/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include #include #if HAVE_AUDIT #include #endif #include "sd-daemon.h" #include "sd-messages.h" #include "sd-path.h" #include "all-units.h" #include "alloc-util.h" #include "audit-fd.h" #include "boot-timestamps.h" #include "bus-common-errors.h" #include "bus-error.h" #include "bus-kernel.h" #include "bus-util.h" #include "clean-ipc.h" #include "clock-util.h" #include "constants.h" #include "core-varlink.h" #include "creds-util.h" #include "dbus-job.h" #include "dbus-manager.h" #include "dbus-unit.h" #include "dbus.h" #include "dirent-util.h" #include "env-util.h" #include "escape.h" #include "event-util.h" #include "exec-util.h" #include "execute.h" #include "exit-status.h" #include "fd-util.h" #include "fileio.h" #include "generator-setup.h" #include "hashmap.h" #include "initrd-util.h" #include "inotify-util.h" #include "install.h" #include "io-util.h" #include "label.h" #include "load-fragment.h" #include "locale-setup.h" #include "log.h" #include "macro.h" #include "manager.h" #include "manager-dump.h" #include "manager-serialize.h" #include "memory-util.h" #include "mkdir-label.h" #include "os-util.h" #include "parse-util.h" #include "path-lookup.h" #include "path-util.h" #include "process-util.h" #include "ratelimit.h" #include "rlimit-util.h" #include "rm-rf.h" #include "selinux-util.h" #include "signal-util.h" #include "socket-util.h" #include "special.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "strxcpyx.h" #include "sysctl-util.h" #include "syslog-util.h" #include "terminal-util.h" #include "time-util.h" #include "transaction.h" #include "uid-range.h" #include "umask-util.h" #include "unit-name.h" #include "user-util.h" #include "virt.h" #include "watchdog.h" #define NOTIFY_RCVBUF_SIZE (8*1024*1024) #define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024) /* Initial delay and the interval for printing status messages about running jobs */ #define JOBS_IN_PROGRESS_WAIT_USEC (2*USEC_PER_SEC) #define JOBS_IN_PROGRESS_QUIET_WAIT_USEC (25*USEC_PER_SEC) #define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3) #define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3 /* If there are more than 1K bus messages queue across our API and direct buses, then let's not add more on top until * the queue gets more empty. */ #define MANAGER_BUS_BUSY_THRESHOLD 1024LU /* How many units and jobs to process of the bus queue before returning to the event loop. */ #define MANAGER_BUS_MESSAGE_BUDGET 100U static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata); static int manager_dispatch_run_queue(sd_event_source *source, void *userdata); static int manager_dispatch_sigchld(sd_event_source *source, void *userdata); static int manager_dispatch_timezone_change(sd_event_source *source, const struct inotify_event *event, void *userdata); static int manager_run_environment_generators(Manager *m); static int manager_run_generators(Manager *m); static void manager_vacuum(Manager *m); static usec_t manager_watch_jobs_next_time(Manager *m) { usec_t timeout; if (MANAGER_IS_USER(m)) /* Let the user manager without a timeout show status quickly, so the system manager can make * use of it, if it wants to. */ timeout = JOBS_IN_PROGRESS_WAIT_USEC * 2 / 3; else if (show_status_on(m->show_status)) /* When status is on, just use the usual timeout. */ timeout = JOBS_IN_PROGRESS_WAIT_USEC; else timeout = JOBS_IN_PROGRESS_QUIET_WAIT_USEC; return usec_add(now(CLOCK_MONOTONIC), timeout); } static void manager_watch_jobs_in_progress(Manager *m) { usec_t next; int r; assert(m); /* We do not want to show the cylon animation if the user * needs to confirm service executions otherwise confirmation * messages will be screwed by the cylon animation. */ if (!manager_is_confirm_spawn_disabled(m)) return; if (m->jobs_in_progress_event_source) return; next = manager_watch_jobs_next_time(m); r = sd_event_add_time( m->event, &m->jobs_in_progress_event_source, CLOCK_MONOTONIC, next, 0, manager_dispatch_jobs_in_progress, m); if (r < 0) return; (void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress"); } #define CYLON_BUFFER_EXTRA (2*STRLEN(ANSI_RED) + STRLEN(ANSI_HIGHLIGHT_RED) + 2*STRLEN(ANSI_NORMAL)) static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) { char *p = buffer; assert(buflen >= CYLON_BUFFER_EXTRA + width + 1); assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */ if (pos > 1) { if (pos > 2) p = mempset(p, ' ', pos-2); if (log_get_show_color()) p = stpcpy(p, ANSI_RED); *p++ = '*'; } if (pos > 0 && pos <= width) { if (log_get_show_color()) p = stpcpy(p, ANSI_HIGHLIGHT_RED); *p++ = '*'; } if (log_get_show_color()) p = stpcpy(p, ANSI_NORMAL); if (pos < width) { if (log_get_show_color()) p = stpcpy(p, ANSI_RED); *p++ = '*'; if (pos < width-1) p = mempset(p, ' ', width-1-pos); if (log_get_show_color()) strcpy(p, ANSI_NORMAL); } } static void manager_flip_auto_status(Manager *m, bool enable, const char *reason) { assert(m); if (enable) { if (m->show_status == SHOW_STATUS_AUTO) manager_set_show_status(m, SHOW_STATUS_TEMPORARY, reason); } else { if (m->show_status == SHOW_STATUS_TEMPORARY) manager_set_show_status(m, SHOW_STATUS_AUTO, reason); } } static void manager_print_jobs_in_progress(Manager *m) { Job *j; unsigned counter = 0, print_nr; char cylon[6 + CYLON_BUFFER_EXTRA + 1]; unsigned cylon_pos; uint64_t timeout = 0; assert(m); assert(m->n_running_jobs > 0); manager_flip_auto_status(m, true, "delay"); print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs; HASHMAP_FOREACH(j, m->jobs) if (j->state == JOB_RUNNING && counter++ == print_nr) break; /* m->n_running_jobs must be consistent with the contents of m->jobs, * so the above loop must have succeeded in finding j. */ assert(counter == print_nr + 1); assert(j); cylon_pos = m->jobs_in_progress_iteration % 14; if (cylon_pos >= 8) cylon_pos = 14 - cylon_pos; draw_cylon(cylon, sizeof(cylon), 6, cylon_pos); m->jobs_in_progress_iteration++; char job_of_n[STRLEN("( of ) ") + DECIMAL_STR_MAX(unsigned)*2] = ""; if (m->n_running_jobs > 1) xsprintf(job_of_n, "(%u of %u) ", counter, m->n_running_jobs); (void) job_get_timeout(j, &timeout); /* We want to use enough information for the user to identify previous lines talking about the same * unit, but keep the message as short as possible. So if 'Starting foo.service' or 'Starting * foo.service - Description' were used, 'foo.service' is enough here. On the other hand, if we used * 'Starting Description' before, then we shall also use 'Description' here. So we pass NULL as the * second argument to unit_status_string(). */ const char *ident = unit_status_string(j->unit, NULL); const char *time = FORMAT_TIMESPAN(now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC); const char *limit = timeout > 0 ? FORMAT_TIMESPAN(timeout - j->begin_usec, 1*USEC_PER_SEC) : "no limit"; if (m->status_unit_format == STATUS_UNIT_FORMAT_DESCRIPTION) /* When using 'Description', we effectively don't have enough space to show the nested status * without ellipsization, so let's not even try. */ manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon, "%sA %s job is running for %s (%s / %s)", job_of_n, job_type_to_string(j->type), ident, time, limit); else { const char *status_text = unit_status_text(j->unit); manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon, "%sJob %s/%s running (%s / %s)%s%s", job_of_n, ident, job_type_to_string(j->type), time, limit, status_text ? ": " : "", strempty(status_text)); } sd_notifyf(false, "STATUS=%sUser job %s/%s running (%s / %s)...", job_of_n, ident, job_type_to_string(j->type), time, limit); m->status_ready = false; } static int have_ask_password(void) { _cleanup_closedir_ DIR *dir = NULL; dir = opendir("/run/systemd/ask-password"); if (!dir) { if (errno == ENOENT) return false; else return -errno; } FOREACH_DIRENT_ALL(de, dir, return -errno) if (startswith(de->d_name, "ask.")) return true; return false; } static int manager_dispatch_ask_password_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = ASSERT_PTR(userdata); (void) flush_fd(fd); m->have_ask_password = have_ask_password(); if (m->have_ask_password < 0) /* Log error but continue. Negative have_ask_password * is treated as unknown status. */ log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m"); return 0; } static void manager_close_ask_password(Manager *m) { assert(m); m->ask_password_event_source = sd_event_source_disable_unref(m->ask_password_event_source); m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd); m->have_ask_password = -EINVAL; } static int manager_check_ask_password(Manager *m) { int r; assert(m); if (!m->ask_password_event_source) { assert(m->ask_password_inotify_fd < 0); (void) mkdir_p_label("/run/systemd/ask-password", 0755); m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC); if (m->ask_password_inotify_fd < 0) return log_error_errno(errno, "Failed to create inotify object: %m"); r = inotify_add_watch_and_warn(m->ask_password_inotify_fd, "/run/systemd/ask-password", IN_CREATE|IN_DELETE|IN_MOVE); if (r < 0) { manager_close_ask_password(m); return r; } r = sd_event_add_io(m->event, &m->ask_password_event_source, m->ask_password_inotify_fd, EPOLLIN, manager_dispatch_ask_password_fd, m); if (r < 0) { log_error_errno(r, "Failed to add event source for /run/systemd/ask-password: %m"); manager_close_ask_password(m); return r; } (void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password"); /* Queries might have been added meanwhile... */ manager_dispatch_ask_password_fd(m->ask_password_event_source, m->ask_password_inotify_fd, EPOLLIN, m); } return m->have_ask_password; } static int manager_watch_idle_pipe(Manager *m) { int r; assert(m); if (m->idle_pipe_event_source) return 0; if (m->idle_pipe[2] < 0) return 0; r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m); if (r < 0) return log_error_errno(r, "Failed to watch idle pipe: %m"); (void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe"); return 0; } static void manager_close_idle_pipe(Manager *m) { assert(m); m->idle_pipe_event_source = sd_event_source_disable_unref(m->idle_pipe_event_source); safe_close_pair(m->idle_pipe); safe_close_pair(m->idle_pipe + 2); } static int manager_setup_time_change(Manager *m) { int r; assert(m); if (MANAGER_IS_TEST_RUN(m)) return 0; m->time_change_event_source = sd_event_source_disable_unref(m->time_change_event_source); r = event_add_time_change(m->event, &m->time_change_event_source, manager_dispatch_time_change_fd, m); if (r < 0) return log_error_errno(r, "Failed to create time change event source: %m"); /* Schedule this slightly earlier than the .timer event sources */ r = sd_event_source_set_priority(m->time_change_event_source, SD_EVENT_PRIORITY_NORMAL-1); if (r < 0) return log_error_errno(r, "Failed to set priority of time change event sources: %m"); log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd."); return 0; } static int manager_read_timezone_stat(Manager *m) { struct stat st; bool changed; assert(m); /* Read the current stat() data of /etc/localtime so that we detect changes */ if (lstat("/etc/localtime", &st) < 0) { log_debug_errno(errno, "Failed to stat /etc/localtime, ignoring: %m"); changed = m->etc_localtime_accessible; m->etc_localtime_accessible = false; } else { usec_t k; k = timespec_load(&st.st_mtim); changed = !m->etc_localtime_accessible || k != m->etc_localtime_mtime; m->etc_localtime_mtime = k; m->etc_localtime_accessible = true; } return changed; } static int manager_setup_timezone_change(Manager *m) { _cleanup_(sd_event_source_unrefp) sd_event_source *new_event = NULL; int r; assert(m); if (MANAGER_IS_TEST_RUN(m)) return 0; /* We watch /etc/localtime for three events: change of the link count (which might mean removal from /etc even * though another link might be kept), renames, and file close operations after writing. Note we don't bother * with IN_DELETE_SELF, as that would just report when the inode is removed entirely, i.e. after the link count * went to zero and all fds to it are closed. * * Note that we never follow symlinks here. This is a simplification, but should cover almost all cases * correctly. * * Note that we create the new event source first here, before releasing the old one. This should optimize * behaviour as this way sd-event can reuse the old watch in case the inode didn't change. */ r = sd_event_add_inotify(m->event, &new_event, "/etc/localtime", IN_ATTRIB|IN_MOVE_SELF|IN_CLOSE_WRITE|IN_DONT_FOLLOW, manager_dispatch_timezone_change, m); if (r == -ENOENT) { /* If the file doesn't exist yet, subscribe to /etc instead, and wait until it is created either by * O_CREATE or by rename() */ log_debug_errno(r, "/etc/localtime doesn't exist yet, watching /etc instead."); r = sd_event_add_inotify(m->event, &new_event, "/etc", IN_CREATE|IN_MOVED_TO|IN_ONLYDIR, manager_dispatch_timezone_change, m); } if (r < 0) return log_error_errno(r, "Failed to create timezone change event source: %m"); /* Schedule this slightly earlier than the .timer event sources */ r = sd_event_source_set_priority(new_event, SD_EVENT_PRIORITY_NORMAL-1); if (r < 0) return log_error_errno(r, "Failed to set priority of timezone change event sources: %m"); sd_event_source_unref(m->timezone_change_event_source); m->timezone_change_event_source = TAKE_PTR(new_event); return 0; } static int enable_special_signals(Manager *m) { _cleanup_close_ int fd = -1; assert(m); if (MANAGER_IS_TEST_RUN(m)) return 0; /* Enable that we get SIGINT on control-alt-del. In containers * this will fail with EPERM (older) or EINVAL (newer), so * ignore that. */ if (reboot(RB_DISABLE_CAD) < 0 && !IN_SET(errno, EPERM, EINVAL)) log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m"); fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC); if (fd < 0) { /* Support systems without virtual console */ if (fd != -ENOENT) log_warning_errno(errno, "Failed to open /dev/tty0: %m"); } else { /* Enable that we get SIGWINCH on kbrequest */ if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0) log_warning_errno(errno, "Failed to enable kbrequest handling: %m"); } return 0; } #define RTSIG_IF_AVAILABLE(signum) (signum <= SIGRTMAX ? signum : -1) static int manager_setup_signals(Manager *m) { struct sigaction sa = { .sa_handler = SIG_DFL, .sa_flags = SA_NOCLDSTOP|SA_RESTART, }; sigset_t mask; int r; assert(m); assert_se(sigaction(SIGCHLD, &sa, NULL) == 0); /* We make liberal use of realtime signals here. On * Linux/glibc we have 30 of them (with the exception of Linux * on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30 * (aka SIGRTMAX). */ assert_se(sigemptyset(&mask) == 0); sigset_add_many(&mask, SIGCHLD, /* Child died */ SIGTERM, /* Reexecute daemon */ SIGHUP, /* Reload configuration */ SIGUSR1, /* systemd: reconnect to D-Bus */ SIGUSR2, /* systemd: dump status */ SIGINT, /* Kernel sends us this on control-alt-del */ SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */ SIGPWR, /* Some kernel drivers and upsd send us this on power failure */ SIGRTMIN+0, /* systemd: start default.target */ SIGRTMIN+1, /* systemd: isolate rescue.target */ SIGRTMIN+2, /* systemd: isolate emergency.target */ SIGRTMIN+3, /* systemd: start halt.target */ SIGRTMIN+4, /* systemd: start poweroff.target */ SIGRTMIN+5, /* systemd: start reboot.target */ SIGRTMIN+6, /* systemd: start kexec.target */ /* ... space for more special targets ... */ SIGRTMIN+13, /* systemd: Immediate halt */ SIGRTMIN+14, /* systemd: Immediate poweroff */ SIGRTMIN+15, /* systemd: Immediate reboot */ SIGRTMIN+16, /* systemd: Immediate kexec */ /* ... space for more immediate system state changes ... */ SIGRTMIN+20, /* systemd: enable status messages */ SIGRTMIN+21, /* systemd: disable status messages */ SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */ SIGRTMIN+23, /* systemd: set log level to LOG_INFO */ SIGRTMIN+24, /* systemd: Immediate exit (--user only) */ SIGRTMIN+25, /* systemd: reexecute manager */ /* Apparently Linux on hppa had fewer RT signals until v3.18, * SIGRTMAX was SIGRTMIN+25, and then SIGRTMIN was lowered, * see commit v3.17-7614-g1f25df2eff. * * We cannot unconditionally make use of those signals here, * so let's use a runtime check. Since these commands are * accessible by different means and only really a safety * net, the missing functionality on hppa shouldn't matter. */ RTSIG_IF_AVAILABLE(SIGRTMIN+26), /* systemd: set log target to journal-or-kmsg */ RTSIG_IF_AVAILABLE(SIGRTMIN+27), /* systemd: set log target to console */ RTSIG_IF_AVAILABLE(SIGRTMIN+28), /* systemd: set log target to kmsg */ RTSIG_IF_AVAILABLE(SIGRTMIN+29), /* systemd: set log target to syslog-or-kmsg (obsolete) */ /* ... one free signal here SIGRTMIN+30 ... */ -1); assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0); m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC); if (m->signal_fd < 0) return -errno; r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m); if (r < 0) return r; (void) sd_event_source_set_description(m->signal_event_source, "manager-signal"); /* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the * notify processing can still figure out to which process/service a message belongs, before we reap the * process. Also, process this before handling cgroup notifications, so that we always collect child exit * status information before detecting that there's no process in a cgroup. */ r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6); if (r < 0) return r; if (MANAGER_IS_SYSTEM(m)) return enable_special_signals(m); return 0; } static char** sanitize_environment(char **l) { /* Let's remove some environment variables that we need ourselves to communicate with our clients */ strv_env_unset_many( l, "CACHE_DIRECTORY", "CONFIGURATION_DIRECTORY", "CREDENTIALS_DIRECTORY", "EXIT_CODE", "EXIT_STATUS", "INVOCATION_ID", "JOURNAL_STREAM", "LISTEN_FDNAMES", "LISTEN_FDS", "LISTEN_PID", "LOGS_DIRECTORY", "MAINPID", "MANAGERPID", "NOTIFY_SOCKET", "PIDFILE", "REMOTE_ADDR", "REMOTE_PORT", "RUNTIME_DIRECTORY", "SERVICE_RESULT", "STATE_DIRECTORY", "WATCHDOG_PID", "WATCHDOG_USEC", NULL); /* Let's order the environment alphabetically, just to make it pretty */ return strv_sort(l); } int manager_default_environment(Manager *m) { int r; assert(m); m->transient_environment = strv_free(m->transient_environment); if (MANAGER_IS_SYSTEM(m)) { /* The system manager always starts with a clean * environment for its children. It does not import * the kernel's or the parents' exported variables. * * The initial passed environment is untouched to keep * /proc/self/environ valid; it is used for tagging * the init process inside containers. */ m->transient_environment = strv_new("PATH=" DEFAULT_PATH); if (!m->transient_environment) return log_oom(); /* Import locale variables LC_*= from configuration */ (void) locale_setup(&m->transient_environment); } else { /* The user manager passes its own environment along to its children, except for $PATH. */ m->transient_environment = strv_copy(environ); if (!m->transient_environment) return log_oom(); r = strv_env_replace_strdup(&m->transient_environment, "PATH=" DEFAULT_USER_PATH); if (r < 0) return log_oom(); } sanitize_environment(m->transient_environment); return 0; } static int manager_setup_prefix(Manager *m) { struct table_entry { uint64_t type; const char *suffix; }; static const struct table_entry paths_system[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_SYSTEM_RUNTIME, NULL }, [EXEC_DIRECTORY_STATE] = { SD_PATH_SYSTEM_STATE_PRIVATE, NULL }, [EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL }, [EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_STATE_LOGS, NULL }, [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL }, }; static const struct table_entry paths_user[_EXEC_DIRECTORY_TYPE_MAX] = { [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_USER_RUNTIME, NULL }, [EXEC_DIRECTORY_STATE] = { SD_PATH_USER_CONFIGURATION, NULL }, [EXEC_DIRECTORY_CACHE] = { SD_PATH_USER_STATE_CACHE, NULL }, [EXEC_DIRECTORY_LOGS] = { SD_PATH_USER_CONFIGURATION, "log" }, [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_USER_CONFIGURATION, NULL }, }; assert(m); const struct table_entry *p = MANAGER_IS_SYSTEM(m) ? paths_system : paths_user; int r; for (ExecDirectoryType i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++) { r = sd_path_lookup(p[i].type, p[i].suffix, &m->prefix[i]); if (r < 0) return log_warning_errno(r, "Failed to lookup %s path: %m", exec_directory_type_to_string(i)); } return 0; } static void manager_free_unit_name_maps(Manager *m) { m->unit_id_map = hashmap_free(m->unit_id_map); m->unit_name_map = hashmap_free(m->unit_name_map); m->unit_path_cache = set_free(m->unit_path_cache); m->unit_cache_timestamp_hash = 0; } static int manager_setup_run_queue(Manager *m) { int r; assert(m); assert(!m->run_queue_event_source); r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m); if (r < 0) return r; r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE); if (r < 0) return r; r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF); if (r < 0) return r; (void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue"); return 0; } static int manager_setup_sigchld_event_source(Manager *m) { int r; assert(m); assert(!m->sigchld_event_source); r = sd_event_add_defer(m->event, &m->sigchld_event_source, manager_dispatch_sigchld, m); if (r < 0) return r; r = sd_event_source_set_priority(m->sigchld_event_source, SD_EVENT_PRIORITY_NORMAL-7); if (r < 0) return r; r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF); if (r < 0) return r; (void) sd_event_source_set_description(m->sigchld_event_source, "manager-sigchld"); return 0; } static int manager_find_credentials_dirs(Manager *m) { const char *e; int r; assert(m); r = get_credentials_dir(&e); if (r < 0) { if (r != -ENXIO) log_debug_errno(r, "Failed to determine credentials directory, ignoring: %m"); } else { m->received_credentials_directory = strdup(e); if (!m->received_credentials_directory) return -ENOMEM; } r = get_encrypted_credentials_dir(&e); if (r < 0) { if (r != -ENXIO) log_debug_errno(r, "Failed to determine encrypted credentials directory, ignoring: %m"); } else { m->received_encrypted_credentials_directory = strdup(e); if (!m->received_encrypted_credentials_directory) return -ENOMEM; } return 0; } void manager_set_switching_root(Manager *m, bool switching_root) { m->switching_root = MANAGER_IS_SYSTEM(m) && switching_root; } int manager_new(LookupScope scope, ManagerTestRunFlags test_run_flags, Manager **_m) { _cleanup_(manager_freep) Manager *m = NULL; int r; assert(_m); assert(IN_SET(scope, LOOKUP_SCOPE_SYSTEM, LOOKUP_SCOPE_USER)); m = new(Manager, 1); if (!m) return -ENOMEM; *m = (Manager) { .unit_file_scope = scope, .objective = _MANAGER_OBJECTIVE_INVALID, .status_unit_format = STATUS_UNIT_FORMAT_DEFAULT, .default_timer_accuracy_usec = USEC_PER_MINUTE, .default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT, .default_tasks_accounting = true, .default_tasks_max = TASKS_MAX_UNSET, .default_timeout_start_usec = DEFAULT_TIMEOUT_USEC, .default_timeout_stop_usec = DEFAULT_TIMEOUT_USEC, .default_restart_usec = DEFAULT_RESTART_USEC, .default_device_timeout_usec = DEFAULT_TIMEOUT_USEC, .original_log_level = -1, .original_log_target = _LOG_TARGET_INVALID, .watchdog_overridden[WATCHDOG_RUNTIME] = USEC_INFINITY, .watchdog_overridden[WATCHDOG_REBOOT] = USEC_INFINITY, .watchdog_overridden[WATCHDOG_KEXEC] = USEC_INFINITY, .watchdog_overridden[WATCHDOG_PRETIMEOUT] = USEC_INFINITY, .show_status_overridden = _SHOW_STATUS_INVALID, .notify_fd = -1, .cgroups_agent_fd = -1, .signal_fd = -1, .user_lookup_fds = { -1, -1 }, .private_listen_fd = -1, .dev_autofs_fd = -1, .cgroup_inotify_fd = -1, .pin_cgroupfs_fd = -1, .ask_password_inotify_fd = -1, .idle_pipe = { -1, -1, -1, -1}, /* start as id #1, so that we can leave #0 around as "null-like" value */ .current_job_id = 1, .have_ask_password = -EINVAL, /* we don't know */ .first_boot = -1, .test_run_flags = test_run_flags, .default_oom_policy = OOM_STOP, }; #if ENABLE_EFI if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) boot_timestamps(m->timestamps + MANAGER_TIMESTAMP_USERSPACE, m->timestamps + MANAGER_TIMESTAMP_FIRMWARE, m->timestamps + MANAGER_TIMESTAMP_LOADER); #endif /* Prepare log fields we can use for structured logging */ if (MANAGER_IS_SYSTEM(m)) { m->unit_log_field = "UNIT="; m->unit_log_format_string = "UNIT=%s"; m->invocation_log_field = "INVOCATION_ID="; m->invocation_log_format_string = "INVOCATION_ID=%s"; } else { m->unit_log_field = "USER_UNIT="; m->unit_log_format_string = "USER_UNIT=%s"; m->invocation_log_field = "USER_INVOCATION_ID="; m->invocation_log_format_string = "USER_INVOCATION_ID=%s"; } /* Reboot immediately if the user hits C-A-D more often than 7x per 2s */ m->ctrl_alt_del_ratelimit = (const RateLimit) { .interval = 2 * USEC_PER_SEC, .burst = 7 }; r = manager_default_environment(m); if (r < 0) return r; r = hashmap_ensure_allocated(&m->units, &string_hash_ops); if (r < 0) return r; r = hashmap_ensure_allocated(&m->cgroup_unit, &path_hash_ops); if (r < 0) return r; r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops); if (r < 0) return r; r = prioq_ensure_allocated(&m->run_queue, compare_job_priority); if (r < 0) return r; r = manager_setup_prefix(m); if (r < 0) return r; r = manager_find_credentials_dirs(m); if (r < 0) return r; r = sd_event_default(&m->event); if (r < 0) return r; r = manager_setup_run_queue(m); if (r < 0) return r; if (FLAGS_SET(test_run_flags, MANAGER_TEST_RUN_MINIMAL)) { m->cgroup_root = strdup(""); if (!m->cgroup_root) return -ENOMEM; } else { r = manager_setup_signals(m); if (r < 0) return r; r = manager_setup_cgroup(m); if (r < 0) return r; r = manager_setup_time_change(m); if (r < 0) return r; r = manager_read_timezone_stat(m); if (r < 0) return r; (void) manager_setup_timezone_change(m); r = manager_setup_sigchld_event_source(m); if (r < 0) return r; #if HAVE_LIBBPF if (MANAGER_IS_SYSTEM(m) && lsm_bpf_supported(/* initialize = */ true)) { r = lsm_bpf_setup(m); if (r < 0) log_warning_errno(r, "Failed to setup LSM BPF, ignoring: %m"); } #endif } if (test_run_flags == 0) { if (MANAGER_IS_SYSTEM(m)) r = mkdir_label("/run/systemd/units", 0755); else { _cleanup_free_ char *units_path = NULL; r = xdg_user_runtime_dir(&units_path, "/systemd/units"); if (r < 0) return r; r = mkdir_p_label(units_path, 0755); } if (r < 0 && r != -EEXIST) return r; } m->taint_usr = !in_initrd() && dir_is_empty("/usr", /* ignore_hidden_or_backup= */ false) > 0; /* Note that we do not set up the notify fd here. We do that after deserialization, * since they might have gotten serialized across the reexec. */ *_m = TAKE_PTR(m); return 0; } static int manager_setup_notify(Manager *m) { int r; if (MANAGER_IS_TEST_RUN(m)) return 0; if (m->notify_fd < 0) { _cleanup_close_ int fd = -1; union sockaddr_union sa; socklen_t sa_len; /* First free all secondary fields */ m->notify_socket = mfree(m->notify_socket); m->notify_event_source = sd_event_source_disable_unref(m->notify_event_source); fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) return log_error_errno(errno, "Failed to allocate notification socket: %m"); fd_increase_rxbuf(fd, NOTIFY_RCVBUF_SIZE); m->notify_socket = path_join(m->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/notify"); if (!m->notify_socket) return log_oom(); r = sockaddr_un_set_path(&sa.un, m->notify_socket); if (r < 0) return log_error_errno(r, "Notify socket '%s' not valid for AF_UNIX socket address, refusing.", m->notify_socket); sa_len = r; (void) mkdir_parents_label(m->notify_socket, 0755); (void) sockaddr_un_unlink(&sa.un); r = mac_selinux_bind(fd, &sa.sa, sa_len); if (r < 0) return log_error_errno(r, "bind(%s) failed: %m", m->notify_socket); r = setsockopt_int(fd, SOL_SOCKET, SO_PASSCRED, true); if (r < 0) return log_error_errno(r, "SO_PASSCRED failed: %m"); m->notify_fd = TAKE_FD(fd); log_debug("Using notification socket %s", m->notify_socket); } if (!m->notify_event_source) { r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m); if (r < 0) return log_error_errno(r, "Failed to allocate notify event source: %m"); /* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which * service an exit message belongs. */ r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-8); if (r < 0) return log_error_errno(r, "Failed to set priority of notify event source: %m"); (void) sd_event_source_set_description(m->notify_event_source, "manager-notify"); } return 0; } static int manager_setup_cgroups_agent(Manager *m) { static const union sockaddr_union sa = { .un.sun_family = AF_UNIX, .un.sun_path = "/run/systemd/cgroups-agent", }; int r; /* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering * these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and * each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on * overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number * of D-Bus connections may be queued until the kernel will start dropping further incoming connections, * possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX * socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and * we thus won't lose messages. * * Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen * to it. The system instance hence listens on this special socket, but the user instances listen on the system * bus for these messages. */ if (MANAGER_IS_TEST_RUN(m)) return 0; if (!MANAGER_IS_SYSTEM(m)) return 0; r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); if (r < 0) return log_error_errno(r, "Failed to determine whether unified cgroups hierarchy is used: %m"); if (r > 0) /* We don't need this anymore on the unified hierarchy */ return 0; if (m->cgroups_agent_fd < 0) { _cleanup_close_ int fd = -1; /* First free all secondary fields */ m->cgroups_agent_event_source = sd_event_source_disable_unref(m->cgroups_agent_event_source); fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m"); fd_increase_rxbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE); (void) sockaddr_un_unlink(&sa.un); /* Only allow root to connect to this socket */ RUN_WITH_UMASK(0077) r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)); if (r < 0) return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path); m->cgroups_agent_fd = TAKE_FD(fd); } if (!m->cgroups_agent_event_source) { r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m); if (r < 0) return log_error_errno(r, "Failed to allocate cgroups agent event source: %m"); /* Process cgroups notifications early. Note that when the agent notification is received * we'll just enqueue the unit in the cgroup empty queue, hence pick a high priority than * that. Also see handling of cgroup inotify for the unified cgroup stuff. */ r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-9); if (r < 0) return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m"); (void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent"); } return 0; } static int manager_setup_user_lookup_fd(Manager *m) { int r; assert(m); /* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID * 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation, * and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked * off processes right before executing the binaries to start. In order to be able to clean up any IPC objects * created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes, * hence we establish this communication channel so that forked off processes can pass their UID/GID * information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple * datagram, along with their unit name, so that we can share one communication socket pair among all units for * this purpose. * * You might wonder why we need a communication channel for this that is independent of the usual notification * socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET * channel is only accepted if it originates from the right unit and if reception was enabled for it. The user * lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available. * * Note that this function is called under two circumstances: when we first initialize (in which case we * allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload * (in which case the socket pair already exists but we still need to allocate the event source for it). */ if (m->user_lookup_fds[0] < 0) { /* Free all secondary fields */ safe_close_pair(m->user_lookup_fds); m->user_lookup_event_source = sd_event_source_disable_unref(m->user_lookup_event_source); if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0) return log_error_errno(errno, "Failed to allocate user lookup socket: %m"); (void) fd_increase_rxbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE); } if (!m->user_lookup_event_source) { r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m); if (r < 0) return log_error_errno(errno, "Failed to allocate user lookup event source: %m"); /* Process even earlier than the notify event source, so that we always know first about valid UID/GID * resolutions */ r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-11); if (r < 0) return log_error_errno(errno, "Failed to set priority of user lookup event source: %m"); (void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup"); } return 0; } static unsigned manager_dispatch_cleanup_queue(Manager *m) { Unit *u; unsigned n = 0; assert(m); while ((u = m->cleanup_queue)) { assert(u->in_cleanup_queue); unit_free(u); n++; } return n; } enum { GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */ GC_OFFSET_UNSURE, /* No clue */ GC_OFFSET_GOOD, /* We still need this unit */ GC_OFFSET_BAD, /* We don't need this unit anymore */ _GC_OFFSET_MAX }; static void unit_gc_mark_good(Unit *u, unsigned gc_marker) { Unit *other; u->gc_marker = gc_marker + GC_OFFSET_GOOD; /* Recursively mark referenced units as GOOD as well */ UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCES) if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE) unit_gc_mark_good(other, gc_marker); } static void unit_gc_sweep(Unit *u, unsigned gc_marker) { Unit *other; bool is_bad; assert(u); if (IN_SET(u->gc_marker - gc_marker, GC_OFFSET_GOOD, GC_OFFSET_BAD, GC_OFFSET_UNSURE, GC_OFFSET_IN_PATH)) return; if (u->in_cleanup_queue) goto bad; if (!unit_may_gc(u)) goto good; u->gc_marker = gc_marker + GC_OFFSET_IN_PATH; is_bad = true; UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCED_BY) { unit_gc_sweep(other, gc_marker); if (other->gc_marker == gc_marker + GC_OFFSET_GOOD) goto good; if (other->gc_marker != gc_marker + GC_OFFSET_BAD) is_bad = false; } LIST_FOREACH(refs_by_target, ref, u->refs_by_target) { unit_gc_sweep(ref->source, gc_marker); if (ref->source->gc_marker == gc_marker + GC_OFFSET_GOOD) goto good; if (ref->source->gc_marker != gc_marker + GC_OFFSET_BAD) is_bad = false; } if (is_bad) goto bad; /* We were unable to find anything out about this entry, so * let's investigate it later */ u->gc_marker = gc_marker + GC_OFFSET_UNSURE; unit_add_to_gc_queue(u); return; bad: /* We definitely know that this one is not useful anymore, so * let's mark it for deletion */ u->gc_marker = gc_marker + GC_OFFSET_BAD; unit_add_to_cleanup_queue(u); return; good: unit_gc_mark_good(u, gc_marker); } static unsigned manager_dispatch_gc_unit_queue(Manager *m) { unsigned n = 0, gc_marker; Unit *u; assert(m); /* log_debug("Running GC..."); */ m->gc_marker += _GC_OFFSET_MAX; if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX) m->gc_marker = 1; gc_marker = m->gc_marker; while ((u = m->gc_unit_queue)) { assert(u->in_gc_queue); unit_gc_sweep(u, gc_marker); LIST_REMOVE(gc_queue, m->gc_unit_queue, u); u->in_gc_queue = false; n++; if (IN_SET(u->gc_marker - gc_marker, GC_OFFSET_BAD, GC_OFFSET_UNSURE)) { if (u->id) log_unit_debug(u, "Collecting."); u->gc_marker = gc_marker + GC_OFFSET_BAD; unit_add_to_cleanup_queue(u); } } return n; } static unsigned manager_dispatch_gc_job_queue(Manager *m) { unsigned n = 0; Job *j; assert(m); while ((j = m->gc_job_queue)) { assert(j->in_gc_queue); LIST_REMOVE(gc_queue, m->gc_job_queue, j); j->in_gc_queue = false; n++; if (!job_may_gc(j)) continue; log_unit_debug(j->unit, "Collecting job."); (void) job_finish_and_invalidate(j, JOB_COLLECTED, false, false); } return n; } static unsigned manager_dispatch_stop_when_unneeded_queue(Manager *m) { unsigned n = 0; Unit *u; int r; assert(m); while ((u = m->stop_when_unneeded_queue)) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; assert(u->in_stop_when_unneeded_queue); LIST_REMOVE(stop_when_unneeded_queue, m->stop_when_unneeded_queue, u); u->in_stop_when_unneeded_queue = false; n++; if (!unit_is_unneeded(u)) continue; log_unit_debug(u, "Unit is not needed anymore."); /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the * service being unnecessary after a while. */ if (!ratelimit_below(&u->auto_start_stop_ratelimit)) { log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently."); continue; } /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */ r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL); if (r < 0) log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r)); } return n; } static unsigned manager_dispatch_start_when_upheld_queue(Manager *m) { unsigned n = 0; Unit *u; int r; assert(m); while ((u = m->start_when_upheld_queue)) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; Unit *culprit = NULL; assert(u->in_start_when_upheld_queue); LIST_REMOVE(start_when_upheld_queue, m->start_when_upheld_queue, u); u->in_start_when_upheld_queue = false; n++; if (!unit_is_upheld_by_active(u, &culprit)) continue; log_unit_debug(u, "Unit is started because upheld by active unit %s.", culprit->id); /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the * service being unnecessary after a while. */ if (!ratelimit_below(&u->auto_start_stop_ratelimit)) { log_unit_warning(u, "Unit needs to be started because active unit %s upholds it, but not starting since we tried this too often recently.", culprit->id); continue; } r = manager_add_job(u->manager, JOB_START, u, JOB_FAIL, NULL, &error, NULL); if (r < 0) log_unit_warning_errno(u, r, "Failed to enqueue start job, ignoring: %s", bus_error_message(&error, r)); } return n; } static unsigned manager_dispatch_stop_when_bound_queue(Manager *m) { unsigned n = 0; Unit *u; int r; assert(m); while ((u = m->stop_when_bound_queue)) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; Unit *culprit = NULL; assert(u->in_stop_when_bound_queue); LIST_REMOVE(stop_when_bound_queue, m->stop_when_bound_queue, u); u->in_stop_when_bound_queue = false; n++; if (!unit_is_bound_by_inactive(u, &culprit)) continue; log_unit_debug(u, "Unit is stopped because bound to inactive unit %s.", culprit->id); /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the * service being unnecessary after a while. */ if (!ratelimit_below(&u->auto_start_stop_ratelimit)) { log_unit_warning(u, "Unit needs to be stopped because it is bound to inactive unit %s it, but not stopping since we tried this too often recently.", culprit->id); continue; } r = manager_add_job(u->manager, JOB_STOP, u, JOB_REPLACE, NULL, &error, NULL); if (r < 0) log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r)); } return n; } static void manager_clear_jobs_and_units(Manager *m) { Unit *u; assert(m); while ((u = hashmap_first(m->units))) unit_free(u); manager_dispatch_cleanup_queue(m); assert(!m->load_queue); assert(prioq_isempty(m->run_queue)); assert(!m->dbus_unit_queue); assert(!m->dbus_job_queue); assert(!m->cleanup_queue); assert(!m->gc_unit_queue); assert(!m->gc_job_queue); assert(!m->cgroup_realize_queue); assert(!m->cgroup_empty_queue); assert(!m->cgroup_oom_queue); assert(!m->target_deps_queue); assert(!m->stop_when_unneeded_queue); assert(!m->start_when_upheld_queue); assert(!m->stop_when_bound_queue); assert(hashmap_isempty(m->jobs)); assert(hashmap_isempty(m->units)); m->n_on_console = 0; m->n_running_jobs = 0; m->n_installed_jobs = 0; m->n_failed_jobs = 0; } Manager* manager_free(Manager *m) { if (!m) return NULL; manager_clear_jobs_and_units(m); for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) if (unit_vtable[c]->shutdown) unit_vtable[c]->shutdown(m); /* Keep the cgroup hierarchy in place except when we know we are going down for good */ manager_shutdown_cgroup(m, IN_SET(m->objective, MANAGER_EXIT, MANAGER_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC)); lookup_paths_flush_generator(&m->lookup_paths); bus_done(m); manager_varlink_done(m); exec_runtime_vacuum(m); hashmap_free(m->exec_runtime_by_id); dynamic_user_vacuum(m, false); hashmap_free(m->dynamic_users); hashmap_free(m->units); hashmap_free(m->units_by_invocation_id); hashmap_free(m->jobs); hashmap_free(m->watch_pids); hashmap_free(m->watch_bus); prioq_free(m->run_queue); set_free(m->startup_units); set_free(m->failed_units); sd_event_source_unref(m->signal_event_source); sd_event_source_unref(m->sigchld_event_source); sd_event_source_unref(m->notify_event_source); sd_event_source_unref(m->cgroups_agent_event_source); sd_event_source_unref(m->time_change_event_source); sd_event_source_unref(m->timezone_change_event_source); sd_event_source_unref(m->jobs_in_progress_event_source); sd_event_source_unref(m->run_queue_event_source); sd_event_source_unref(m->user_lookup_event_source); safe_close(m->signal_fd); safe_close(m->notify_fd); safe_close(m->cgroups_agent_fd); safe_close_pair(m->user_lookup_fds); manager_close_ask_password(m); manager_close_idle_pipe(m); sd_event_unref(m->event); free(m->notify_socket); lookup_paths_free(&m->lookup_paths); strv_free(m->transient_environment); strv_free(m->client_environment); hashmap_free(m->cgroup_unit); manager_free_unit_name_maps(m); free(m->switch_root); free(m->switch_root_init); free(m->default_smack_process_label); rlimit_free_all(m->rlimit); assert(hashmap_isempty(m->units_requiring_mounts_for)); hashmap_free(m->units_requiring_mounts_for); hashmap_free(m->uid_refs); hashmap_free(m->gid_refs); for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) m->prefix[dt] = mfree(m->prefix[dt]); free(m->received_credentials_directory); free(m->received_encrypted_credentials_directory); free(m->watchdog_pretimeout_governor); free(m->watchdog_pretimeout_governor_overridden); #if BPF_FRAMEWORK lsm_bpf_destroy(m->restrict_fs); #endif return mfree(m); } static void manager_enumerate_perpetual(Manager *m) { assert(m); if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL)) return; /* Let's ask every type to load all units from disk/kernel that it might know */ for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) { if (!unit_type_supported(c)) { log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c)); continue; } if (unit_vtable[c]->enumerate_perpetual) unit_vtable[c]->enumerate_perpetual(m); } } static void manager_enumerate(Manager *m) { assert(m); if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL)) return; /* Let's ask every type to load all units from disk/kernel that it might know */ for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) { if (!unit_type_supported(c)) { log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c)); continue; } if (unit_vtable[c]->enumerate) unit_vtable[c]->enumerate(m); } manager_dispatch_load_queue(m); } static void manager_coldplug(Manager *m) { Unit *u; char *k; int r; assert(m); log_debug("Invoking unit coldplug() handlers%s", special_glyph(SPECIAL_GLYPH_ELLIPSIS)); /* Let's place the units back into their deserialized state */ HASHMAP_FOREACH_KEY(u, k, m->units) { /* ignore aliases */ if (u->id != k) continue; r = unit_coldplug(u); if (r < 0) log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id); } } static void manager_catchup(Manager *m) { Unit *u; char *k; assert(m); log_debug("Invoking unit catchup() handlers%s", special_glyph(SPECIAL_GLYPH_ELLIPSIS)); /* Let's catch up on any state changes that happened while we were reloading/reexecing */ HASHMAP_FOREACH_KEY(u, k, m->units) { /* ignore aliases */ if (u->id != k) continue; unit_catchup(u); } } static void manager_distribute_fds(Manager *m, FDSet *fds) { Unit *u; assert(m); HASHMAP_FOREACH(u, m->units) { if (fdset_size(fds) <= 0) break; if (!UNIT_VTABLE(u)->distribute_fds) continue; UNIT_VTABLE(u)->distribute_fds(u, fds); } } static bool manager_dbus_is_running(Manager *m, bool deserialized) { Unit *u; assert(m); /* This checks whether the dbus instance we are supposed to expose our APIs on is up. We check both the socket * and the service unit. If the 'deserialized' parameter is true we'll check the deserialized state of the unit * rather than the current one. */ if (MANAGER_IS_TEST_RUN(m)) return false; u = manager_get_unit(m, SPECIAL_DBUS_SOCKET); if (!u) return false; if ((deserialized ? SOCKET(u)->deserialized_state : SOCKET(u)->state) != SOCKET_RUNNING) return false; u = manager_get_unit(m, SPECIAL_DBUS_SERVICE); if (!u) return false; if (!IN_SET((deserialized ? SERVICE(u)->deserialized_state : SERVICE(u)->state), SERVICE_RUNNING, SERVICE_RELOAD)) return false; return true; } static void manager_setup_bus(Manager *m) { assert(m); /* Let's set up our private bus connection now, unconditionally */ (void) bus_init_private(m); /* If we are in --user mode also connect to the system bus now */ if (MANAGER_IS_USER(m)) (void) bus_init_system(m); /* Let's connect to the bus now, but only if the unit is supposed to be up */ if (manager_dbus_is_running(m, MANAGER_IS_RELOADING(m))) { (void) bus_init_api(m); if (MANAGER_IS_SYSTEM(m)) (void) bus_init_system(m); } } static void manager_preset_all(Manager *m) { int r; assert(m); if (m->first_boot <= 0) return; if (!MANAGER_IS_SYSTEM(m)) return; if (MANAGER_IS_TEST_RUN(m)) return; /* If this is the first boot, and we are in the host system, then preset everything */ UnitFilePresetMode mode = FIRST_BOOT_FULL_PRESET ? UNIT_FILE_PRESET_FULL : UNIT_FILE_PRESET_ENABLE_ONLY; r = unit_file_preset_all(LOOKUP_SCOPE_SYSTEM, 0, NULL, mode, NULL, 0); if (r < 0) log_full_errno(r == -EEXIST ? LOG_NOTICE : LOG_WARNING, r, "Failed to populate /etc with preset unit settings, ignoring: %m"); else log_info("Populated /etc with preset unit settings."); } static void manager_ready(Manager *m) { assert(m); /* After having loaded everything, do the final round of catching up with what might have changed */ m->objective = MANAGER_OK; /* Tell everyone we are up now */ /* It might be safe to log to the journal now and connect to dbus */ manager_recheck_journal(m); manager_recheck_dbus(m); /* Let's finally catch up with any changes that took place while we were reloading/reexecing */ manager_catchup(m); /* Create a file which will indicate when the manager started loading units the last time. */ if (MANAGER_IS_SYSTEM(m)) (void) touch_file("/run/systemd/systemd-units-load", false, m->timestamps[MANAGER_TIMESTAMP_UNITS_LOAD].realtime ?: now(CLOCK_REALTIME), UID_INVALID, GID_INVALID, 0444); } Manager* manager_reloading_start(Manager *m) { m->n_reloading++; dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_UNITS_LOAD); return m; } void manager_reloading_stopp(Manager **m) { if (*m) { assert((*m)->n_reloading > 0); (*m)->n_reloading--; } } int manager_startup(Manager *m, FILE *serialization, FDSet *fds, const char *root) { int r; assert(m); /* If we are running in test mode, we still want to run the generators, * but we should not touch the real generator directories. */ r = lookup_paths_init_or_warn(&m->lookup_paths, m->unit_file_scope, MANAGER_IS_TEST_RUN(m) ? LOOKUP_PATHS_TEMPORARY_GENERATED : 0, root); if (r < 0) return r; dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_START)); r = manager_run_environment_generators(m); if (r >= 0) r = manager_run_generators(m); dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_FINISH)); if (r < 0) return r; manager_preset_all(m); lookup_paths_log(&m->lookup_paths); { /* This block is (optionally) done with the reloading counter bumped */ _unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL; /* If we will deserialize make sure that during enumeration this is already known, so we increase the * counter here already */ if (serialization) reloading = manager_reloading_start(m); /* First, enumerate what we can from all config files */ dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_START)); manager_enumerate_perpetual(m); manager_enumerate(m); dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_FINISH)); /* Second, deserialize if there is something to deserialize */ if (serialization) { r = manager_deserialize(m, serialization, fds); if (r < 0) return log_error_errno(r, "Deserialization failed: %m"); } /* Any fds left? Find some unit which wants them. This is useful to allow container managers to pass * some file descriptors to us pre-initialized. This enables socket-based activation of entire * containers. */ manager_distribute_fds(m, fds); /* We might have deserialized the notify fd, but if we didn't then let's create the bus now */ r = manager_setup_notify(m); if (r < 0) /* No sense to continue without notifications, our children would fail anyway. */ return r; r = manager_setup_cgroups_agent(m); if (r < 0) /* Likewise, no sense to continue without empty cgroup notifications. */ return r; r = manager_setup_user_lookup_fd(m); if (r < 0) /* This shouldn't fail, except if things are really broken. */ return r; /* Connect to the bus if we are good for it */ manager_setup_bus(m); /* Now that we are connected to all possible buses, let's deserialize who is tracking us. */ r = bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed); if (r < 0) log_warning_errno(r, "Failed to deserialized tracked clients, ignoring: %m"); m->deserialized_subscribed = strv_free(m->deserialized_subscribed); r = manager_varlink_init(m); if (r < 0) log_warning_errno(r, "Failed to set up Varlink, ignoring: %m"); /* Third, fire things up! */ manager_coldplug(m); /* Clean up runtime objects */ manager_vacuum(m); if (serialization) /* Let's wait for the UnitNew/JobNew messages being sent, before we notify that the * reload is finished */ m->send_reloading_done = true; } manager_ready(m); manager_set_switching_root(m, false); return 0; } int manager_add_job( Manager *m, JobType type, Unit *unit, JobMode mode, Set *affected_jobs, sd_bus_error *error, Job **ret) { Transaction *tr; int r; assert(m); assert(type < _JOB_TYPE_MAX); assert(unit); assert(mode < _JOB_MODE_MAX); if (mode == JOB_ISOLATE && type != JOB_START) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start."); if (mode == JOB_ISOLATE && !unit->allow_isolate) return sd_bus_error_set(error, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated."); if (mode == JOB_TRIGGERING && type != JOB_STOP) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "--job-mode=triggering is only valid for stop."); log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode)); type = job_type_collapse(type, unit); tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY); if (!tr) return -ENOMEM; r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false, IN_SET(mode, JOB_IGNORE_DEPENDENCIES, JOB_IGNORE_REQUIREMENTS), mode == JOB_IGNORE_DEPENDENCIES, error); if (r < 0) goto tr_abort; if (mode == JOB_ISOLATE) { r = transaction_add_isolate_jobs(tr, m); if (r < 0) goto tr_abort; } if (mode == JOB_TRIGGERING) { r = transaction_add_triggering_jobs(tr, unit); if (r < 0) goto tr_abort; } r = transaction_activate(tr, m, mode, affected_jobs, error); if (r < 0) goto tr_abort; log_unit_debug(unit, "Enqueued job %s/%s as %u", unit->id, job_type_to_string(type), (unsigned) tr->anchor_job->id); if (ret) *ret = tr->anchor_job; transaction_free(tr); return 0; tr_abort: transaction_abort(tr); transaction_free(tr); return r; } int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **ret) { Unit *unit = NULL; /* just to appease gcc, initialization is not really necessary */ int r; assert(m); assert(type < _JOB_TYPE_MAX); assert(name); assert(mode < _JOB_MODE_MAX); r = manager_load_unit(m, name, NULL, NULL, &unit); if (r < 0) return r; assert(unit); return manager_add_job(m, type, unit, mode, affected_jobs, e, ret); } int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, Job **ret) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; int r; assert(m); assert(type < _JOB_TYPE_MAX); assert(name); assert(mode < _JOB_MODE_MAX); r = manager_add_job_by_name(m, type, name, mode, affected_jobs, &error, ret); if (r < 0) return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r)); return r; } int manager_propagate_reload(Manager *m, Unit *unit, JobMode mode, sd_bus_error *e) { int r; Transaction *tr; assert(m); assert(unit); assert(mode < _JOB_MODE_MAX); assert(mode != JOB_ISOLATE); /* Isolate is only valid for start */ tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY); if (!tr) return -ENOMEM; /* We need an anchor job */ r = transaction_add_job_and_dependencies(tr, JOB_NOP, unit, NULL, false, false, true, true, e); if (r < 0) goto tr_abort; /* Failure in adding individual dependencies is ignored, so this always succeeds. */ transaction_add_propagate_reload_jobs(tr, unit, tr->anchor_job, mode == JOB_IGNORE_DEPENDENCIES, e); r = transaction_activate(tr, m, mode, NULL, e); if (r < 0) goto tr_abort; transaction_free(tr); return 0; tr_abort: transaction_abort(tr); transaction_free(tr); return r; } Job *manager_get_job(Manager *m, uint32_t id) { assert(m); return hashmap_get(m->jobs, UINT32_TO_PTR(id)); } Unit *manager_get_unit(Manager *m, const char *name) { assert(m); assert(name); return hashmap_get(m->units, name); } static int manager_dispatch_target_deps_queue(Manager *m) { Unit *u; int r = 0; assert(m); while ((u = m->target_deps_queue)) { _cleanup_free_ Unit **targets = NULL; int n_targets; assert(u->in_target_deps_queue); LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u); u->in_target_deps_queue = false; /* Take an "atomic" snapshot of dependencies here, as the call below will likely modify the * dependencies, and we can't have it that hash tables we iterate through are modified while * we are iterating through them. */ n_targets = unit_get_dependency_array(u, UNIT_ATOM_DEFAULT_TARGET_DEPENDENCIES, &targets); if (n_targets < 0) return n_targets; for (int i = 0; i < n_targets; i++) { r = unit_add_default_target_dependency(u, targets[i]); if (r < 0) return r; } } return r; } unsigned manager_dispatch_load_queue(Manager *m) { Unit *u; unsigned n = 0; assert(m); /* Make sure we are not run recursively */ if (m->dispatching_load_queue) return 0; m->dispatching_load_queue = true; /* Dispatches the load queue. Takes a unit from the queue and * tries to load its data until the queue is empty */ while ((u = m->load_queue)) { assert(u->in_load_queue); unit_load(u); n++; } m->dispatching_load_queue = false; /* Dispatch the units waiting for their target dependencies to be added now, as all targets that we know about * should be loaded and have aliases resolved */ (void) manager_dispatch_target_deps_queue(m); return n; } bool manager_unit_cache_should_retry_load(Unit *u) { assert(u); /* Automatic reloading from disk only applies to units which were not found sometime in the past, and * the not-found stub is kept pinned in the unit graph by dependencies. For units that were * previously loaded, we don't do automatic reloading, and daemon-reload is necessary to update. */ if (u->load_state != UNIT_NOT_FOUND) return false; /* The cache has been updated since the last time we tried to load the unit. There might be new * fragment paths to read. */ if (u->manager->unit_cache_timestamp_hash != u->fragment_not_found_timestamp_hash) return true; /* The cache needs to be updated because there are modifications on disk. */ return !lookup_paths_timestamp_hash_same(&u->manager->lookup_paths, u->manager->unit_cache_timestamp_hash, NULL); } int manager_load_unit_prepare( Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **ret) { _cleanup_(unit_freep) Unit *cleanup_unit = NULL; int r; assert(m); assert(ret); /* This will prepare the unit for loading, but not actually load anything from disk. */ if (path && !path_is_absolute(path)) return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path); if (!name) { /* 'name' and 'path' must not both be null. Check here 'path' using assert_se() to * workaround a bug in gcc that generates a -Wnonnull warning when calling basename(), * but this cannot be possible in any code path (See #6119). */ assert_se(path); name = basename(path); } UnitType t = unit_name_to_type(name); if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) { if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name); return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name); } Unit *unit = manager_get_unit(m, name); if (unit) { /* The time-based cache allows to start new units without daemon-reload, * but if they are already referenced (because of dependencies or ordering) * then we have to force a load of the fragment. As an optimization, check * first if anything in the usual paths was modified since the last time * the cache was loaded. Also check if the last time an attempt to load the * unit was made was before the most recent cache refresh, so that we know * we need to try again — even if the cache is current, it might have been * updated in a different context before we had a chance to retry loading * this particular unit. */ if (manager_unit_cache_should_retry_load(unit)) unit->load_state = UNIT_STUB; else { *ret = unit; return 0; /* The unit was already loaded */ } } else { unit = cleanup_unit = unit_new(m, unit_vtable[t]->object_size); if (!unit) return -ENOMEM; } if (path) { r = free_and_strdup(&unit->fragment_path, path); if (r < 0) return r; } r = unit_add_name(unit, name); if (r < 0) return r; unit_add_to_load_queue(unit); unit_add_to_dbus_queue(unit); unit_add_to_gc_queue(unit); *ret = unit; TAKE_PTR(cleanup_unit); return 1; /* The unit was added the load queue */ } int manager_load_unit( Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **ret) { int r; assert(m); assert(ret); /* This will load the unit config, but not actually start any services or anything. */ r = manager_load_unit_prepare(m, name, path, e, ret); if (r <= 0) return r; /* Unit was newly loaded */ manager_dispatch_load_queue(m); *ret = unit_follow_merge(*ret); return 0; } int manager_load_startable_unit_or_warn( Manager *m, const char *name, const char *path, Unit **ret) { /* Load a unit, make sure it loaded fully and is not masked. */ _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; Unit *unit; int r; r = manager_load_unit(m, name, path, &error, &unit); if (r < 0) return log_error_errno(r, "Failed to load %s %s: %s", name ? "unit" : "unit file", name ?: path, bus_error_message(&error, r)); r = bus_unit_validate_load_state(unit, &error); if (r < 0) return log_error_errno(r, "%s", bus_error_message(&error, r)); *ret = unit; return 0; } void manager_clear_jobs(Manager *m) { Job *j; assert(m); while ((j = hashmap_first(m->jobs))) /* No need to recurse. We're cancelling all jobs. */ job_finish_and_invalidate(j, JOB_CANCELED, false, false); } void manager_unwatch_pid(Manager *m, pid_t pid) { assert(m); /* First let's drop the unit keyed as "pid". */ (void) hashmap_remove(m->watch_pids, PID_TO_PTR(pid)); /* Then, let's also drop the array keyed by -pid. */ free(hashmap_remove(m->watch_pids, PID_TO_PTR(-pid))); } static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) { Manager *m = ASSERT_PTR(userdata); Job *j; assert(source); while ((j = prioq_peek(m->run_queue))) { assert(j->installed); assert(j->in_run_queue); (void) job_run_and_invalidate(j); } if (m->n_running_jobs > 0) manager_watch_jobs_in_progress(m); if (m->n_on_console > 0) manager_watch_idle_pipe(m); return 1; } void manager_trigger_run_queue(Manager *m) { int r; assert(m); r = sd_event_source_set_enabled( m->run_queue_event_source, prioq_isempty(m->run_queue) ? SD_EVENT_OFF : SD_EVENT_ONESHOT); if (r < 0) log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m"); } static unsigned manager_dispatch_dbus_queue(Manager *m) { unsigned n = 0, budget; Unit *u; Job *j; assert(m); /* When we are reloading, let's not wait with generating signals, since we need to exit the manager as quickly * as we can. There's no point in throttling generation of signals in that case. */ if (MANAGER_IS_RELOADING(m) || m->send_reloading_done || m->pending_reload_message) budget = UINT_MAX; /* infinite budget in this case */ else { /* Anything to do at all? */ if (!m->dbus_unit_queue && !m->dbus_job_queue) return 0; /* Do we have overly many messages queued at the moment? If so, let's not enqueue more on top, let's * sit this cycle out, and process things in a later cycle when the queues got a bit emptier. */ if (manager_bus_n_queued_write(m) > MANAGER_BUS_BUSY_THRESHOLD) return 0; /* Only process a certain number of units/jobs per event loop iteration. Even if the bus queue wasn't * overly full before this call we shouldn't increase it in size too wildly in one step, and we * shouldn't monopolize CPU time with generating these messages. Note the difference in counting of * this "budget" and the "threshold" above: the "budget" is decreased only once per generated message, * regardless how many buses/direct connections it is enqueued on, while the "threshold" is applied to * each queued instance of bus message, i.e. if the same message is enqueued to five buses/direct * connections it will be counted five times. This difference in counting ("references" * vs. "instances") is primarily a result of the fact that it's easier to implement it this way, * however it also reflects the thinking that the "threshold" should put a limit on used queue memory, * i.e. space, while the "budget" should put a limit on time. Also note that the "threshold" is * currently chosen much higher than the "budget". */ budget = MANAGER_BUS_MESSAGE_BUDGET; } while (budget != 0 && (u = m->dbus_unit_queue)) { assert(u->in_dbus_queue); bus_unit_send_change_signal(u); n++; if (budget != UINT_MAX) budget--; } while (budget != 0 && (j = m->dbus_job_queue)) { assert(j->in_dbus_queue); bus_job_send_change_signal(j); n++; if (budget != UINT_MAX) budget--; } if (m->send_reloading_done) { m->send_reloading_done = false; bus_manager_send_reloading(m, false); n++; } if (m->pending_reload_message) { bus_send_pending_reload_message(m); n++; } return n; } static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; char buf[PATH_MAX]; ssize_t n; n = recv(fd, buf, sizeof(buf), 0); if (n < 0) return log_error_errno(errno, "Failed to read cgroups agent message: %m"); if (n == 0) { log_error("Got zero-length cgroups agent message, ignoring."); return 0; } if ((size_t) n >= sizeof(buf)) { log_error("Got overly long cgroups agent message, ignoring."); return 0; } if (memchr(buf, 0, n)) { log_error("Got cgroups agent message with embedded NUL byte, ignoring."); return 0; } buf[n] = 0; manager_notify_cgroup_empty(m, buf); (void) bus_forward_agent_released(m, buf); return 0; } static bool manager_process_barrier_fd(char * const *tags, FDSet *fds) { /* nothing else must be sent when using BARRIER=1 */ if (strv_contains(tags, "BARRIER=1")) { if (strv_length(tags) == 1) { if (fdset_size(fds) != 1) log_warning("Got incorrect number of fds with BARRIER=1, closing them."); } else log_warning("Extra notification messages sent with BARRIER=1, ignoring everything."); /* Drop the message if BARRIER=1 was found */ return true; } return false; } static void manager_invoke_notify_message( Manager *m, Unit *u, const struct ucred *ucred, char * const *tags, FDSet *fds) { assert(m); assert(u); assert(ucred); assert(tags); if (u->notifygen == m->notifygen) /* Already invoked on this same unit in this same iteration? */ return; u->notifygen = m->notifygen; if (UNIT_VTABLE(u)->notify_message) UNIT_VTABLE(u)->notify_message(u, ucred, tags, fds); else if (DEBUG_LOGGING) { _cleanup_free_ char *buf = NULL, *x = NULL, *y = NULL; buf = strv_join(tags, ", "); if (buf) x = ellipsize(buf, 20, 90); if (x) y = cescape(x); log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y)); } } static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { _cleanup_fdset_free_ FDSet *fds = NULL; Manager *m = ASSERT_PTR(userdata); char buf[NOTIFY_BUFFER_MAX+1]; struct iovec iovec = { .iov_base = buf, .iov_len = sizeof(buf)-1, }; CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct ucred)) + CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)) control; struct msghdr msghdr = { .msg_iov = &iovec, .msg_iovlen = 1, .msg_control = &control, .msg_controllen = sizeof(control), }; struct cmsghdr *cmsg; struct ucred *ucred = NULL; _cleanup_free_ Unit **array_copy = NULL; _cleanup_strv_free_ char **tags = NULL; Unit *u1, *u2, **array; int r, *fd_array = NULL; size_t n_fds = 0; bool found = false; ssize_t n; assert(m->notify_fd == fd); if (revents != EPOLLIN) { log_warning("Got unexpected poll event for notify fd."); return 0; } n = recvmsg_safe(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC); if (n < 0) { if (ERRNO_IS_TRANSIENT(n)) return 0; /* Spurious wakeup, try again */ if (n == -EXFULL) { log_warning("Got message with truncated control data (too many fds sent?), ignoring."); return 0; } /* If this is any other, real error, then let's stop processing this socket. This of course * means we won't take notification messages anymore, but that's still better than busy * looping around this: being woken up over and over again but being unable to actually read * the message off the socket. */ return log_error_errno(n, "Failed to receive notification message: %m"); } CMSG_FOREACH(cmsg, &msghdr) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { assert(!fd_array); fd_array = (int*) CMSG_DATA(cmsg); n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int); } else if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_CREDENTIALS && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) { assert(!ucred); ucred = (struct ucred*) CMSG_DATA(cmsg); } } if (n_fds > 0) { assert(fd_array); r = fdset_new_array(&fds, fd_array, n_fds); if (r < 0) { close_many(fd_array, n_fds); log_oom(); return 0; } } if (!ucred || !pid_is_valid(ucred->pid)) { log_warning("Received notify message without valid credentials. Ignoring."); return 0; } if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) { log_warning("Received notify message exceeded maximum size. Ignoring."); return 0; } /* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. * We permit one trailing NUL byte in the message, but don't expect it. */ if (n > 1 && memchr(buf, 0, n-1)) { log_warning("Received notify message with embedded NUL bytes. Ignoring."); return 0; } /* Make sure it's NUL-terminated, then parse it to obtain the tags list. */ buf[n] = 0; tags = strv_split_newlines(buf); if (!tags) { log_oom(); return 0; } /* Possibly a barrier fd, let's see. */ if (manager_process_barrier_fd(tags, fds)) return 0; /* Increase the generation counter used for filtering out duplicate unit invocations. */ m->notifygen++; /* Notify every unit that might be interested, which might be multiple. */ u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid); u2 = hashmap_get(m->watch_pids, PID_TO_PTR(ucred->pid)); array = hashmap_get(m->watch_pids, PID_TO_PTR(-ucred->pid)); if (array) { size_t k = 0; while (array[k]) k++; array_copy = newdup(Unit*, array, k+1); if (!array_copy) log_oom(); } /* And now invoke the per-unit callbacks. Note that manager_invoke_notify_message() will handle * duplicate units make sure we only invoke each unit's handler once. */ if (u1) { manager_invoke_notify_message(m, u1, ucred, tags, fds); found = true; } if (u2) { manager_invoke_notify_message(m, u2, ucred, tags, fds); found = true; } if (array_copy) for (size_t i = 0; array_copy[i]; i++) { manager_invoke_notify_message(m, array_copy[i], ucred, tags, fds); found = true; } if (!found) log_warning("Cannot find unit for notify message of PID "PID_FMT", ignoring.", ucred->pid); if (fdset_size(fds) > 0) log_warning("Got extra auxiliary fds with notification message, closing them."); return 0; } static void manager_invoke_sigchld_event( Manager *m, Unit *u, const siginfo_t *si) { assert(m); assert(u); assert(si); /* Already invoked the handler of this unit in this iteration? Then don't process this again */ if (u->sigchldgen == m->sigchldgen) return; u->sigchldgen = m->sigchldgen; log_unit_debug(u, "Child "PID_FMT" belongs to %s.", si->si_pid, u->id); unit_unwatch_pid(u, si->si_pid); if (UNIT_VTABLE(u)->sigchld_event) UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status); } static int manager_dispatch_sigchld(sd_event_source *source, void *userdata) { Manager *m = ASSERT_PTR(userdata); siginfo_t si = {}; int r; assert(source); /* First we call waitid() for a PID and do not reap the zombie. That way we can still access * /proc/$PID for it while it is a zombie. */ if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) { if (errno != ECHILD) log_error_errno(errno, "Failed to peek for child with waitid(), ignoring: %m"); goto turn_off; } if (si.si_pid <= 0) goto turn_off; if (IN_SET(si.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED)) { _cleanup_free_ Unit **array_copy = NULL; _cleanup_free_ char *name = NULL; Unit *u1, *u2, **array; (void) get_process_comm(si.si_pid, &name); log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)", si.si_pid, strna(name), sigchld_code_to_string(si.si_code), si.si_status, strna(si.si_code == CLD_EXITED ? exit_status_to_string(si.si_status, EXIT_STATUS_FULL) : signal_to_string(si.si_status))); /* Increase the generation counter used for filtering out duplicate unit invocations */ m->sigchldgen++; /* And now figure out the unit this belongs to, it might be multiple... */ u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid); u2 = hashmap_get(m->watch_pids, PID_TO_PTR(si.si_pid)); array = hashmap_get(m->watch_pids, PID_TO_PTR(-si.si_pid)); if (array) { size_t n = 0; /* Count how many entries the array has */ while (array[n]) n++; /* Make a copy of the array so that we don't trip up on the array changing beneath us */ array_copy = newdup(Unit*, array, n+1); if (!array_copy) log_oom(); } /* Finally, execute them all. Note that u1, u2 and the array might contain duplicates, but * that's fine, manager_invoke_sigchld_event() will ensure we only invoke the handlers once for * each iteration. */ if (u1) { /* We check for oom condition, in case we got SIGCHLD before the oom notification. * We only do this for the cgroup the PID belonged to. */ (void) unit_check_oom(u1); /* We check if systemd-oomd performed a kill so that we log and notify appropriately */ (void) unit_check_oomd_kill(u1); manager_invoke_sigchld_event(m, u1, &si); } if (u2) manager_invoke_sigchld_event(m, u2, &si); if (array_copy) for (size_t i = 0; array_copy[i]; i++) manager_invoke_sigchld_event(m, array_copy[i], &si); } /* And now, we actually reap the zombie. */ if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) { log_error_errno(errno, "Failed to dequeue child, ignoring: %m"); return 0; } return 0; turn_off: /* All children processed for now, turn off event source */ r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF); if (r < 0) return log_error_errno(r, "Failed to disable SIGCHLD event source: %m"); return 0; } static void manager_start_special(Manager *m, const char *name, JobMode mode) { Job *job; if (manager_add_job_by_name_and_warn(m, JOB_START, name, mode, NULL, &job) < 0) return; const char *s = unit_status_string(job->unit, NULL); log_info("Activating special unit %s...", s); sd_notifyf(false, "STATUS=Activating special unit %s...", s); m->status_ready = false; } static void manager_handle_ctrl_alt_del(Manager *m) { /* If the user presses C-A-D more than * 7 times within 2s, we reboot/shutdown immediately, * unless it was disabled in system.conf */ if (ratelimit_below(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE) manager_start_special(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY); else emergency_action(m, m->cad_burst_action, EMERGENCY_ACTION_WARN, NULL, -1, "Ctrl-Alt-Del was pressed more than 7 times within 2s"); } static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = ASSERT_PTR(userdata); ssize_t n; struct signalfd_siginfo sfsi; int r; assert(m->signal_fd == fd); if (revents != EPOLLIN) { log_warning("Got unexpected events from signal file descriptor."); return 0; } n = read(m->signal_fd, &sfsi, sizeof(sfsi)); if (n < 0) { if (ERRNO_IS_TRANSIENT(errno)) return 0; /* We return an error here, which will kill this handler, * to avoid a busy loop on read error. */ return log_error_errno(errno, "Reading from signal fd failed: %m"); } if (n != sizeof(sfsi)) { log_warning("Truncated read from signal fd (%zi bytes), ignoring!", n); return 0; } log_received_signal(sfsi.ssi_signo == SIGCHLD || (sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m)) ? LOG_DEBUG : LOG_INFO, &sfsi); switch (sfsi.ssi_signo) { case SIGCHLD: r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON); if (r < 0) log_warning_errno(r, "Failed to enable SIGCHLD event source, ignoring: %m"); break; case SIGTERM: if (MANAGER_IS_SYSTEM(m)) { /* This is for compatibility with the original sysvinit */ if (verify_run_space_and_log("Refusing to reexecute") < 0) break; m->objective = MANAGER_REEXECUTE; break; } _fallthrough_; case SIGINT: if (MANAGER_IS_SYSTEM(m)) manager_handle_ctrl_alt_del(m); else manager_start_special(m, SPECIAL_EXIT_TARGET, JOB_REPLACE_IRREVERSIBLY); break; case SIGWINCH: /* This is a nop on non-init */ if (MANAGER_IS_SYSTEM(m)) manager_start_special(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE); break; case SIGPWR: /* This is a nop on non-init */ if (MANAGER_IS_SYSTEM(m)) manager_start_special(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE); break; case SIGUSR1: if (manager_dbus_is_running(m, false)) { log_info("Trying to reconnect to bus..."); (void) bus_init_api(m); if (MANAGER_IS_SYSTEM(m)) (void) bus_init_system(m); } else manager_start_special(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE); break; case SIGUSR2: { _cleanup_free_ char *dump = NULL; r = manager_get_dump_string(m, /* patterns= */ NULL, &dump); if (r < 0) { log_warning_errno(errno, "Failed to acquire manager dump: %m"); break; } log_dump(LOG_INFO, dump); break; } case SIGHUP: if (verify_run_space_and_log("Refusing to reload") < 0) break; m->objective = MANAGER_RELOAD; break; default: { /* Starting SIGRTMIN+0 */ static const struct { const char *target; JobMode mode; } target_table[] = { [0] = { SPECIAL_DEFAULT_TARGET, JOB_ISOLATE }, [1] = { SPECIAL_RESCUE_TARGET, JOB_ISOLATE }, [2] = { SPECIAL_EMERGENCY_TARGET, JOB_ISOLATE }, [3] = { SPECIAL_HALT_TARGET, JOB_REPLACE_IRREVERSIBLY }, [4] = { SPECIAL_POWEROFF_TARGET, JOB_REPLACE_IRREVERSIBLY }, [5] = { SPECIAL_REBOOT_TARGET, JOB_REPLACE_IRREVERSIBLY }, [6] = { SPECIAL_KEXEC_TARGET, JOB_REPLACE_IRREVERSIBLY }, }; /* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */ static const ManagerObjective objective_table[] = { [0] = MANAGER_HALT, [1] = MANAGER_POWEROFF, [2] = MANAGER_REBOOT, [3] = MANAGER_KEXEC, }; if ((int) sfsi.ssi_signo >= SIGRTMIN+0 && (int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) { int idx = (int) sfsi.ssi_signo - SIGRTMIN; manager_start_special(m, target_table[idx].target, target_table[idx].mode); break; } if ((int) sfsi.ssi_signo >= SIGRTMIN+13 && (int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(objective_table)) { m->objective = objective_table[sfsi.ssi_signo - SIGRTMIN - 13]; break; } switch (sfsi.ssi_signo - SIGRTMIN) { case 20: manager_override_show_status(m, SHOW_STATUS_YES, "signal"); break; case 21: manager_override_show_status(m, SHOW_STATUS_NO, "signal"); break; case 22: manager_override_log_level(m, LOG_DEBUG); break; case 23: manager_restore_original_log_level(m); break; case 24: if (MANAGER_IS_USER(m)) { m->objective = MANAGER_EXIT; return 0; } /* This is a nop on init */ break; case 25: m->objective = MANAGER_REEXECUTE; break; case 26: case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */ manager_restore_original_log_target(m); break; case 27: manager_override_log_target(m, LOG_TARGET_CONSOLE); break; case 28: manager_override_log_target(m, LOG_TARGET_KMSG); break; default: log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo)); } }} return 0; } static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = ASSERT_PTR(userdata); Unit *u; log_struct(LOG_DEBUG, "MESSAGE_ID=" SD_MESSAGE_TIME_CHANGE_STR, LOG_MESSAGE("Time has been changed")); /* Restart the watch */ (void) manager_setup_time_change(m); HASHMAP_FOREACH(u, m->units) if (UNIT_VTABLE(u)->time_change) UNIT_VTABLE(u)->time_change(u); return 0; } static int manager_dispatch_timezone_change( sd_event_source *source, const struct inotify_event *e, void *userdata) { Manager *m = ASSERT_PTR(userdata); int changed; Unit *u; log_debug("inotify event for /etc/localtime"); changed = manager_read_timezone_stat(m); if (changed <= 0) return changed; /* Something changed, restart the watch, to ensure we watch the new /etc/localtime if it changed */ (void) manager_setup_timezone_change(m); /* Read the new timezone */ tzset(); log_debug("Timezone has been changed (now: %s).", tzname[daylight]); HASHMAP_FOREACH(u, m->units) if (UNIT_VTABLE(u)->timezone_change) UNIT_VTABLE(u)->timezone_change(u); return 0; } static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = ASSERT_PTR(userdata); assert(m->idle_pipe[2] == fd); /* There's at least one Type=idle child that just gave up on us waiting for the boot process to * complete. Let's now turn off any further console output if there's at least one service that needs * console access, so that from now on our own output should not spill into that service's output * anymore. After all, we support Type=idle only to beautify console output and it generally is set * on services that want to own the console exclusively without our interference. */ m->no_console_output = m->n_on_console > 0; /* Acknowledge the child's request, and let all all other children know too that they shouldn't wait * any longer by closing the pipes towards them, which is what they are waiting for. */ manager_close_idle_pipe(m); return 0; } static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) { Manager *m = ASSERT_PTR(userdata); int r; assert(source); manager_print_jobs_in_progress(m); r = sd_event_source_set_time_relative(source, JOBS_IN_PROGRESS_PERIOD_USEC); if (r < 0) return r; return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT); } int manager_loop(Manager *m) { RateLimit rl = { .interval = 1*USEC_PER_SEC, .burst = 50000 }; int r; assert(m); assert(m->objective == MANAGER_OK); /* Ensure manager_startup() has been called */ manager_check_finished(m); /* There might still be some zombies hanging around from before we were exec()'ed. Let's reap them. */ r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON); if (r < 0) return log_error_errno(r, "Failed to enable SIGCHLD event source: %m"); while (m->objective == MANAGER_OK) { (void) watchdog_ping(); if (!ratelimit_below(&rl)) { /* Yay, something is going seriously wrong, pause a little */ log_warning("Looping too fast. Throttling execution a little."); sleep(1); } if (manager_dispatch_load_queue(m) > 0) continue; if (manager_dispatch_gc_job_queue(m) > 0) continue; if (manager_dispatch_gc_unit_queue(m) > 0) continue; if (manager_dispatch_cleanup_queue(m) > 0) continue; if (manager_dispatch_cgroup_realize_queue(m) > 0) continue; if (manager_dispatch_start_when_upheld_queue(m) > 0) continue; if (manager_dispatch_stop_when_bound_queue(m) > 0) continue; if (manager_dispatch_stop_when_unneeded_queue(m) > 0) continue; if (manager_dispatch_dbus_queue(m) > 0) continue; /* Sleep for watchdog runtime wait time */ r = sd_event_run(m->event, watchdog_runtime_wait()); if (r < 0) return log_error_errno(r, "Failed to run event loop: %m"); } return m->objective; } int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) { _cleanup_free_ char *n = NULL; sd_id128_t invocation_id; Unit *u; int r; assert(m); assert(s); assert(_u); r = unit_name_from_dbus_path(s, &n); if (r < 0) return r; /* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then * we use it as invocation ID. */ r = sd_id128_from_string(n, &invocation_id); if (r >= 0) { u = hashmap_get(m->units_by_invocation_id, &invocation_id); if (u) { *_u = u; return 0; } return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID, "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.", SD_ID128_FORMAT_VAL(invocation_id)); } /* If this didn't work, we check if this is a unit name */ if (!unit_name_is_valid(n, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) { _cleanup_free_ char *nn = NULL; nn = cescape(n); return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is neither a valid invocation ID nor unit name.", strnull(nn)); } r = manager_load_unit(m, n, NULL, e, &u); if (r < 0) return r; *_u = u; return 0; } int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) { const char *p; unsigned id; Job *j; int r; assert(m); assert(s); assert(_j); p = startswith(s, "/org/freedesktop/systemd1/job/"); if (!p) return -EINVAL; r = safe_atou(p, &id); if (r < 0) return r; j = manager_get_job(m, id); if (!j) return -ENOENT; *_j = j; return 0; } void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) { #if HAVE_AUDIT _cleanup_free_ char *p = NULL; const char *msg; int audit_fd, r; if (!MANAGER_IS_SYSTEM(m)) return; audit_fd = get_audit_fd(); if (audit_fd < 0) return; /* Don't generate audit events if the service was already * started and we're just deserializing */ if (MANAGER_IS_RELOADING(m)) return; if (u->type != UNIT_SERVICE) return; r = unit_name_to_prefix_and_instance(u->id, &p); if (r < 0) { log_error_errno(r, "Failed to extract prefix and instance of unit name: %m"); return; } msg = strjoina("unit=", p); if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) { if (errno == EPERM) /* We aren't allowed to send audit messages? * Then let's not retry again. */ close_audit_fd(); else log_warning_errno(errno, "Failed to send audit message: %m"); } #endif } void manager_send_unit_plymouth(Manager *m, Unit *u) { static const union sockaddr_union sa = PLYMOUTH_SOCKET; _cleanup_free_ char *message = NULL; _cleanup_close_ int fd = -1; int n = 0; /* Don't generate plymouth events if the service was already * started and we're just deserializing */ if (MANAGER_IS_RELOADING(m)) return; if (!MANAGER_IS_SYSTEM(m)) return; if (detect_container() > 0) return; if (!IN_SET(u->type, UNIT_SERVICE, UNIT_MOUNT, UNIT_SWAP)) return; /* We set SOCK_NONBLOCK here so that we rather drop the * message then wait for plymouth */ fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) { log_error_errno(errno, "socket() failed: %m"); return; } if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) { if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno)) log_error_errno(errno, "connect() failed: %m"); return; } if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0) return (void) log_oom(); errno = 0; if (write(fd, message, n + 1) != n + 1) if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno)) log_error_errno(errno, "Failed to write Plymouth message: %m"); } usec_t manager_get_watchdog(Manager *m, WatchdogType t) { assert(m); if (MANAGER_IS_USER(m)) return USEC_INFINITY; if (timestamp_is_set(m->watchdog_overridden[t])) return m->watchdog_overridden[t]; return m->watchdog[t]; } void manager_set_watchdog(Manager *m, WatchdogType t, usec_t timeout) { assert(m); if (MANAGER_IS_USER(m)) return; if (m->watchdog[t] == timeout) return; if (t == WATCHDOG_RUNTIME) { if (!timestamp_is_set(m->watchdog_overridden[WATCHDOG_RUNTIME])) (void) watchdog_setup(timeout); } else if (t == WATCHDOG_PRETIMEOUT) if (m->watchdog_overridden[WATCHDOG_PRETIMEOUT] == USEC_INFINITY) (void) watchdog_setup_pretimeout(timeout); m->watchdog[t] = timeout; } void manager_override_watchdog(Manager *m, WatchdogType t, usec_t timeout) { assert(m); if (MANAGER_IS_USER(m)) return; if (m->watchdog_overridden[t] == timeout) return; if (t == WATCHDOG_RUNTIME) { usec_t usec = timestamp_is_set(timeout) ? timeout : m->watchdog[t]; (void) watchdog_setup(usec); } else if (t == WATCHDOG_PRETIMEOUT) (void) watchdog_setup_pretimeout(timeout); m->watchdog_overridden[t] = timeout; } int manager_set_watchdog_pretimeout_governor(Manager *m, const char *governor) { _cleanup_free_ char *p = NULL; int r; assert(m); if (MANAGER_IS_USER(m)) return 0; if (streq_ptr(m->watchdog_pretimeout_governor, governor)) return 0; p = strdup(governor); if (!p) return -ENOMEM; r = watchdog_setup_pretimeout_governor(governor); if (r < 0) return r; return free_and_replace(m->watchdog_pretimeout_governor, p); } int manager_override_watchdog_pretimeout_governor(Manager *m, const char *governor) { _cleanup_free_ char *p = NULL; int r; assert(m); if (MANAGER_IS_USER(m)) return 0; if (streq_ptr(m->watchdog_pretimeout_governor_overridden, governor)) return 0; p = strdup(governor); if (!p) return -ENOMEM; r = watchdog_setup_pretimeout_governor(governor); if (r < 0) return r; return free_and_replace(m->watchdog_pretimeout_governor_overridden, p); } int manager_reload(Manager *m) { _unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL; _cleanup_fdset_free_ FDSet *fds = NULL; _cleanup_fclose_ FILE *f = NULL; int r; assert(m); r = manager_open_serialization(m, &f); if (r < 0) return log_error_errno(r, "Failed to create serialization file: %m"); fds = fdset_new(); if (!fds) return log_oom(); /* We are officially in reload mode from here on. */ reloading = manager_reloading_start(m); r = manager_serialize(m, f, fds, false); if (r < 0) return r; if (fseeko(f, 0, SEEK_SET) < 0) return log_error_errno(errno, "Failed to seek to beginning of serialization: %m"); /* 💀 This is the point of no return, from here on there is no way back. 💀 */ reloading = NULL; bus_manager_send_reloading(m, true); /* Start by flushing out all jobs and units, all generated units, all runtime environments, all dynamic users * and everything else that is worth flushing out. We'll get it all back from the serialization — if we need * it. */ manager_clear_jobs_and_units(m); lookup_paths_flush_generator(&m->lookup_paths); lookup_paths_free(&m->lookup_paths); exec_runtime_vacuum(m); dynamic_user_vacuum(m, false); m->uid_refs = hashmap_free(m->uid_refs); m->gid_refs = hashmap_free(m->gid_refs); r = lookup_paths_init_or_warn(&m->lookup_paths, m->unit_file_scope, 0, NULL); if (r < 0) return r; (void) manager_run_environment_generators(m); (void) manager_run_generators(m); lookup_paths_log(&m->lookup_paths); /* We flushed out generated files, for which we don't watch mtime, so we should flush the old map. */ manager_free_unit_name_maps(m); /* First, enumerate what we can from kernel and suchlike */ manager_enumerate_perpetual(m); manager_enumerate(m); /* Second, deserialize our stored data */ r = manager_deserialize(m, f, fds); if (r < 0) log_warning_errno(r, "Deserialization failed, proceeding anyway: %m"); /* We don't need the serialization anymore */ f = safe_fclose(f); /* Re-register notify_fd as event source, and set up other sockets/communication channels we might need */ (void) manager_setup_notify(m); (void) manager_setup_cgroups_agent(m); (void) manager_setup_user_lookup_fd(m); /* Third, fire things up! */ manager_coldplug(m); /* Clean up runtime objects no longer referenced */ manager_vacuum(m); /* Clean up deserialized tracked clients */ m->deserialized_subscribed = strv_free(m->deserialized_subscribed); /* Consider the reload process complete now. */ assert(m->n_reloading > 0); m->n_reloading--; manager_ready(m); m->send_reloading_done = true; return 0; } void manager_reset_failed(Manager *m) { Unit *u; assert(m); HASHMAP_FOREACH(u, m->units) unit_reset_failed(u); } bool manager_unit_inactive_or_pending(Manager *m, const char *name) { Unit *u; assert(m); assert(name); /* Returns true if the unit is inactive or going down */ u = manager_get_unit(m, name); if (!u) return true; return unit_inactive_or_pending(u); } static void log_taint_string(Manager *m) { _cleanup_free_ char *taint = NULL; assert(m); if (MANAGER_IS_USER(m) || m->taint_logged) return; m->taint_logged = true; /* only check for taint once */ taint = manager_taint_string(m); if (isempty(taint)) return; log_struct(LOG_NOTICE, LOG_MESSAGE("System is tainted: %s", taint), "TAINT=%s", taint, "MESSAGE_ID=" SD_MESSAGE_TAINTED_STR); } static void manager_notify_finished(Manager *m) { usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec; if (MANAGER_IS_TEST_RUN(m)) return; if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) { char buf[FORMAT_TIMESPAN_MAX + STRLEN(" (firmware) + ") + FORMAT_TIMESPAN_MAX + STRLEN(" (loader) + ")] = {}; char *p = buf; size_t size = sizeof buf; /* Note that MANAGER_TIMESTAMP_KERNEL's monotonic value is always at 0, and * MANAGER_TIMESTAMP_FIRMWARE's and MANAGER_TIMESTAMP_LOADER's monotonic value should be considered * negative values. */ firmware_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic - m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic; loader_usec = m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic; userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic; total_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic + m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic; if (firmware_usec > 0) size = strpcpyf(&p, size, "%s (firmware) + ", FORMAT_TIMESPAN(firmware_usec, USEC_PER_MSEC)); if (loader_usec > 0) size = strpcpyf(&p, size, "%s (loader) + ", FORMAT_TIMESPAN(loader_usec, USEC_PER_MSEC)); if (dual_timestamp_is_set(&m->timestamps[MANAGER_TIMESTAMP_INITRD])) { /* The initrd case on bare-metal */ kernel_usec = m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic; initrd_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic; log_struct(LOG_INFO, "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR, "KERNEL_USEC="USEC_FMT, kernel_usec, "INITRD_USEC="USEC_FMT, initrd_usec, "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (initrd) + %s (userspace) = %s.", buf, FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC), FORMAT_TIMESPAN(initrd_usec, USEC_PER_MSEC), FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC), FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC))); } else { /* The initrd-less case on bare-metal */ kernel_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic; initrd_usec = 0; log_struct(LOG_INFO, "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR, "KERNEL_USEC="USEC_FMT, kernel_usec, "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (userspace) = %s.", buf, FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC), FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC), FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC))); } } else { /* The container and --user case */ firmware_usec = loader_usec = initrd_usec = kernel_usec = 0; total_usec = userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic; log_struct(LOG_INFO, "MESSAGE_ID=" SD_MESSAGE_USER_STARTUP_FINISHED_STR, "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s.", FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC))); } bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec); log_taint_string(m); } static void user_manager_send_ready(Manager *m) { int r; assert(m); /* We send READY=1 on reaching basic.target only when running in --user mode. */ if (!MANAGER_IS_USER(m) || m->ready_sent) return; r = sd_notify(false, "READY=1\n" "STATUS=Reached " SPECIAL_BASIC_TARGET "."); if (r < 0) log_warning_errno(r, "Failed to send readiness notification, ignoring: %m"); m->ready_sent = true; m->status_ready = false; } static void manager_send_ready(Manager *m) { int r; if (m->ready_sent && m->status_ready) /* Skip the notification if nothing changed. */ return; r = sd_notify(false, "READY=1\n" "STATUS=Ready."); if (r < 0) log_full_errno(m->ready_sent ? LOG_DEBUG : LOG_WARNING, r, "Failed to send readiness notification, ignoring: %m"); m->ready_sent = m->status_ready = true; } static void manager_check_basic_target(Manager *m) { Unit *u; assert(m); /* Small shortcut */ if (m->ready_sent && m->taint_logged) return; u = manager_get_unit(m, SPECIAL_BASIC_TARGET); if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) return; /* For user managers, send out READY=1 as soon as we reach basic.target */ user_manager_send_ready(m); /* Log the taint string as soon as we reach basic.target */ log_taint_string(m); } void manager_check_finished(Manager *m) { assert(m); if (MANAGER_IS_RELOADING(m)) return; /* Verify that we have entered the event loop already, and not left it again. */ if (!MANAGER_IS_RUNNING(m)) return; manager_check_basic_target(m); if (hashmap_size(m->jobs) > 0) { if (m->jobs_in_progress_event_source) /* Ignore any failure, this is only for feedback */ (void) sd_event_source_set_time(m->jobs_in_progress_event_source, manager_watch_jobs_next_time(m)); return; } /* The jobs hashmap tends to grow a lot during boot, and then it's not reused until shutdown. Let's kill the hashmap if it is relatively large. */ if (hashmap_buckets(m->jobs) > hashmap_size(m->units) / 10) m->jobs = hashmap_free(m->jobs); manager_send_ready(m); /* Notify Type=idle units that we are done now */ manager_close_idle_pipe(m); if (MANAGER_IS_FINISHED(m)) return; manager_flip_auto_status(m, false, "boot finished"); /* Turn off confirm spawn now */ m->confirm_spawn = NULL; /* No need to update ask password status when we're going non-interactive */ manager_close_ask_password(m); /* This is no longer the first boot */ manager_set_first_boot(m, false); dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_FINISH); manager_notify_finished(m); manager_invalidate_startup_units(m); } static bool generator_path_any(const char* const* paths) { bool found = false; /* Optimize by skipping the whole process by not creating output directories * if no generators are found. */ STRV_FOREACH(path, paths) if (access(*path, F_OK) == 0) found = true; else if (errno != ENOENT) log_warning_errno(errno, "Failed to open generator directory %s: %m", *path); return found; } static int manager_run_environment_generators(Manager *m) { char **tmp = NULL; /* this is only used in the forked process, no cleanup here */ _cleanup_strv_free_ char **paths = NULL; void* args[] = { [STDOUT_GENERATE] = &tmp, [STDOUT_COLLECT] = &tmp, [STDOUT_CONSUME] = &m->transient_environment, }; int r; if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_ENV_GENERATORS)) return 0; paths = env_generator_binary_paths(MANAGER_IS_SYSTEM(m)); if (!paths) return log_oom(); if (!generator_path_any((const char* const*) paths)) return 0; RUN_WITH_UMASK(0022) r = execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, gather_environment, args, NULL, m->transient_environment, EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID); return r; } static int build_generator_environment(Manager *m, char ***ret) { _cleanup_strv_free_ char **nl = NULL; Virtualization v; int r; assert(m); assert(ret); /* Generators oftentimes want to know some basic facts about the environment they run in, in order to * adjust generated units to that. Let's pass down some bits of information that are easy for us to * determine (but a bit harder for generator scripts to determine), as environment variables. */ nl = strv_copy(m->transient_environment); if (!nl) return -ENOMEM; r = strv_env_assign(&nl, "SYSTEMD_SCOPE", MANAGER_IS_SYSTEM(m) ? "system" : "user"); if (r < 0) return r; if (MANAGER_IS_SYSTEM(m)) { /* Note that $SYSTEMD_IN_INITRD may be used to override the initrd detection in much of our * codebase. This is hence more than purely informational. It will shortcut detection of the * initrd state if generators invoke our own tools. But that's OK, as it would come to the * same results (hopefully). */ r = strv_env_assign(&nl, "SYSTEMD_IN_INITRD", one_zero(in_initrd())); if (r < 0) return r; if (m->first_boot >= 0) { r = strv_env_assign(&nl, "SYSTEMD_FIRST_BOOT", one_zero(m->first_boot)); if (r < 0) return r; } } v = detect_virtualization(); if (v < 0) log_debug_errno(v, "Failed to detect virtualization, ignoring: %m"); else if (v > 0) { const char *s; s = strjoina(VIRTUALIZATION_IS_VM(v) ? "vm:" : VIRTUALIZATION_IS_CONTAINER(v) ? "container:" : ":", virtualization_to_string(v)); r = strv_env_assign(&nl, "SYSTEMD_VIRTUALIZATION", s); if (r < 0) return r; } r = strv_env_assign(&nl, "SYSTEMD_ARCHITECTURE", architecture_to_string(uname_architecture())); if (r < 0) return r; *ret = TAKE_PTR(nl); return 0; } static int manager_run_generators(Manager *m) { _cleanup_strv_free_ char **paths = NULL, **ge = NULL; int r; assert(m); if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_GENERATORS)) return 0; paths = generator_binary_paths(m->unit_file_scope); if (!paths) return log_oom(); if (!generator_path_any((const char* const*) paths)) return 0; r = lookup_paths_mkdir_generator(&m->lookup_paths); if (r < 0) { log_error_errno(r, "Failed to create generator directories: %m"); goto finish; } const char *argv[] = { NULL, /* Leave this empty, execute_directory() will fill something in */ m->lookup_paths.generator, m->lookup_paths.generator_early, m->lookup_paths.generator_late, NULL, }; r = build_generator_environment(m, &ge); if (r < 0) { log_error_errno(r, "Failed to build generator environment: %m"); goto finish; } RUN_WITH_UMASK(0022) (void) execute_directories( (const char* const*) paths, DEFAULT_TIMEOUT_USEC, /* callbacks= */ NULL, /* callback_args= */ NULL, (char**) argv, ge, EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID); r = 0; finish: lookup_paths_trim_generator(&m->lookup_paths); return r; } int manager_transient_environment_add(Manager *m, char **plus) { char **a; assert(m); if (strv_isempty(plus)) return 0; a = strv_env_merge(m->transient_environment, plus); if (!a) return log_oom(); sanitize_environment(a); return strv_free_and_replace(m->transient_environment, a); } int manager_client_environment_modify( Manager *m, char **minus, char **plus) { char **a = NULL, **b = NULL, **l; assert(m); if (strv_isempty(minus) && strv_isempty(plus)) return 0; l = m->client_environment; if (!strv_isempty(minus)) { a = strv_env_delete(l, 1, minus); if (!a) return -ENOMEM; l = a; } if (!strv_isempty(plus)) { b = strv_env_merge(l, plus); if (!b) { strv_free(a); return -ENOMEM; } l = b; } if (m->client_environment != l) strv_free(m->client_environment); if (a != l) strv_free(a); if (b != l) strv_free(b); m->client_environment = sanitize_environment(l); return 0; } int manager_get_effective_environment(Manager *m, char ***ret) { char **l; assert(m); assert(ret); l = strv_env_merge(m->transient_environment, m->client_environment); if (!l) return -ENOMEM; *ret = l; return 0; } int manager_set_default_smack_process_label(Manager *m, const char *label) { assert(m); #ifdef SMACK_DEFAULT_PROCESS_LABEL if (!label) return free_and_strdup(&m->default_smack_process_label, SMACK_DEFAULT_PROCESS_LABEL); #endif if (streq_ptr(label, "/")) return free_and_strdup(&m->default_smack_process_label, NULL); return free_and_strdup(&m->default_smack_process_label, label); } int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) { assert(m); for (unsigned i = 0; i < _RLIMIT_MAX; i++) { m->rlimit[i] = mfree(m->rlimit[i]); if (!default_rlimit[i]) continue; m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1); if (!m->rlimit[i]) return log_oom(); } return 0; } void manager_recheck_dbus(Manager *m) { assert(m); /* Connects to the bus if the dbus service and socket are running. If we are running in user mode * this is all it does. In system mode we'll also connect to the system bus (which will most likely * just reuse the connection of the API bus). That's because the system bus after all runs as service * of the system instance, while in the user instance we can assume it's already there. */ if (MANAGER_IS_RELOADING(m)) return; /* don't check while we are reloading… */ if (manager_dbus_is_running(m, false)) { (void) bus_init_api(m); if (MANAGER_IS_SYSTEM(m)) (void) bus_init_system(m); } else { (void) bus_done_api(m); if (MANAGER_IS_SYSTEM(m)) (void) bus_done_system(m); } } static bool manager_journal_is_running(Manager *m) { Unit *u; assert(m); if (MANAGER_IS_TEST_RUN(m)) return false; /* If we are the user manager we can safely assume that the journal is up */ if (!MANAGER_IS_SYSTEM(m)) return true; /* Check that the socket is not only up, but in RUNNING state */ u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET); if (!u) return false; if (SOCKET(u)->state != SOCKET_RUNNING) return false; /* Similar, check if the daemon itself is fully up, too */ u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE); if (!u) return false; if (!IN_SET(SERVICE(u)->state, SERVICE_RELOAD, SERVICE_RUNNING)) return false; return true; } void disable_printk_ratelimit(void) { /* Disable kernel's printk ratelimit. * * Logging to /dev/kmsg is most useful during early boot and shutdown, where normal logging * mechanisms are not available. The semantics of this sysctl are such that any kernel command-line * setting takes precedence. */ int r; r = sysctl_write("kernel/printk_devkmsg", "on"); if (r < 0) log_debug_errno(r, "Failed to set sysctl kernel.printk_devkmsg=on: %m"); } void manager_recheck_journal(Manager *m) { assert(m); /* Don't bother with this unless we are in the special situation of being PID 1 */ if (getpid_cached() != 1) return; /* Don't check this while we are reloading, things might still change */ if (MANAGER_IS_RELOADING(m)) return; /* The journal is fully and entirely up? If so, let's permit logging to it, if that's configured. If * the journal is down, don't ever log to it, otherwise we might end up deadlocking ourselves as we * might trigger an activation ourselves we can't fulfill. */ log_set_prohibit_ipc(!manager_journal_is_running(m)); log_open(); } static ShowStatus manager_get_show_status(Manager *m) { assert(m); if (MANAGER_IS_USER(m)) return _SHOW_STATUS_INVALID; if (m->show_status_overridden != _SHOW_STATUS_INVALID) return m->show_status_overridden; return m->show_status; } bool manager_get_show_status_on(Manager *m) { assert(m); return show_status_on(manager_get_show_status(m)); } static void set_show_status_marker(bool b) { if (b) (void) touch("/run/systemd/show-status"); else (void) unlink("/run/systemd/show-status"); } void manager_set_show_status(Manager *m, ShowStatus mode, const char *reason) { assert(m); assert(reason); assert(mode >= 0 && mode < _SHOW_STATUS_MAX); if (MANAGER_IS_USER(m)) return; if (mode == m->show_status) return; if (m->show_status_overridden == _SHOW_STATUS_INVALID) { bool enabled; enabled = show_status_on(mode); log_debug("%s (%s) showing of status (%s).", enabled ? "Enabling" : "Disabling", strna(show_status_to_string(mode)), reason); set_show_status_marker(enabled); } m->show_status = mode; } void manager_override_show_status(Manager *m, ShowStatus mode, const char *reason) { assert(m); assert(mode < _SHOW_STATUS_MAX); if (MANAGER_IS_USER(m)) return; if (mode == m->show_status_overridden) return; m->show_status_overridden = mode; if (mode == _SHOW_STATUS_INVALID) mode = m->show_status; log_debug("%s (%s) showing of status (%s).", m->show_status_overridden != _SHOW_STATUS_INVALID ? "Overriding" : "Restoring", strna(show_status_to_string(mode)), reason); set_show_status_marker(show_status_on(mode)); } const char *manager_get_confirm_spawn(Manager *m) { static int last_errno = 0; struct stat st; int r; assert(m); /* Here's the deal: we want to test the validity of the console but don't want * PID1 to go through the whole console process which might block. But we also * want to warn the user only once if something is wrong with the console so we * cannot do the sanity checks after spawning our children. So here we simply do * really basic tests to hopefully trap common errors. * * If the console suddenly disappear at the time our children will really it * then they will simply fail to acquire it and a positive answer will be * assumed. New children will fall back to /dev/console though. * * Note: TTYs are devices that can come and go any time, and frequently aren't * available yet during early boot (consider a USB rs232 dongle...). If for any * reason the configured console is not ready, we fall back to the default * console. */ if (!m->confirm_spawn || path_equal(m->confirm_spawn, "/dev/console")) return m->confirm_spawn; if (stat(m->confirm_spawn, &st) < 0) { r = -errno; goto fail; } if (!S_ISCHR(st.st_mode)) { r = -ENOTTY; goto fail; } last_errno = 0; return m->confirm_spawn; fail: if (last_errno != r) last_errno = log_warning_errno(r, "Failed to open %s, using default console: %m", m->confirm_spawn); return "/dev/console"; } void manager_set_first_boot(Manager *m, bool b) { assert(m); if (!MANAGER_IS_SYSTEM(m)) return; if (m->first_boot != (int) b) { if (b) (void) touch("/run/systemd/first-boot"); else (void) unlink("/run/systemd/first-boot"); } m->first_boot = b; } void manager_disable_confirm_spawn(void) { (void) touch("/run/systemd/confirm_spawn_disabled"); } bool manager_is_confirm_spawn_disabled(Manager *m) { if (!m->confirm_spawn) return true; return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0; } static bool manager_should_show_status(Manager *m, StatusType type) { assert(m); if (!MANAGER_IS_SYSTEM(m)) return false; if (m->no_console_output) return false; if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING)) return false; /* If we cannot find out the status properly, just proceed. */ if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0) return false; if (type == STATUS_TYPE_NOTICE && m->show_status != SHOW_STATUS_NO) return true; return manager_get_show_status_on(m); } void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) { va_list ap; /* If m is NULL, assume we're after shutdown and let the messages through. */ if (m && !manager_should_show_status(m, type)) return; /* XXX We should totally drop the check for ephemeral here * and thus effectively make 'Type=idle' pointless. */ if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0) return; va_start(ap, format); status_vprintf(status, SHOW_STATUS_ELLIPSIZE|(type == STATUS_TYPE_EPHEMERAL ? SHOW_STATUS_EPHEMERAL : 0), format, ap); va_end(ap); } Set* manager_get_units_requiring_mounts_for(Manager *m, const char *path) { assert(m); assert(path); if (path_equal(path, "/")) path = ""; return hashmap_get(m->units_requiring_mounts_for, path); } int manager_update_failed_units(Manager *m, Unit *u, bool failed) { unsigned size; int r; assert(m); assert(u->manager == m); size = set_size(m->failed_units); if (failed) { r = set_ensure_put(&m->failed_units, NULL, u); if (r < 0) return log_oom(); } else (void) set_remove(m->failed_units, u); if (set_size(m->failed_units) != size) bus_manager_send_change_signal(m); return 0; } ManagerState manager_state(Manager *m) { Unit *u; assert(m); /* Is the special shutdown target active or queued? If so, we are in shutdown state */ u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET); if (u && unit_active_or_pending(u)) return MANAGER_STOPPING; /* Did we ever finish booting? If not then we are still starting up */ if (!MANAGER_IS_FINISHED(m)) { u = manager_get_unit(m, SPECIAL_BASIC_TARGET); if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) return MANAGER_INITIALIZING; return MANAGER_STARTING; } if (MANAGER_IS_SYSTEM(m)) { /* Are the rescue or emergency targets active or queued? If so we are in maintenance state */ u = manager_get_unit(m, SPECIAL_RESCUE_TARGET); if (u && unit_active_or_pending(u)) return MANAGER_MAINTENANCE; u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET); if (u && unit_active_or_pending(u)) return MANAGER_MAINTENANCE; } /* Are there any failed units? If so, we are in degraded mode */ if (set_size(m->failed_units) > 0) return MANAGER_DEGRADED; return MANAGER_RUNNING; } static void manager_unref_uid_internal( Hashmap *uid_refs, uid_t uid, bool destroy_now, int (*_clean_ipc)(uid_t uid)) { uint32_t c, n; assert(uid_is_valid(uid)); assert(_clean_ipc); /* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the * assumption that uid_t and gid_t are actually defined the same way, with the same validity rules. * * We store a hashmap where the key is the UID/GID and the value is a 32bit reference counter, whose * highest bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last * reference to the UID/GID is dropped. The flag is set to on, once at least one reference from a * unit where RemoveIPC= is set is added on a UID/GID. It is reset when the UID's/GID's reference * counter drops to 0 again. */ assert_cc(sizeof(uid_t) == sizeof(gid_t)); assert_cc(UID_INVALID == (uid_t) GID_INVALID); if (uid == 0) /* We don't keep track of root, and will never destroy it */ return; c = PTR_TO_UINT32(hashmap_get(uid_refs, UID_TO_PTR(uid))); n = c & ~DESTROY_IPC_FLAG; assert(n > 0); n--; if (destroy_now && n == 0) { hashmap_remove(uid_refs, UID_TO_PTR(uid)); if (c & DESTROY_IPC_FLAG) { log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.", _clean_ipc == clean_ipc_by_uid ? "UID" : "GID", uid); (void) _clean_ipc(uid); } } else { c = n | (c & DESTROY_IPC_FLAG); assert_se(hashmap_update(uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0); } } void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) { manager_unref_uid_internal(m->uid_refs, uid, destroy_now, clean_ipc_by_uid); } void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) { manager_unref_uid_internal(m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid); } static int manager_ref_uid_internal( Hashmap **uid_refs, uid_t uid, bool clean_ipc) { uint32_t c, n; int r; assert(uid_refs); assert(uid_is_valid(uid)); /* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the * assumption that uid_t and gid_t are actually defined the same way, with the same validity * rules. */ assert_cc(sizeof(uid_t) == sizeof(gid_t)); assert_cc(UID_INVALID == (uid_t) GID_INVALID); if (uid == 0) /* We don't keep track of root, and will never destroy it */ return 0; r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops); if (r < 0) return r; c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid))); n = c & ~DESTROY_IPC_FLAG; n++; if (n & DESTROY_IPC_FLAG) /* check for overflow */ return -EOVERFLOW; c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0); return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)); } int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) { return manager_ref_uid_internal(&m->uid_refs, uid, clean_ipc); } int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) { return manager_ref_uid_internal(&m->gid_refs, (uid_t) gid, clean_ipc); } static void manager_vacuum_uid_refs_internal( Hashmap *uid_refs, int (*_clean_ipc)(uid_t uid)) { void *p, *k; assert(_clean_ipc); HASHMAP_FOREACH_KEY(p, k, uid_refs) { uint32_t c, n; uid_t uid; uid = PTR_TO_UID(k); c = PTR_TO_UINT32(p); n = c & ~DESTROY_IPC_FLAG; if (n > 0) continue; if (c & DESTROY_IPC_FLAG) { log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.", _clean_ipc == clean_ipc_by_uid ? "UID" : "GID", uid); (void) _clean_ipc(uid); } assert_se(hashmap_remove(uid_refs, k) == p); } } static void manager_vacuum_uid_refs(Manager *m) { manager_vacuum_uid_refs_internal(m->uid_refs, clean_ipc_by_uid); } static void manager_vacuum_gid_refs(Manager *m) { manager_vacuum_uid_refs_internal(m->gid_refs, clean_ipc_by_gid); } static void manager_vacuum(Manager *m) { assert(m); /* Release any dynamic users no longer referenced */ dynamic_user_vacuum(m, true); /* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */ manager_vacuum_uid_refs(m); manager_vacuum_gid_refs(m); /* Release any runtimes no longer referenced */ exec_runtime_vacuum(m); } int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { struct buffer { uid_t uid; gid_t gid; char unit_name[UNIT_NAME_MAX+1]; } _packed_ buffer; Manager *m = userdata; ssize_t l; size_t n; Unit *u; assert_se(source); assert_se(m); /* Invoked whenever a child process succeeded resolving its user/group to use and sent us the * resulting UID/GID in a datagram. We parse the datagram here and pass it off to the unit, so that * it can add a reference to the UID/GID so that it can destroy the UID/GID's IPC objects when the * reference counter drops to 0. */ l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT); if (l < 0) { if (ERRNO_IS_TRANSIENT(errno)) return 0; return log_error_errno(errno, "Failed to read from user lookup fd: %m"); } if ((size_t) l <= offsetof(struct buffer, unit_name)) { log_warning("Received too short user lookup message, ignoring."); return 0; } if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) { log_warning("Received too long user lookup message, ignoring."); return 0; } if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) { log_warning("Got user lookup message with invalid UID/GID pair, ignoring."); return 0; } n = (size_t) l - offsetof(struct buffer, unit_name); if (memchr(buffer.unit_name, 0, n)) { log_warning("Received lookup message with embedded NUL character, ignoring."); return 0; } buffer.unit_name[n] = 0; u = manager_get_unit(m, buffer.unit_name); if (!u) { log_debug("Got user lookup message but unit doesn't exist, ignoring."); return 0; } log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid); unit_notify_user_lookup(u, buffer.uid, buffer.gid); return 0; } static int short_uid_range(const char *path) { _cleanup_(uid_range_freep) UidRange *p = NULL; int r; assert(path); /* Taint systemd if we the UID range assigned to this environment doesn't at least cover 0…65534, * i.e. from root to nobody. */ r = uid_range_load_userns(&p, path); if (r < 0) { if (ERRNO_IS_NOT_SUPPORTED(r)) return false; return log_debug_errno(r, "Failed to load %s: %m", path); } return !uid_range_covers(p, 0, 65535); } char* manager_taint_string(const Manager *m) { /* Returns a "taint string", e.g. "local-hwclock:var-run-bad". Only things that are detected at * runtime should be tagged here. For stuff that is known during compilation, emit a warning in the * configuration phase. */ assert(m); const char* stage[13] = {}; size_t n = 0; if (m->taint_usr) stage[n++] = "split-usr"; _cleanup_free_ char *usrbin = NULL; if (readlink_malloc("/bin", &usrbin) < 0 || !PATH_IN_SET(usrbin, "usr/bin", "/usr/bin")) stage[n++] = "unmerged-usr"; if (access("/proc/cgroups", F_OK) < 0) stage[n++] = "cgroups-missing"; if (cg_all_unified() == 0) stage[n++] = "cgroupsv1"; if (clock_is_localtime(NULL) > 0) stage[n++] = "local-hwclock"; if (os_release_support_ended(NULL, true) > 0) stage[n++] = "support-ended"; _cleanup_free_ char *destination = NULL; if (readlink_malloc("/var/run", &destination) < 0 || !PATH_IN_SET(destination, "../run", "/run")) stage[n++] = "var-run-bad"; _cleanup_free_ char *overflowuid = NULL, *overflowgid = NULL; if (read_one_line_file("/proc/sys/kernel/overflowuid", &overflowuid) >= 0 && !streq(overflowuid, "65534")) stage[n++] = "overflowuid-not-65534"; if (read_one_line_file("/proc/sys/kernel/overflowgid", &overflowgid) >= 0 && !streq(overflowgid, "65534")) stage[n++] = "overflowgid-not-65534"; struct utsname uts; assert_se(uname(&uts) >= 0); if (strverscmp_improved(uts.release, KERNEL_BASELINE_VERSION) < 0) stage[n++] = "old-kernel"; if (short_uid_range("/proc/self/uid_map") > 0) stage[n++] = "short-uid-range"; if (short_uid_range("/proc/self/gid_map") > 0) stage[n++] = "short-gid-range"; assert(n < ELEMENTSOF(stage) - 1); /* One extra for NULL terminator */ return strv_join((char**) stage, ":"); } void manager_ref_console(Manager *m) { assert(m); m->n_on_console++; } void manager_unref_console(Manager *m) { assert(m->n_on_console > 0); m->n_on_console--; if (m->n_on_console == 0) m->no_console_output = false; /* unset no_console_output flag, since the console is definitely free now */ } void manager_override_log_level(Manager *m, int level) { _cleanup_free_ char *s = NULL; assert(m); if (!m->log_level_overridden) { m->original_log_level = log_get_max_level(); m->log_level_overridden = true; } (void) log_level_to_string_alloc(level, &s); log_info("Setting log level to %s.", strna(s)); log_set_max_level(level); } void manager_restore_original_log_level(Manager *m) { _cleanup_free_ char *s = NULL; assert(m); if (!m->log_level_overridden) return; (void) log_level_to_string_alloc(m->original_log_level, &s); log_info("Restoring log level to original (%s).", strna(s)); log_set_max_level(m->original_log_level); m->log_level_overridden = false; } void manager_override_log_target(Manager *m, LogTarget target) { assert(m); if (!m->log_target_overridden) { m->original_log_target = log_get_target(); m->log_target_overridden = true; } log_info("Setting log target to %s.", log_target_to_string(target)); log_set_target(target); } void manager_restore_original_log_target(Manager *m) { assert(m); if (!m->log_target_overridden) return; log_info("Restoring log target to original %s.", log_target_to_string(m->original_log_target)); log_set_target(m->original_log_target); m->log_target_overridden = false; } ManagerTimestamp manager_timestamp_initrd_mangle(ManagerTimestamp s) { if (in_initrd() && s >= MANAGER_TIMESTAMP_SECURITY_START && s <= MANAGER_TIMESTAMP_UNITS_LOAD_FINISH) return s - MANAGER_TIMESTAMP_SECURITY_START + MANAGER_TIMESTAMP_INITRD_SECURITY_START; return s; } static const char *const manager_state_table[_MANAGER_STATE_MAX] = { [MANAGER_INITIALIZING] = "initializing", [MANAGER_STARTING] = "starting", [MANAGER_RUNNING] = "running", [MANAGER_DEGRADED] = "degraded", [MANAGER_MAINTENANCE] = "maintenance", [MANAGER_STOPPING] = "stopping", }; DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState); static const char *const manager_timestamp_table[_MANAGER_TIMESTAMP_MAX] = { [MANAGER_TIMESTAMP_FIRMWARE] = "firmware", [MANAGER_TIMESTAMP_LOADER] = "loader", [MANAGER_TIMESTAMP_KERNEL] = "kernel", [MANAGER_TIMESTAMP_INITRD] = "initrd", [MANAGER_TIMESTAMP_USERSPACE] = "userspace", [MANAGER_TIMESTAMP_FINISH] = "finish", [MANAGER_TIMESTAMP_SECURITY_START] = "security-start", [MANAGER_TIMESTAMP_SECURITY_FINISH] = "security-finish", [MANAGER_TIMESTAMP_GENERATORS_START] = "generators-start", [MANAGER_TIMESTAMP_GENERATORS_FINISH] = "generators-finish", [MANAGER_TIMESTAMP_UNITS_LOAD_START] = "units-load-start", [MANAGER_TIMESTAMP_UNITS_LOAD_FINISH] = "units-load-finish", [MANAGER_TIMESTAMP_UNITS_LOAD] = "units-load", [MANAGER_TIMESTAMP_INITRD_SECURITY_START] = "initrd-security-start", [MANAGER_TIMESTAMP_INITRD_SECURITY_FINISH] = "initrd-security-finish", [MANAGER_TIMESTAMP_INITRD_GENERATORS_START] = "initrd-generators-start", [MANAGER_TIMESTAMP_INITRD_GENERATORS_FINISH] = "initrd-generators-finish", [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_START] = "initrd-units-load-start", [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_FINISH] = "initrd-units-load-finish", }; DEFINE_STRING_TABLE_LOOKUP(manager_timestamp, ManagerTimestamp); static const char* const oom_policy_table[_OOM_POLICY_MAX] = { [OOM_CONTINUE] = "continue", [OOM_STOP] = "stop", [OOM_KILL] = "kill", }; DEFINE_STRING_TABLE_LOOKUP(oom_policy, OOMPolicy);