: %m", args[0]); } /* Try the fallback, if there is any, without any serialization. We pass the original argv[] and * envp[]. (Well, modulo the ordering changes due to getopt() in argv[], and some cleanups in envp[], * but let's hope that doesn't matter.) */ arg_serialization = safe_fclose(arg_serialization); fds = fdset_free(fds); /* Drop /run/systemd directory. Some of its content can be used as a flag indicating that systemd is * the init system but we might be replacing it with something different. If systemd is used again it * will recreate the directory and its content anyway. */ r = rm_rf("/run/systemd.pre-switch-root", REMOVE_ROOT|REMOVE_MISSING_OK); if (r < 0) log_warning_errno(r, "Failed to prepare /run/systemd.pre-switch-root/, ignoring: %m"); r = RET_NERRNO(rename("/run/systemd", "/run/systemd.pre-switch-root")); if (r < 0) log_warning_errno(r, "Failed to move /run/systemd/ to /run/systemd.pre-switch-root/, ignoring: %m"); /* Reopen the console */ (void) make_console_stdio(); i = 1; /* Leave args[0] empty for now. */ for (int j = 1; j <= argc; j++) args[i++] = argv[j]; assert(i <= args_size); /* Re-enable any blocked signals, especially important if we switch from initrd to init=... */ (void) reset_all_signal_handlers(); (void) reset_signal_mask(); (void) rlimit_nofile_safe(); if (switch_root_init) { args[0] = switch_root_init; (void) execve(args[0], (char* const*) args, saved_env); log_warning_errno(errno, "Failed to execute configured init %s, trying fallback: %m", args[0]); } args[0] = "/sbin/init"; (void) execv(args[0], (char* const*) args); r = -errno; manager_status_printf(NULL, STATUS_TYPE_EMERGENCY, ANSI_HIGHLIGHT_RED " !! " ANSI_NORMAL, "Failed to execute /sbin/init"); *ret_error_message = "Failed to execute fallback shell"; if (r == -ENOENT) { log_warning("No /sbin/init, trying fallback"); args[0] = "/bin/sh"; args[1] = NULL; (void) execve(args[0], (char* const*) args, saved_env); return log_error_errno(errno, "Failed to execute /bin/sh, giving up: %m"); } else return log_error_errno(r, "Failed to execute /sbin/init, giving up: %m"); } static int invoke_main_loop( Manager *m, const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock, int *ret_retval, /* Return parameters relevant for shutting down */ FDSet **ret_fds, /* Return parameters for reexecuting */ char **ret_switch_root_dir, /* … */ char **ret_switch_root_init, /* … */ const char **ret_error_message) { int r; assert(m); assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); assert(ret_retval); assert(ret_fds); assert(ret_switch_root_dir); assert(ret_switch_root_init); assert(ret_error_message); for (;;) { int objective = manager_loop(m); if (objective < 0) { *ret_error_message = "Failed to run main loop"; return log_struct_errno(LOG_EMERG, objective, LOG_MESSAGE("Failed to run main loop: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_MAINLOOP_FAILED_STR); } /* Ensure shutdown timestamp is taken even when bypassing the job engine */ if (IN_SET(objective, MANAGER_SOFT_REBOOT, MANAGER_REBOOT, MANAGER_KEXEC, MANAGER_HALT, MANAGER_POWEROFF) && !dual_timestamp_is_set(m->timestamps + MANAGER_TIMESTAMP_SHUTDOWN_START)) dual_timestamp_now(m->timestamps + MANAGER_TIMESTAMP_SHUTDOWN_START); switch (objective) { case MANAGER_RELOAD: { LogTarget saved_log_target; int saved_log_level; manager_send_reloading(m); log_info("Reloading..."); /* First, save any overridden log level/target, then parse the configuration file, * which might change the log level to new settings. */ saved_log_level = m->log_level_overridden ? log_get_max_level() : -1; saved_log_target = m->log_target_overridden ? log_get_target() : _LOG_TARGET_INVALID; (void) parse_configuration(saved_rlimit_nofile, saved_rlimit_memlock); set_manager_defaults(m); set_manager_settings(m); update_cpu_affinity(false); update_numa_policy(false); if (saved_log_level >= 0) manager_override_log_level(m, saved_log_level); if (saved_log_target >= 0) manager_override_log_target(m, saved_log_target); if (manager_reload(m) < 0) /* Reloading failed before the point of no return. * Let's continue running as if nothing happened. */ m->objective = MANAGER_OK; else log_info("Reloading finished in " USEC_FMT " ms.", usec_sub_unsigned(now(CLOCK_MONOTONIC), m->timestamps[MANAGER_TIMESTAMP_UNITS_LOAD].monotonic) / USEC_PER_MSEC); continue; } case MANAGER_REEXECUTE: manager_send_reloading(m); /* From the perspective of the manager calling us this is * pretty much the same as a reload */ r = prepare_reexecute(m, &arg_serialization, ret_fds, false); if (r < 0) { *ret_error_message = "Failed to prepare for reexecution"; return r; } log_notice("Reexecuting."); *ret_retval = EXIT_SUCCESS; *ret_switch_root_dir = *ret_switch_root_init = NULL; return objective; case MANAGER_SWITCH_ROOT: manager_send_reloading(m); /* From the perspective of the manager calling us this is * pretty much the same as a reload */ manager_set_switching_root(m, true); if (!m->switch_root_init) { r = prepare_reexecute(m, &arg_serialization, ret_fds, true); if (r < 0) { *ret_error_message = "Failed to prepare for reexecution"; return r; } } else *ret_fds = NULL; log_notice("Switching root."); *ret_retval = EXIT_SUCCESS; /* Steal the switch root parameters */ *ret_switch_root_dir = TAKE_PTR(m->switch_root); *ret_switch_root_init = TAKE_PTR(m->switch_root_init); return objective; case MANAGER_SOFT_REBOOT: manager_send_reloading(m); manager_set_switching_root(m, true); r = prepare_reexecute(m, &arg_serialization, ret_fds, /* switching_root= */ true); if (r < 0) { *ret_error_message = "Failed to prepare for reexecution"; return r; } log_notice("Soft-rebooting."); *ret_retval = EXIT_SUCCESS; *ret_switch_root_dir = TAKE_PTR(m->switch_root); *ret_switch_root_init = NULL; return objective; case MANAGER_EXIT: if (MANAGER_IS_USER(m)) { log_debug("Exit."); *ret_retval = m->return_value; *ret_fds = NULL; *ret_switch_root_dir = *ret_switch_root_init = NULL; return objective; } _fallthrough_; case MANAGER_REBOOT: case MANAGER_POWEROFF: case MANAGER_HALT: case MANAGER_KEXEC: { log_notice("Shutting down."); *ret_retval = m->return_value; *ret_fds = NULL; *ret_switch_root_dir = *ret_switch_root_init = NULL; return objective; } default: assert_not_reached(); } } } static void log_execution_mode(bool *ret_first_boot) { bool first_boot = false; int r; assert(ret_first_boot); switch (arg_runtime_scope) { case RUNTIME_SCOPE_SYSTEM: { struct utsname uts; int v; log_info("systemd " GIT_VERSION " running in %ssystem mode (%s)", arg_action == ACTION_TEST ? "test " : "", systemd_features); v = detect_virtualization(); if (v > 0) log_info("Detected virtualization %s.", virtualization_to_string(v)); v = detect_confidential_virtualization(); if (v > 0) log_info("Detected confidential virtualization %s.", confidential_virtualization_to_string(v)); log_info("Detected architecture %s.", architecture_to_string(uname_architecture())); if (in_initrd()) log_info("Running in initrd."); else { _cleanup_free_ char *id_text = NULL; /* Let's check whether we are in first boot. First, check if an override was * specified on the kernel command line. If yes, we honour that. */ r = proc_cmdline_get_bool("systemd.condition_first_boot", /* flags = */ 0, &first_boot); if (r < 0) log_debug_errno(r, "Failed to parse systemd.condition_first_boot= kernel command line argument, ignoring: %m"); if (r > 0) log_full(first_boot ? LOG_INFO : LOG_DEBUG, "Kernel command line argument says we are %s first boot.", first_boot ? "in" : "not in"); else { /* Second, perform autodetection. We use /etc/machine-id as flag file for * this: If it is missing or contains the value "uninitialized", this is the * first boot. In other cases, it is not. This allows container managers and * installers to provision a couple of files in /etc but still permit the * first-boot initialization to occur. If the container manager wants to * provision the machine ID it should pass $container_uuid to PID 1. */ r = read_one_line_file("/etc/machine-id", &id_text); if (r < 0 || streq(id_text, "uninitialized")) { if (r < 0 && r != -ENOENT) log_warning_errno(r, "Unexpected error while reading /etc/machine-id, assuming first boot: %m"); first_boot = true; log_info("Detected first boot."); } else log_debug("Detected initialized system, this is not the first boot."); } } assert_se(uname(&uts) >= 0); if (strverscmp_improved(uts.release, KERNEL_BASELINE_VERSION) < 0) log_warning("Warning! Reported kernel version %s is older than systemd's required baseline kernel version %s. " "Your mileage may vary.", uts.release, KERNEL_BASELINE_VERSION); else log_debug("Kernel version %s, our baseline is %s", uts.release, KERNEL_BASELINE_VERSION); break; } case RUNTIME_SCOPE_USER: if (DEBUG_LOGGING) { _cleanup_free_ char *t = NULL; t = uid_to_name(getuid()); log_debug("systemd " GIT_VERSION " running in %suser mode for user " UID_FMT "/%s. (%s)", arg_action == ACTION_TEST ? " test" : "", getuid(), strna(t), systemd_features); } break; default: assert_not_reached(); } *ret_first_boot = first_boot; } static int initialize_runtime( bool skip_setup, bool first_boot, struct rlimit *saved_rlimit_nofile, struct rlimit *saved_rlimit_memlock, uint64_t *saved_ambient_set, const char **ret_error_message) { int r; assert(saved_ambient_set); assert(ret_error_message); /* Sets up various runtime parameters. Many of these initializations are conditionalized: * * - Some only apply to --system instances * - Some only apply to --user instances * - Some only apply when we first start up, but not when we reexecute */ if (arg_action != ACTION_RUN) return 0; update_cpu_affinity(skip_setup); update_numa_policy(skip_setup); switch (arg_runtime_scope) { case RUNTIME_SCOPE_SYSTEM: /* Make sure we leave a core dump without panicking the kernel. */ install_crash_handler(); if (!skip_setup) { /* Check that /usr/ is either on the same file system as / or mounted already. */ if (dir_is_empty("/usr", /* ignore_hidden_or_backup = */ true) > 0) { *ret_error_message = "Refusing to run in unsupported environment where /usr/ is not populated"; return -ENOEXEC; } /* Pull credentials from various sources into a common credential directory (we do * this here, before setting up the machine ID, so that we can use credential info * for setting up the machine ID) */ (void) import_credentials(); (void) os_release_status(); (void) hostname_setup(/* really = */ true); (void) machine_id_setup(/* root = */ NULL, arg_machine_id, (first_boot ? MACHINE_ID_SETUP_FORCE_TRANSIENT : 0) | (arg_machine_id_from_firmware ? MACHINE_ID_SETUP_FORCE_FIRMWARE : 0), /* ret_machine_id = */ NULL); (void) loopback_setup(); bump_unix_max_dgram_qlen(); bump_file_max_and_nr_open(); write_container_id(); /* Copy os-release to the propagate directory, so that we update it for services running * under RootDirectory=/RootImage= when we do a soft reboot. */ r = setup_os_release(RUNTIME_SCOPE_SYSTEM); if (r < 0) log_warning_errno(r, "Failed to copy os-release for propagation, ignoring: %m"); } r = watchdog_set_device(arg_watchdog_device); if (r < 0) log_warning_errno(r, "Failed to set watchdog device to %s, ignoring: %m", arg_watchdog_device); if (!cap_test_all(arg_capability_bounding_set)) { r = capability_bounding_set_drop_usermode(arg_capability_bounding_set); if (r < 0) { *ret_error_message = "Failed to drop capability bounding set of usermode helpers"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to drop capability bounding set of usermode helpers: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_CAPABILITY_BOUNDING_USER_STR); } r = capability_bounding_set_drop(arg_capability_bounding_set, true); if (r < 0) { *ret_error_message = "Failed to drop capability bounding set"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to drop capability bounding set: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_CAPABILITY_BOUNDING_STR); } } if (arg_no_new_privs) { if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) { *ret_error_message = "Failed to disable new privileges"; return log_struct_errno(LOG_EMERG, errno, LOG_MESSAGE("Failed to disable new privileges: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_DISABLE_PRIVILEGES_STR); } } break; case RUNTIME_SCOPE_USER: { _cleanup_free_ char *p = NULL; /* Create the runtime directory and place the inaccessible device nodes there, if we run in * user mode. In system mode mount_setup() already did that. */ r = xdg_user_runtime_dir("/systemd", &p); if (r < 0) { *ret_error_message = "$XDG_RUNTIME_DIR is not set"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to determine $XDG_RUNTIME_DIR path: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_NO_XDGDIR_PATH_STR); } if (!skip_setup) { (void) mkdir_p_label(p, 0755); (void) make_inaccessible_nodes(p, UID_INVALID, GID_INVALID); r = setup_os_release(RUNTIME_SCOPE_USER); if (r < 0) log_warning_errno(r, "Failed to copy os-release for propagation, ignoring: %m"); } break; } default: assert_not_reached(); } /* The two operations on the ambient set are meant for a user serssion manager. They do not affect * system manager operation, because by default it starts with an empty ambient set. * * Preserve the ambient set for later use with sd-executor processes. */ r = capability_get_ambient(saved_ambient_set); if (r < 0) log_warning_errno(r, "Failed to save ambient capabilities, ignoring: %m"); /* Clear ambient capabilities, so services do not inherit them implicitly. Dropping them does * not affect the permitted and effective sets which are important for the manager itself to * operate. */ r = capability_ambient_set_apply(0, /* also_inherit= */ false); if (r < 0) log_warning_errno(r, "Failed to reset ambient capability set, ignoring: %m"); if (arg_timer_slack_nsec != NSEC_INFINITY) if (prctl(PR_SET_TIMERSLACK, arg_timer_slack_nsec) < 0) log_warning_errno(errno, "Failed to adjust timer slack, ignoring: %m"); if (arg_syscall_archs) { r = enforce_syscall_archs(arg_syscall_archs); if (r < 0) { *ret_error_message = "Failed to set syscall architectures"; return r; } } r = make_reaper_process(true); if (r < 0) log_warning_errno(r, "Failed to make us a subreaper, ignoring: %m"); /* Bump up RLIMIT_NOFILE for systemd itself */ (void) bump_rlimit_nofile(saved_rlimit_nofile); (void) bump_rlimit_memlock(saved_rlimit_memlock); return 0; } static int do_queue_default_job( Manager *m, const char **ret_error_message) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; const char *unit; Job *job; Unit *target; int r; if (arg_default_unit) unit = arg_default_unit; else if (in_initrd()) unit = SPECIAL_INITRD_TARGET; else unit = SPECIAL_DEFAULT_TARGET; log_debug("Activating default unit: %s", unit); r = manager_load_startable_unit_or_warn(m, unit, NULL, &target); if (r < 0 && in_initrd() && !arg_default_unit) { /* Fall back to default.target, which we used to always use by default. Only do this if no * explicit configuration was given. */ log_info("Falling back to " SPECIAL_DEFAULT_TARGET "."); r = manager_load_startable_unit_or_warn(m, SPECIAL_DEFAULT_TARGET, NULL, &target); } if (r < 0) { log_info("Falling back to " SPECIAL_RESCUE_TARGET "."); r = manager_load_startable_unit_or_warn(m, SPECIAL_RESCUE_TARGET, NULL, &target); if (r < 0) { *ret_error_message = r == -ERFKILL ? SPECIAL_RESCUE_TARGET " masked" : "Failed to load " SPECIAL_RESCUE_TARGET; return r; } } assert(target->load_state == UNIT_LOADED); r = manager_add_job(m, JOB_START, target, JOB_ISOLATE, &error, &job); if (r == -EPERM) { log_debug_errno(r, "Default target could not be isolated, starting instead: %s", bus_error_message(&error, r)); sd_bus_error_free(&error); r = manager_add_job(m, JOB_START, target, JOB_REPLACE, &error, &job); if (r < 0) { *ret_error_message = "Failed to start default target"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to start default target: %s", bus_error_message(&error, r)), "MESSAGE_ID=" SD_MESSAGE_CORE_START_TARGET_FAILED_STR); } } else if (r < 0) { *ret_error_message = "Failed to isolate default target"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to isolate default target: %s", bus_error_message(&error, r)), "MESSAGE_ID=" SD_MESSAGE_CORE_ISOLATE_TARGET_FAILED_STR); } else log_info("Queued %s job for default target %s.", job_type_to_string(job->type), unit_status_string(job->unit, NULL)); m->default_unit_job_id = job->id; return 0; } static void save_rlimits(struct rlimit *saved_rlimit_nofile, struct rlimit *saved_rlimit_memlock) { assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); if (getrlimit(RLIMIT_NOFILE, saved_rlimit_nofile) < 0) log_warning_errno(errno, "Reading RLIMIT_NOFILE failed, ignoring: %m"); if (getrlimit(RLIMIT_MEMLOCK, saved_rlimit_memlock) < 0) log_warning_errno(errno, "Reading RLIMIT_MEMLOCK failed, ignoring: %m"); } static void fallback_rlimit_nofile(const struct rlimit *saved_rlimit_nofile) { struct rlimit *rl; if (arg_defaults.rlimit[RLIMIT_NOFILE]) return; /* Make sure forked processes get limits based on the original kernel setting */ rl = newdup(struct rlimit, saved_rlimit_nofile, 1); if (!rl) { log_oom(); return; } /* Bump the hard limit for system services to a substantially higher value. The default * hard limit current kernels set is pretty low (4K), mostly for historical * reasons. According to kernel developers, the fd handling in recent kernels has been * optimized substantially enough, so that we can bump the limit now, without paying too * high a price in memory or performance. Note however that we only bump the hard limit, * not the soft limit. That's because select() works the way it works, and chokes on fds * >= 1024. If we'd bump the soft limit globally, it might accidentally happen to * unexpecting programs that they get fds higher than what they can process using * select(). By only bumping the hard limit but leaving the low limit as it is we avoid * this pitfall: programs that are written by folks aware of the select() problem in mind * (and thus use poll()/epoll instead of select(), the way everybody should) can * explicitly opt into high fds by bumping their soft limit beyond 1024, to the hard limit * we pass. */ if (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM) { int nr; /* Get the underlying absolute limit the kernel enforces */ nr = read_nr_open(); rl->rlim_max = MIN((rlim_t) nr, MAX(rl->rlim_max, (rlim_t) HIGH_RLIMIT_NOFILE)); } /* If for some reason we were invoked with a soft limit above 1024 (which should never * happen!, but who knows what we get passed in from pam_limit when invoked as --user * instance), then lower what we pass on to not confuse our children */ rl->rlim_cur = MIN(rl->rlim_cur, (rlim_t) FD_SETSIZE); arg_defaults.rlimit[RLIMIT_NOFILE] = rl; } static void fallback_rlimit_memlock(const struct rlimit *saved_rlimit_memlock) { struct rlimit *rl; /* Pass the original value down to invoked processes */ if (arg_defaults.rlimit[RLIMIT_MEMLOCK]) return; rl = newdup(struct rlimit, saved_rlimit_memlock, 1); if (!rl) { log_oom(); return; } if (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM) { /* Raise the default limit to 8M also on old kernels and in containers (8M is the kernel * default for this since kernel 5.16) */ rl->rlim_max = MAX(rl->rlim_max, (rlim_t) DEFAULT_RLIMIT_MEMLOCK); rl->rlim_cur = MAX(rl->rlim_cur, (rlim_t) DEFAULT_RLIMIT_MEMLOCK); } arg_defaults.rlimit[RLIMIT_MEMLOCK] = rl; } static void setenv_manager_environment(void) { int r; STRV_FOREACH(p, arg_manager_environment) { log_debug("Setting '%s' in our own environment.", *p); r = putenv_dup(*p, true); if (r < 0) log_warning_errno(r, "Failed to setenv \"%s\", ignoring: %m", *p); } } static void reset_arguments(void) { /* Frees/resets arg_* variables, with a few exceptions commented below. */ arg_default_unit = mfree(arg_default_unit); /* arg_runtime_scope — ignore */ arg_dump_core = true; arg_crash_chvt = -1; arg_crash_shell = false; arg_crash_action = CRASH_FREEZE; arg_confirm_spawn = mfree(arg_confirm_spawn); arg_show_status = _SHOW_STATUS_INVALID; arg_status_unit_format = STATUS_UNIT_FORMAT_DEFAULT; arg_switched_root = false; arg_pager_flags = 0; arg_service_watchdogs = true; unit_defaults_done(&arg_defaults); unit_defaults_init(&arg_defaults, arg_runtime_scope); arg_runtime_watchdog = 0; arg_reboot_watchdog = 10 * USEC_PER_MINUTE; arg_kexec_watchdog = 0; arg_pretimeout_watchdog = 0; arg_early_core_pattern = mfree(arg_early_core_pattern); arg_watchdog_device = mfree(arg_watchdog_device); arg_watchdog_pretimeout_governor = mfree(arg_watchdog_pretimeout_governor); arg_default_environment = strv_free(arg_default_environment); arg_manager_environment = strv_free(arg_manager_environment); arg_capability_bounding_set = CAP_MASK_UNSET; arg_no_new_privs = false; arg_protect_system = -1; arg_timer_slack_nsec = NSEC_INFINITY; arg_syscall_archs = set_free(arg_syscall_archs); /* arg_serialization — ignore */ arg_machine_id = (sd_id128_t) {}; arg_cad_burst_action = EMERGENCY_ACTION_REBOOT_FORCE; cpu_set_reset(&arg_cpu_affinity); numa_policy_reset(&arg_numa_policy); arg_random_seed = mfree(arg_random_seed); arg_random_seed_size = 0; arg_clock_usec = 0; arg_reload_limit_interval_sec = 0; arg_reload_limit_burst = 0; } static void determine_default_oom_score_adjust(void) { int r, a, b; /* Run our services at slightly higher OOM score than ourselves. But let's be conservative here, and * do this only if we don't run as root (i.e. only if we are run in user mode, for an unprivileged * user). */ if (arg_defaults.oom_score_adjust_set) return; if (getuid() == 0) return; r = get_oom_score_adjust(&a); if (r < 0) return (void) log_warning_errno(r, "Failed to determine current OOM score adjustment value, ignoring: %m"); assert_cc(100 <= OOM_SCORE_ADJ_MAX); b = a >= OOM_SCORE_ADJ_MAX - 100 ? OOM_SCORE_ADJ_MAX : a + 100; if (a == b) return; arg_defaults.oom_score_adjust = b; arg_defaults.oom_score_adjust_set = true; } static int parse_configuration(const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock) { int r; assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); /* Assign configuration defaults */ reset_arguments(); r = parse_config_file(); if (r < 0) log_warning_errno(r, "Failed to parse config file, ignoring: %m"); if (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM) { r = proc_cmdline_parse(parse_proc_cmdline_item, NULL, 0); if (r < 0) log_warning_errno(r, "Failed to parse kernel command line, ignoring: %m"); } /* Initialize some default rlimits for services if they haven't been configured */ fallback_rlimit_nofile(saved_rlimit_nofile); fallback_rlimit_memlock(saved_rlimit_memlock); /* Note that this also parses bits from the kernel command line, including "debug". */ log_parse_environment(); /* Initialize the show status setting if it hasn't been set explicitly yet */ if (arg_show_status == _SHOW_STATUS_INVALID) arg_show_status = SHOW_STATUS_YES; /* Slightly raise the OOM score for our services if we are running for unprivileged users. */ determine_default_oom_score_adjust(); /* Push variables into the manager environment block */ setenv_manager_environment(); /* Parse log environment variables again to take into account any new environment variables. */ log_parse_environment(); return 0; } static int safety_checks(void) { if (getpid_cached() == 1 && arg_action != ACTION_RUN) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Unsupported execution mode while PID 1."); if (getpid_cached() == 1 && arg_runtime_scope == RUNTIME_SCOPE_USER) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Can't run --user mode as PID 1."); if (arg_action == ACTION_RUN && arg_runtime_scope == RUNTIME_SCOPE_SYSTEM && getpid_cached() != 1) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Can't run system mode unless PID 1."); if (arg_action == ACTION_TEST && geteuid() == 0) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Don't run test mode as root."); switch (arg_runtime_scope) { case RUNTIME_SCOPE_USER: if (arg_action == ACTION_RUN && sd_booted() <= 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Trying to run as user instance, but the system has not been booted with systemd."); if (arg_action == ACTION_RUN && !getenv("XDG_RUNTIME_DIR")) return log_error_errno(SYNTHETIC_ERRNO(EUNATCH), "Trying to run as user instance, but $XDG_RUNTIME_DIR is not set."); break; case RUNTIME_SCOPE_SYSTEM: if (arg_action == ACTION_RUN && running_in_chroot() > 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Cannot be run in a chroot() environment."); break; default: assert_not_reached(); } return 0; } static int initialize_security( bool *loaded_policy, dual_timestamp *security_start_timestamp, dual_timestamp *security_finish_timestamp, const char **ret_error_message) { int r; assert(loaded_policy); assert(security_start_timestamp); assert(security_finish_timestamp); assert(ret_error_message); dual_timestamp_now(security_start_timestamp); r = mac_selinux_setup(loaded_policy); if (r < 0) { *ret_error_message = "Failed to load SELinux policy"; return r; } r = mac_smack_setup(loaded_policy); if (r < 0) { *ret_error_message = "Failed to load SMACK policy"; return r; } r = mac_apparmor_setup(); if (r < 0) { *ret_error_message = "Failed to load AppArmor policy"; return r; } r = ima_setup(); if (r < 0) { *ret_error_message = "Failed to load IMA policy"; return r; } r = ipe_setup(); if (r < 0) { *ret_error_message = "Failed to load IPE policy"; return r; } dual_timestamp_now(security_finish_timestamp); return 0; } static int collect_fds(FDSet **ret_fds, const char **ret_error_message) { int r; assert(ret_fds); assert(ret_error_message); /* Pick up all fds passed to us. We apply a filter here: we only take the fds that have O_CLOEXEC * off. All fds passed via execve() to us must have O_CLOEXEC off, and our own code and dependencies * should be clean enough to set O_CLOEXEC universally. Thus checking the bit should be a safe * mechanism to distinguish passed in fds from our own. * * Why bother? Some subsystems we initialize early, specifically selinux might keep fds open in our * process behind our back. We should not take possession of that (and then accidentally close * it). SELinux thankfully sets O_CLOEXEC on its fds, so this test should work. */ r = fdset_new_fill(/* filter_cloexec= */ 0, ret_fds); if (r < 0) { *ret_error_message = "Failed to allocate fd set"; return log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to allocate fd set: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_FD_SET_FAILED_STR); } /* The serialization fd should have O_CLOEXEC turned on already, let's verify that we didn't pick it up here */ assert_se(!arg_serialization || !fdset_contains(*ret_fds, fileno(arg_serialization))); return 0; } static void setup_console_terminal(bool skip_setup) { if (arg_runtime_scope != RUNTIME_SCOPE_SYSTEM) return; /* Become a session leader if we aren't one yet. */ (void) setsid(); /* If we are init, we connect stdin/stdout/stderr to /dev/null and make sure we don't have a * controlling tty. */ (void) release_terminal(); /* Reset the console, but only if this is really init and we are freshly booted */ if (!skip_setup) (void) console_setup(); } static bool early_skip_setup_check(int argc, char *argv[]) { bool found_deserialize = false; /* Determine if this is a reexecution or normal bootup. We do the full command line parsing much * later, so let's just have a quick peek here. Note that if we have switched root, do all the * special setup things anyway, even if in that case we also do deserialization. */ for (int i = 1; i < argc; i++) if (streq(argv[i], "--switched-root")) return false; /* If we switched root, don't skip the setup. */ else if (startswith(argv[i], "--deserialize=") || streq(argv[i], "--deserialize")) found_deserialize = true; return found_deserialize; /* When we are deserializing, then we are reexecuting, hence avoid the extensive setup */ } static int save_env(void) { char **l; l = strv_copy(environ); if (!l) return -ENOMEM; strv_free_and_replace(saved_env, l); return 0; } int main(int argc, char *argv[]) { dual_timestamp initrd_timestamp = DUAL_TIMESTAMP_NULL, userspace_timestamp = DUAL_TIMESTAMP_NULL, kernel_timestamp = DUAL_TIMESTAMP_NULL, security_start_timestamp = DUAL_TIMESTAMP_NULL, security_finish_timestamp = DUAL_TIMESTAMP_NULL; struct rlimit saved_rlimit_nofile = RLIMIT_MAKE_CONST(0), saved_rlimit_memlock = RLIMIT_MAKE_CONST(RLIM_INFINITY); /* The original rlimits we passed * in. Note we use different values * for the two that indicate whether * these fields are initialized! */ bool skip_setup, loaded_policy = false, queue_default_job = false, first_boot = false; char *switch_root_dir = NULL, *switch_root_init = NULL; usec_t before_startup, after_startup; static char systemd[] = "systemd"; const char *error_message = NULL; uint64_t saved_ambient_set = 0; int r, retval = EXIT_FAILURE; Manager *m = NULL; FDSet *fds = NULL; assert_se(argc > 0 && !isempty(argv[0])); /* SysV compatibility: redirect init → telinit */ redirect_telinit(argc, argv); /* Take timestamps early on */ dual_timestamp_from_monotonic(&kernel_timestamp, 0); dual_timestamp_now(&userspace_timestamp); /* Figure out whether we need to do initialize the system, or if we already did that because we are * reexecuting. */ skip_setup = early_skip_setup_check(argc, argv); /* If we get started via the /sbin/init symlink then we are called 'init'. After a subsequent * reexecution we are then called 'systemd'. That is confusing, hence let's call us systemd * right-away. */ program_invocation_short_name = systemd; (void) prctl(PR_SET_NAME, systemd); /* Save the original command line */ save_argc_argv(argc, argv); /* Save the original environment as we might need to restore it if we're requested to execute another * system manager later. */ r = save_env(); if (r < 0) { error_message = "Failed to copy environment block"; goto finish; } /* Make sure that if the user says "syslog" we actually log to the journal. */ log_set_upgrade_syslog_to_journal(true); if (getpid_cached() == 1) { /* When we run as PID 1 force system mode */ arg_runtime_scope = RUNTIME_SCOPE_SYSTEM; /* Disable the umask logic */ umask(0); /* Make sure that at least initially we do not ever log to journald/syslogd, because it might * not be activated yet (even though the log socket for it exists). */ log_set_prohibit_ipc(true); /* Always reopen /dev/console when running as PID 1 or one of its pre-execve() children. This * is important so that we never end up logging to any foreign stderr, for example if we have * to log in a child process right before execve()'ing the actual binary, at a point in time * where socket activation stderr/stdout area already set up. */ log_set_always_reopen_console(true); if (detect_container() <= 0) { /* Running outside of a container as PID 1 */ log_set_target_and_open(LOG_TARGET_KMSG); if (in_initrd()) initrd_timestamp = userspace_timestamp; if (!skip_setup) { r = mount_setup_early(); if (r < 0) { error_message = "Failed to mount early API filesystems"; goto finish; } } /* We might have just mounted /proc, so let's try to parse the kernel * command line log arguments immediately. */ log_parse_environment(); /* Let's open the log backend a second time, in case the first time didn't * work. Quite possibly we have mounted /dev just now, so /dev/kmsg became * available, and it previously wasn't. */ log_open(); if (!skip_setup) { disable_printk_ratelimit(); r = initialize_security( &loaded_policy, &security_start_timestamp, &security_finish_timestamp, &error_message); if (r < 0) goto finish; } if (mac_init() < 0) { error_message = "Failed to initialize MAC support"; goto finish; } if (!skip_setup) initialize_clock_timewarp(); clock_apply_epoch(/* allow_backwards= */ !skip_setup); /* Set the default for later on, but don't actually open the logs like this for * now. Note that if we are transitioning from the initrd there might still be * journal fd open, and we shouldn't attempt opening that before we parsed * /proc/cmdline which might redirect output elsewhere. */ log_set_target(LOG_TARGET_JOURNAL_OR_KMSG); } else { /* Running inside a container, as PID 1 */ log_set_target_and_open(LOG_TARGET_CONSOLE); /* For later on, see above... */ log_set_target(LOG_TARGET_JOURNAL); /* clear the kernel timestamp, because we are in a container */ kernel_timestamp = DUAL_TIMESTAMP_NULL; } initialize_coredump(skip_setup); r = fixup_environment(); if (r < 0) { log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to fix up PID 1 environment: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_PID1_ENVIRONMENT_STR); error_message = "Failed to fix up PID1 environment"; goto finish; } /* Try to figure out if we can use colors with the console. No need to do that for user * instances since they never log into the console. */ log_show_color(colors_enabled()); r = make_null_stdio(); if (r < 0) log_warning_errno(r, "Failed to redirect standard streams to /dev/null, ignoring: %m"); /* Load the kernel modules early. */ if (!skip_setup) (void) kmod_setup(); /* Mount /proc, /sys and friends, so that /proc/cmdline and /proc/$PID/fd is available. */ r = mount_setup(loaded_policy, skip_setup); if (r < 0) { error_message = "Failed to mount API filesystems"; goto finish; } if (!skip_setup) { r = mount_cgroup_legacy_controllers(loaded_policy); if (r < 0) { error_message = "Failed to mount cgroup v1 hierarchy"; goto finish; } } /* The efivarfs is now mounted, let's lock down the system token. */ lock_down_efi_variables(); /* Cache command-line options passed from EFI variables */ if (!skip_setup) (void) cache_efi_options_variable(); } else { /* Running as user instance */ arg_runtime_scope = RUNTIME_SCOPE_USER; log_set_always_reopen_console(true); log_set_target_and_open(LOG_TARGET_AUTO); /* clear the kernel timestamp, because we are not PID 1 */ kernel_timestamp = DUAL_TIMESTAMP_NULL; if (mac_init() < 0) { error_message = "Failed to initialize MAC support"; goto finish; } } /* Save the original RLIMIT_NOFILE/RLIMIT_MEMLOCK so that we can reset it later when * transitioning from the initrd to the main systemd or suchlike. */ save_rlimits(&saved_rlimit_nofile, &saved_rlimit_memlock); /* Reset all signal handlers. */ (void) reset_all_signal_handlers(); (void) ignore_signals(SIGNALS_IGNORE); (void) parse_configuration(&saved_rlimit_nofile, &saved_rlimit_memlock); r = parse_argv(argc, argv); if (r < 0) { error_message = "Failed to parse command line arguments"; goto finish; } r = safety_checks(); if (r < 0) goto finish; if (IN_SET(arg_action, ACTION_TEST, ACTION_HELP, ACTION_DUMP_CONFIGURATION_ITEMS, ACTION_DUMP_BUS_PROPERTIES, ACTION_BUS_INTROSPECT)) pager_open(arg_pager_flags); if (arg_action != ACTION_RUN) skip_setup = true; if (arg_action == ACTION_HELP) { retval = help() < 0 ? EXIT_FAILURE : EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_VERSION) { retval = version(); goto finish; } else if (arg_action == ACTION_DUMP_CONFIGURATION_ITEMS) { unit_dump_config_items(stdout); retval = EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_DUMP_BUS_PROPERTIES) { dump_bus_properties(stdout); retval = EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_BUS_INTROSPECT) { r = bus_manager_introspect_implementations(stdout, arg_bus_introspect); retval = r >= 0 ? EXIT_SUCCESS : EXIT_FAILURE; goto finish; } assert_se(IN_SET(arg_action, ACTION_RUN, ACTION_TEST)); /* Move out of the way, so that we won't block unmounts */ assert_se(chdir("/") == 0); if (arg_action == ACTION_RUN) { if (!skip_setup) { /* Apply the systemd.clock_usec= kernel command line switch */ apply_clock_update(); /* Apply random seed from kernel command line */ cmdline_take_random_seed(); } /* A core pattern might have been specified via the cmdline. */ initialize_core_pattern(skip_setup); /* Make /usr/ read-only */ apply_protect_system(skip_setup); /* Close logging fds, in order not to confuse collecting passed fds and terminal logic below */ log_close(); /* Remember open file descriptors for later deserialization */ r = collect_fds(&fds, &error_message); if (r < 0) goto finish; /* Give up any control of the console, but make sure its initialized. */ setup_console_terminal(skip_setup); /* Open the logging devices, if possible and necessary */ log_open(); } log_execution_mode(&first_boot); r = initialize_runtime(skip_setup, first_boot, &saved_rlimit_nofile, &saved_rlimit_memlock, &saved_ambient_set, &error_message); if (r < 0) goto finish; r = manager_new(arg_runtime_scope, arg_action == ACTION_TEST ? MANAGER_TEST_FULL : 0, &m); if (r < 0) { log_struct_errno(LOG_EMERG, r, LOG_MESSAGE("Failed to allocate manager object: %m"), "MESSAGE_ID=" SD_MESSAGE_CORE_MANAGER_ALLOCATE_STR); error_message = "Failed to allocate manager object"; goto finish; } m->timestamps[MANAGER_TIMESTAMP_KERNEL] = kernel_timestamp; m->timestamps[MANAGER_TIMESTAMP_INITRD] = initrd_timestamp; m->timestamps[MANAGER_TIMESTAMP_USERSPACE] = userspace_timestamp; m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_START)] = security_start_timestamp; m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_FINISH)] = security_finish_timestamp; m->saved_ambient_set = saved_ambient_set; set_manager_defaults(m); set_manager_settings(m); manager_set_first_boot(m, first_boot); manager_set_switching_root(m, arg_switched_root); /* Remember whether we should queue the default job */ queue_default_job = !arg_serialization || arg_switched_root; before_startup = now(CLOCK_MONOTONIC); r = manager_startup(m, arg_serialization, fds, /* root= */ NULL); if (r < 0) { error_message = "Failed to start up manager"; goto finish; } /* This will close all file descriptors that were opened, but not claimed by any unit. */ fds = fdset_free(fds); arg_serialization = safe_fclose(arg_serialization); if (queue_default_job) { r = do_queue_default_job(m, &error_message); if (r < 0) goto finish; } after_startup = now(CLOCK_MONOTONIC); log_full(arg_action == ACTION_TEST ? LOG_INFO : LOG_DEBUG, "Loaded units and determined initial transaction in %s.", FORMAT_TIMESPAN(after_startup - before_startup, 100 * USEC_PER_MSEC)); if (arg_action == ACTION_TEST) { manager_test_summary(m); retval = EXIT_SUCCESS; goto finish; } r = invoke_main_loop(m, &saved_rlimit_nofile, &saved_rlimit_memlock, &retval, &fds, &switch_root_dir, &switch_root_init, &error_message); /* MANAGER_OK and MANAGER_RELOAD are not expected here. */ assert(r < 0 || IN_SET(r, MANAGER_REEXECUTE, MANAGER_EXIT) || (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM && IN_SET(r, MANAGER_REBOOT, MANAGER_SOFT_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC, MANAGER_SWITCH_ROOT))); finish: pager_close(); if (m) { arg_reboot_watchdog = manager_get_watchdog(m, WATCHDOG_REBOOT); arg_kexec_watchdog = manager_get_watchdog(m, WATCHDOG_KEXEC); m = manager_free(m); } mac_selinux_finish(); if (IN_SET(r, MANAGER_REEXECUTE, MANAGER_SWITCH_ROOT, MANAGER_SOFT_REBOOT)) r = do_reexecute(r, argc, argv, &saved_rlimit_nofile, &saved_rlimit_memlock, fds, switch_root_dir, switch_root_init, saved_ambient_set, &error_message); /* This only returns if reexecution failed */ arg_serialization = safe_fclose(arg_serialization); fds = fdset_free(fds); saved_env = strv_free(saved_env); #if HAVE_VALGRIND_VALGRIND_H /* If we are PID 1 and running under valgrind, then let's exit * here explicitly. valgrind will only generate nice output on * exit(), not on exec(), hence let's do the former not the * latter here. */ if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) { /* Cleanup watchdog_device strings for valgrind. We need them * in become_shutdown() so normally we cannot free them yet. */ watchdog_free_device(); reset_arguments(); return retval; } #endif #if HAS_FEATURE_ADDRESS_SANITIZER /* At this stage we most likely don't have stdio/stderr open, so the following * LSan check would not print any actionable information and would just crash * PID 1. To make this a bit more helpful, let's try to open /dev/console, * and if we succeed redirect LSan's report there. */ if (getpid_cached() == 1) { _cleanup_close_ int tty_fd = -EBADF; tty_fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC); if (tty_fd >= 0) __sanitizer_set_report_fd((void*) (intptr_t) tty_fd); __lsan_do_leak_check(); } #endif if (r < 0) (void) sd_notifyf(/* unset_environment= */ false, "ERRNO=%i", -r); /* Try to invoke the shutdown binary unless we already failed. * If we failed above, we want to freeze after finishing cleanup. */ if (arg_runtime_scope == RUNTIME_SCOPE_SYSTEM && IN_SET(r, MANAGER_EXIT, MANAGER_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC)) { r = become_shutdown(r, retval); log_error_errno(r, "Failed to execute shutdown binary, %s: %m", getpid_cached() == 1 ? "freezing" : "quitting"); error_message = "Failed to execute shutdown binary"; } /* This is primarily useful when running systemd in a VM, as it provides the user running the VM with * a mechanism to pick up systemd's exit status in the VM. */ (void) sd_notifyf(/* unset_environment= */ false, "EXIT_STATUS=%i", retval); watchdog_free_device(); arg_watchdog_device = mfree(arg_watchdog_device); if (getpid_cached() == 1) { if (error_message) manager_status_printf(NULL, STATUS_TYPE_EMERGENCY, ANSI_HIGHLIGHT_RED "!!!!!!" ANSI_NORMAL, "%s.", error_message); freeze_or_exit_or_reboot(); } reset_arguments(); return retval; }