/* SPDX-License-Identifier: LGPL-2.1-or-later */ #if HAVE_GCRYPT # include #endif #include "alloc-util.h" #include "dns-domain.h" #include "escape.h" #include "memory-util.h" #include "resolved-dns-packet.h" #include "set.h" #include "stdio-util.h" #include "string-table.h" #include "strv.h" #include "unaligned.h" #include "utf8.h" #define EDNS0_OPT_DO (1<<15) assert_cc(DNS_PACKET_SIZE_START > DNS_PACKET_HEADER_SIZE); typedef struct DnsPacketRewinder { DnsPacket *packet; size_t saved_rindex; } DnsPacketRewinder; static void rewind_dns_packet(DnsPacketRewinder *rewinder) { if (rewinder->packet) dns_packet_rewind(rewinder->packet, rewinder->saved_rindex); } #define REWINDER_INIT(p) { \ .packet = (p), \ .saved_rindex = (p)->rindex, \ } #define CANCEL_REWINDER(rewinder) do { (rewinder).packet = NULL; } while (0) int dns_packet_new( DnsPacket **ret, DnsProtocol protocol, size_t min_alloc_dsize, size_t max_size) { DnsPacket *p; size_t a; assert(ret); assert(max_size >= DNS_PACKET_HEADER_SIZE); if (max_size > DNS_PACKET_SIZE_MAX) max_size = DNS_PACKET_SIZE_MAX; /* The caller may not check what is going to be truly allocated, so do not allow to * allocate a DNS packet bigger than DNS_PACKET_SIZE_MAX. */ if (min_alloc_dsize > DNS_PACKET_SIZE_MAX) return log_error_errno(SYNTHETIC_ERRNO(EFBIG), "Requested packet data size too big: %zu", min_alloc_dsize); /* When dns_packet_new() is called with min_alloc_dsize == 0, allocate more than the * absolute minimum (which is the dns packet header size), to avoid * resizing immediately again after appending the first data to the packet. */ if (min_alloc_dsize < DNS_PACKET_HEADER_SIZE) a = DNS_PACKET_SIZE_START; else a = min_alloc_dsize; /* round up to next page size */ a = PAGE_ALIGN(ALIGN(sizeof(DnsPacket)) + a) - ALIGN(sizeof(DnsPacket)); /* make sure we never allocate more than useful */ if (a > max_size) a = max_size; p = malloc0(ALIGN(sizeof(DnsPacket)) + a); if (!p) return -ENOMEM; *p = (DnsPacket) { .n_ref = 1, .protocol = protocol, .size = DNS_PACKET_HEADER_SIZE, .rindex = DNS_PACKET_HEADER_SIZE, .allocated = a, .max_size = max_size, .opt_start = SIZE_MAX, .opt_size = SIZE_MAX, }; *ret = p; return 0; } void dns_packet_set_flags(DnsPacket *p, bool dnssec_checking_disabled, bool truncated) { DnsPacketHeader *h; assert(p); h = DNS_PACKET_HEADER(p); switch (p->protocol) { case DNS_PROTOCOL_LLMNR: assert(!truncated); h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */, 0 /* opcode */, 0 /* c */, 0 /* tc */, 0 /* t */, 0 /* ra */, 0 /* ad */, 0 /* cd */, 0 /* rcode */)); break; case DNS_PROTOCOL_MDNS: h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */, 0 /* opcode */, 0 /* aa */, truncated /* tc */, 0 /* rd (ask for recursion) */, 0 /* ra */, 0 /* ad */, 0 /* cd */, 0 /* rcode */)); break; default: assert(!truncated); h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */, 0 /* opcode */, 0 /* aa */, 0 /* tc */, 1 /* rd (ask for recursion) */, 0 /* ra */, 0 /* ad */, dnssec_checking_disabled /* cd */, 0 /* rcode */)); } } int dns_packet_new_query(DnsPacket **ret, DnsProtocol protocol, size_t min_alloc_dsize, bool dnssec_checking_disabled) { DnsPacket *p; int r; assert(ret); r = dns_packet_new(&p, protocol, min_alloc_dsize, DNS_PACKET_SIZE_MAX); if (r < 0) return r; /* Always set the TC bit to 0 initially. * If there are multiple packets later, we'll update the bit shortly before sending. */ dns_packet_set_flags(p, dnssec_checking_disabled, false); *ret = p; return 0; } int dns_packet_dup(DnsPacket **ret, DnsPacket *p) { DnsPacket *c; int r; assert(ret); assert(p); r = dns_packet_validate(p); if (r < 0) return r; c = malloc(ALIGN(sizeof(DnsPacket)) + p->size); if (!c) return -ENOMEM; *c = (DnsPacket) { .n_ref = 1, .protocol = p->protocol, .size = p->size, .rindex = DNS_PACKET_HEADER_SIZE, .allocated = p->size, .max_size = p->max_size, .opt_start = SIZE_MAX, .opt_size = SIZE_MAX, }; memcpy(DNS_PACKET_DATA(c), DNS_PACKET_DATA(p), p->size); *ret = c; return 0; } DnsPacket *dns_packet_ref(DnsPacket *p) { if (!p) return NULL; assert(!p->on_stack); assert(p->n_ref > 0); p->n_ref++; return p; } static void dns_packet_free(DnsPacket *p) { char *s; assert(p); dns_question_unref(p->question); dns_answer_unref(p->answer); dns_resource_record_unref(p->opt); while ((s = hashmap_steal_first_key(p->names))) free(s); hashmap_free(p->names); free(p->_data); if (!p->on_stack) free(p); } DnsPacket *dns_packet_unref(DnsPacket *p) { if (!p) return NULL; assert(p->n_ref > 0); dns_packet_unref(p->more); if (p->n_ref == 1) dns_packet_free(p); else p->n_ref--; return NULL; } int dns_packet_validate(DnsPacket *p) { assert(p); if (p->size < DNS_PACKET_HEADER_SIZE) return -EBADMSG; if (p->size > DNS_PACKET_SIZE_MAX) return -EBADMSG; return 1; } int dns_packet_validate_reply(DnsPacket *p) { int r; assert(p); r = dns_packet_validate(p); if (r < 0) return r; if (DNS_PACKET_QR(p) != 1) return 0; if (DNS_PACKET_OPCODE(p) != 0) return -EBADMSG; switch (p->protocol) { case DNS_PROTOCOL_LLMNR: /* RFC 4795, Section 2.1.1. says to discard all replies with QDCOUNT != 1 */ if (DNS_PACKET_QDCOUNT(p) != 1) return -EBADMSG; break; case DNS_PROTOCOL_MDNS: /* RFC 6762, Section 18 */ if (DNS_PACKET_RCODE(p) != 0) return -EBADMSG; break; default: break; } return 1; } int dns_packet_validate_query(DnsPacket *p) { int r; assert(p); r = dns_packet_validate(p); if (r < 0) return r; if (DNS_PACKET_QR(p) != 0) return 0; if (DNS_PACKET_OPCODE(p) != 0) return -EBADMSG; switch (p->protocol) { case DNS_PROTOCOL_DNS: if (DNS_PACKET_TC(p)) return -EBADMSG; if (DNS_PACKET_QDCOUNT(p) != 1) return -EBADMSG; if (DNS_PACKET_ANCOUNT(p) > 0) return -EBADMSG; /* Note, in most cases, DNS query packet does not have authority section. But some query * types, e.g. IXFR, have Authority sections. Hence, unlike the check for LLMNR, we do not * check DNS_PACKET_NSCOUNT(p) here. */ break; case DNS_PROTOCOL_LLMNR: if (DNS_PACKET_TC(p)) return -EBADMSG; /* RFC 4795, Section 2.1.1. says to discard all queries with QDCOUNT != 1 */ if (DNS_PACKET_QDCOUNT(p) != 1) return -EBADMSG; /* RFC 4795, Section 2.1.1. says to discard all queries with ANCOUNT != 0 */ if (DNS_PACKET_ANCOUNT(p) > 0) return -EBADMSG; /* RFC 4795, Section 2.1.1. says to discard all queries with NSCOUNT != 0 */ if (DNS_PACKET_NSCOUNT(p) > 0) return -EBADMSG; break; case DNS_PROTOCOL_MDNS: /* Note, mDNS query may have truncation flag. So, unlike the check for DNS and LLMNR, * we do not check DNS_PACKET_TC(p) here. */ /* RFC 6762, Section 18 specifies that messages with non-zero RCODE * must be silently ignored, and that we must ignore the values of * AA, RD, RA, AD, and CD bits. */ if (DNS_PACKET_RCODE(p) != 0) return -EBADMSG; break; default: break; } return 1; } static int dns_packet_extend(DnsPacket *p, size_t add, void **ret, size_t *start) { assert(p); if (p->size + add > p->allocated) { size_t a, ms; a = PAGE_ALIGN((p->size + add) * 2); ms = dns_packet_size_max(p); if (a > ms) a = ms; if (p->size + add > a) return -EMSGSIZE; if (p->_data) { void *d; d = realloc(p->_data, a); if (!d) return -ENOMEM; p->_data = d; } else { p->_data = malloc(a); if (!p->_data) return -ENOMEM; memcpy(p->_data, (uint8_t*) p + ALIGN(sizeof(DnsPacket)), p->size); memzero((uint8_t*) p->_data + p->size, a - p->size); } p->allocated = a; } if (start) *start = p->size; if (ret) *ret = (uint8_t*) DNS_PACKET_DATA(p) + p->size; p->size += add; return 0; } void dns_packet_truncate(DnsPacket *p, size_t sz) { char *s; void *n; assert(p); if (p->size <= sz) return; HASHMAP_FOREACH_KEY(n, s, p->names) { if (PTR_TO_SIZE(n) < sz) continue; hashmap_remove(p->names, s); free(s); } p->size = sz; } int dns_packet_append_blob(DnsPacket *p, const void *d, size_t l, size_t *start) { void *q; int r; assert(p); r = dns_packet_extend(p, l, &q, start); if (r < 0) return r; memcpy_safe(q, d, l); return 0; } int dns_packet_append_uint8(DnsPacket *p, uint8_t v, size_t *start) { void *d; int r; assert(p); r = dns_packet_extend(p, sizeof(uint8_t), &d, start); if (r < 0) return r; ((uint8_t*) d)[0] = v; return 0; } int dns_packet_append_uint16(DnsPacket *p, uint16_t v, size_t *start) { void *d; int r; assert(p); r = dns_packet_extend(p, sizeof(uint16_t), &d, start); if (r < 0) return r; unaligned_write_be16(d, v); return 0; } int dns_packet_append_uint32(DnsPacket *p, uint32_t v, size_t *start) { void *d; int r; assert(p); r = dns_packet_extend(p, sizeof(uint32_t), &d, start); if (r < 0) return r; unaligned_write_be32(d, v); return 0; } int dns_packet_append_string(DnsPacket *p, const char *s, size_t *start) { assert(p); assert(s); return dns_packet_append_raw_string(p, s, strlen(s), start); } int dns_packet_append_raw_string(DnsPacket *p, const void *s, size_t size, size_t *start) { void *d; int r; assert(p); assert(s || size == 0); if (size > 255) return -E2BIG; r = dns_packet_extend(p, 1 + size, &d, start); if (r < 0) return r; ((uint8_t*) d)[0] = (uint8_t) size; memcpy_safe(((uint8_t*) d) + 1, s, size); return 0; } int dns_packet_append_label(DnsPacket *p, const char *d, size_t l, bool canonical_candidate, size_t *start) { uint8_t *w; int r; /* Append a label to a packet. Optionally, does this in DNSSEC * canonical form, if this label is marked as a candidate for * it, and the canonical form logic is enabled for the * packet */ assert(p); assert(d); if (l > DNS_LABEL_MAX) return -E2BIG; r = dns_packet_extend(p, 1 + l, (void**) &w, start); if (r < 0) return r; *(w++) = (uint8_t) l; if (p->canonical_form && canonical_candidate) /* Generate in canonical form, as defined by DNSSEC * RFC 4034, Section 6.2, i.e. all lower-case. */ for (size_t i = 0; i < l; i++) w[i] = (uint8_t) ascii_tolower(d[i]); else /* Otherwise, just copy the string unaltered. This is * essential for DNS-SD, where the casing of labels * matters and needs to be retained. */ memcpy(w, d, l); return 0; } int dns_packet_append_name( DnsPacket *p, const char *name, bool allow_compression, bool canonical_candidate, size_t *start) { _cleanup_free_ char **added_entries = NULL; /* doesn't own the strings! this is just regular pointer array, not a NULL-terminated strv! */ size_t n_added_entries = 0, saved_size; int r; assert(p); assert(name); r = dns_name_is_valid(name); if (r < 0) return r; if (r == 0) return -EINVAL; if (p->refuse_compression) allow_compression = false; saved_size = p->size; while (!dns_name_is_root(name)) { const char *z = name; char label[DNS_LABEL_MAX+1]; size_t n = 0; if (allow_compression) n = PTR_TO_SIZE(hashmap_get(p->names, name)); if (n > 0) { assert(n < p->size); if (n < 0x4000) { r = dns_packet_append_uint16(p, 0xC000 | n, NULL); if (r < 0) goto fail; goto done; } } r = dns_label_unescape(&name, label, sizeof label, 0); if (r < 0) goto fail; r = dns_packet_append_label(p, label, r, canonical_candidate, &n); if (r < 0) goto fail; if (allow_compression) { _cleanup_free_ char *s = NULL; if (!GREEDY_REALLOC(added_entries, n_added_entries + 1)) { r = -ENOMEM; goto fail; } s = strdup(z); if (!s) { r = -ENOMEM; goto fail; } r = hashmap_ensure_put(&p->names, &dns_name_hash_ops, s, SIZE_TO_PTR(n)); if (r < 0) goto fail; /* Keep track of the entries we just added (note that the string is owned by the hashtable, not this array!) */ added_entries[n_added_entries++] = TAKE_PTR(s); } } r = dns_packet_append_uint8(p, 0, NULL); if (r < 0) return r; done: if (start) *start = saved_size; return 0; fail: /* Remove all label compression names we added again */ FOREACH_ARRAY(s, added_entries, n_added_entries) { hashmap_remove(p->names, *s); free(*s); } dns_packet_truncate(p, saved_size); return r; } int dns_packet_append_key(DnsPacket *p, const DnsResourceKey *k, const DnsAnswerFlags flags, size_t *start) { size_t saved_size; uint16_t class; int r; assert(p); assert(k); saved_size = p->size; r = dns_packet_append_name(p, dns_resource_key_name(k), true, true, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, k->type, NULL); if (r < 0) goto fail; class = flags & DNS_ANSWER_CACHE_FLUSH ? k->class | MDNS_RR_CACHE_FLUSH_OR_QU : k->class; r = dns_packet_append_uint16(p, class, NULL); if (r < 0) goto fail; if (start) *start = saved_size; return 0; fail: dns_packet_truncate(p, saved_size); return r; } static int dns_packet_append_type_window(DnsPacket *p, uint8_t window, uint8_t length, const uint8_t *types, size_t *start) { size_t saved_size; int r; assert(p); assert(types); assert(length > 0); saved_size = p->size; r = dns_packet_append_uint8(p, window, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, length, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, types, length, NULL); if (r < 0) goto fail; if (start) *start = saved_size; return 0; fail: dns_packet_truncate(p, saved_size); return r; } static int dns_packet_append_types(DnsPacket *p, Bitmap *types, size_t *start) { uint8_t window = 0; uint8_t entry = 0; uint8_t bitmaps[32] = {}; unsigned n; size_t saved_size; int r; assert(p); saved_size = p->size; BITMAP_FOREACH(n, types) { assert(n <= 0xffff); if ((n >> 8) != window && bitmaps[entry / 8] != 0) { r = dns_packet_append_type_window(p, window, entry / 8 + 1, bitmaps, NULL); if (r < 0) goto fail; zero(bitmaps); } window = n >> 8; entry = n & 255; bitmaps[entry / 8] |= 1 << (7 - (entry % 8)); } if (bitmaps[entry / 8] != 0) { r = dns_packet_append_type_window(p, window, entry / 8 + 1, bitmaps, NULL); if (r < 0) goto fail; } if (start) *start = saved_size; return 0; fail: dns_packet_truncate(p, saved_size); return r; } /* Append the OPT pseudo-RR described in RFC6891 */ int dns_packet_append_opt( DnsPacket *p, uint16_t max_udp_size, bool edns0_do, bool include_rfc6975, const char *nsid, int rcode, size_t *ret_start) { size_t saved_size; int r; assert(p); /* we must never advertise supported packet size smaller than the legacy max */ assert(max_udp_size >= DNS_PACKET_UNICAST_SIZE_MAX); assert(rcode >= 0); assert(rcode <= _DNS_RCODE_MAX); if (p->opt_start != SIZE_MAX) return -EBUSY; assert(p->opt_size == SIZE_MAX); saved_size = p->size; /* empty name */ r = dns_packet_append_uint8(p, 0, NULL); if (r < 0) return r; /* type */ r = dns_packet_append_uint16(p, DNS_TYPE_OPT, NULL); if (r < 0) goto fail; /* class: maximum udp packet that can be received */ r = dns_packet_append_uint16(p, max_udp_size, NULL); if (r < 0) goto fail; /* extended RCODE and VERSION */ r = dns_packet_append_uint16(p, ((uint16_t) rcode & 0x0FF0) << 4, NULL); if (r < 0) goto fail; /* flags: DNSSEC OK (DO), see RFC3225 */ r = dns_packet_append_uint16(p, edns0_do ? EDNS0_OPT_DO : 0, NULL); if (r < 0) goto fail; if (edns0_do && include_rfc6975) { /* If DO is on and this is requested, also append RFC6975 Algorithm data. This is supposed to * be done on queries, not on replies, hencer callers should turn this off when finishing off * replies. */ static const uint8_t rfc6975[] = { 0, DNS_EDNS_OPT_DAU, /* OPTION_CODE */ #if PREFER_OPENSSL || (HAVE_GCRYPT && GCRYPT_VERSION_NUMBER >= 0x010600) 0, 7, /* LIST_LENGTH */ #else 0, 6, /* LIST_LENGTH */ #endif DNSSEC_ALGORITHM_RSASHA1, DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1, DNSSEC_ALGORITHM_RSASHA256, DNSSEC_ALGORITHM_RSASHA512, DNSSEC_ALGORITHM_ECDSAP256SHA256, DNSSEC_ALGORITHM_ECDSAP384SHA384, #if PREFER_OPENSSL || (HAVE_GCRYPT && GCRYPT_VERSION_NUMBER >= 0x010600) DNSSEC_ALGORITHM_ED25519, #endif 0, DNS_EDNS_OPT_DHU, /* OPTION_CODE */ 0, 3, /* LIST_LENGTH */ DNSSEC_DIGEST_SHA1, DNSSEC_DIGEST_SHA256, DNSSEC_DIGEST_SHA384, 0, DNS_EDNS_OPT_N3U, /* OPTION_CODE */ 0, 1, /* LIST_LENGTH */ NSEC3_ALGORITHM_SHA1, }; r = dns_packet_append_uint16(p, sizeof(rfc6975), NULL); /* RDLENGTH */ if (r < 0) goto fail; r = dns_packet_append_blob(p, rfc6975, sizeof(rfc6975), NULL); /* the payload, as defined above */ } else if (nsid) { if (strlen(nsid) > UINT16_MAX - 4) { r = -E2BIG; goto fail; } r = dns_packet_append_uint16(p, 4 + strlen(nsid), NULL); /* RDLENGTH */ if (r < 0) goto fail; r = dns_packet_append_uint16(p, 3, NULL); /* OPTION-CODE: NSID */ if (r < 0) goto fail; r = dns_packet_append_uint16(p, strlen(nsid), NULL); /* OPTION-LENGTH */ if (r < 0) goto fail; r = dns_packet_append_blob(p, nsid, strlen(nsid), NULL); } else r = dns_packet_append_uint16(p, 0, NULL); if (r < 0) goto fail; DNS_PACKET_HEADER(p)->arcount = htobe16(DNS_PACKET_ARCOUNT(p) + 1); p->opt_start = saved_size; p->opt_size = p->size - saved_size; if (ret_start) *ret_start = saved_size; return 0; fail: dns_packet_truncate(p, saved_size); return r; } int dns_packet_truncate_opt(DnsPacket *p) { assert(p); if (p->opt_start == SIZE_MAX) { assert(p->opt_size == SIZE_MAX); return 0; } assert(p->opt_size != SIZE_MAX); assert(DNS_PACKET_ARCOUNT(p) > 0); if (p->opt_start + p->opt_size != p->size) return -EBUSY; dns_packet_truncate(p, p->opt_start); DNS_PACKET_HEADER(p)->arcount = htobe16(DNS_PACKET_ARCOUNT(p) - 1); p->opt_start = p->opt_size = SIZE_MAX; return 1; } int dns_packet_append_rr(DnsPacket *p, const DnsResourceRecord *rr, const DnsAnswerFlags flags, size_t *start, size_t *rdata_start) { size_t saved_size, rdlength_offset, end, rdlength, rds; uint32_t ttl; int r; assert(p); assert(rr); saved_size = p->size; r = dns_packet_append_key(p, rr->key, flags, NULL); if (r < 0) goto fail; ttl = flags & DNS_ANSWER_GOODBYE ? 0 : rr->ttl; r = dns_packet_append_uint32(p, ttl, NULL); if (r < 0) goto fail; /* Initially we write 0 here */ r = dns_packet_append_uint16(p, 0, &rdlength_offset); if (r < 0) goto fail; rds = p->size - saved_size; switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) { case DNS_TYPE_SRV: r = dns_packet_append_uint16(p, rr->srv.priority, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, rr->srv.weight, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, rr->srv.port, NULL); if (r < 0) goto fail; /* RFC 2782 states "Unless and until permitted by future standards action, name compression * is not to be used for this field." Hence we turn off compression here. */ r = dns_packet_append_name(p, rr->srv.name, /* allow_compression= */ false, /* canonical_candidate= */ true, NULL); break; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: r = dns_packet_append_name(p, rr->ptr.name, true, true, NULL); break; case DNS_TYPE_HINFO: r = dns_packet_append_string(p, rr->hinfo.cpu, NULL); if (r < 0) goto fail; r = dns_packet_append_string(p, rr->hinfo.os, NULL); break; case DNS_TYPE_SPF: /* exactly the same as TXT */ case DNS_TYPE_TXT: if (!rr->txt.items) { /* RFC 6763, section 6.1 suggests to generate * single empty string for an empty array. */ r = dns_packet_append_raw_string(p, NULL, 0, NULL); if (r < 0) goto fail; } else LIST_FOREACH(items, i, rr->txt.items) { r = dns_packet_append_raw_string(p, i->data, i->length, NULL); if (r < 0) goto fail; } r = 0; break; case DNS_TYPE_A: r = dns_packet_append_blob(p, &rr->a.in_addr, sizeof(struct in_addr), NULL); break; case DNS_TYPE_AAAA: r = dns_packet_append_blob(p, &rr->aaaa.in6_addr, sizeof(struct in6_addr), NULL); break; case DNS_TYPE_SOA: r = dns_packet_append_name(p, rr->soa.mname, true, true, NULL); if (r < 0) goto fail; r = dns_packet_append_name(p, rr->soa.rname, true, true, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->soa.serial, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->soa.refresh, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->soa.retry, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->soa.expire, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->soa.minimum, NULL); break; case DNS_TYPE_MX: r = dns_packet_append_uint16(p, rr->mx.priority, NULL); if (r < 0) goto fail; r = dns_packet_append_name(p, rr->mx.exchange, true, true, NULL); break; case DNS_TYPE_LOC: r = dns_packet_append_uint8(p, rr->loc.version, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->loc.size, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->loc.horiz_pre, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->loc.vert_pre, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->loc.latitude, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->loc.longitude, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->loc.altitude, NULL); break; case DNS_TYPE_DS: r = dns_packet_append_uint16(p, rr->ds.key_tag, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->ds.algorithm, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->ds.digest_type, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->ds.digest, rr->ds.digest_size, NULL); break; case DNS_TYPE_SSHFP: r = dns_packet_append_uint8(p, rr->sshfp.algorithm, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->sshfp.fptype, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, NULL); break; case DNS_TYPE_DNSKEY: r = dns_packet_append_uint16(p, rr->dnskey.flags, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->dnskey.protocol, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->dnskey.algorithm, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->dnskey.key, rr->dnskey.key_size, NULL); break; case DNS_TYPE_RRSIG: r = dns_packet_append_uint16(p, rr->rrsig.type_covered, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->rrsig.algorithm, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->rrsig.labels, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->rrsig.original_ttl, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->rrsig.expiration, NULL); if (r < 0) goto fail; r = dns_packet_append_uint32(p, rr->rrsig.inception, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, rr->rrsig.key_tag, NULL); if (r < 0) goto fail; r = dns_packet_append_name(p, rr->rrsig.signer, false, true, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->rrsig.signature, rr->rrsig.signature_size, NULL); break; case DNS_TYPE_NSEC: r = dns_packet_append_name(p, rr->nsec.next_domain_name, false, false, NULL); if (r < 0) goto fail; r = dns_packet_append_types(p, rr->nsec.types, NULL); if (r < 0) goto fail; break; case DNS_TYPE_NSEC3: r = dns_packet_append_uint8(p, rr->nsec3.algorithm, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->nsec3.flags, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, rr->nsec3.iterations, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->nsec3.salt_size, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->nsec3.salt, rr->nsec3.salt_size, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->nsec3.next_hashed_name_size, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, NULL); if (r < 0) goto fail; r = dns_packet_append_types(p, rr->nsec3.types, NULL); if (r < 0) goto fail; break; case DNS_TYPE_TLSA: r = dns_packet_append_uint8(p, rr->tlsa.cert_usage, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->tlsa.selector, NULL); if (r < 0) goto fail; r = dns_packet_append_uint8(p, rr->tlsa.matching_type, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->tlsa.data, rr->tlsa.data_size, NULL); break; case DNS_TYPE_SVCB: case DNS_TYPE_HTTPS: r = dns_packet_append_uint16(p, rr->svcb.priority, NULL); if (r < 0) goto fail; r = dns_packet_append_name(p, rr->svcb.target_name, false, false, NULL); if (r < 0) goto fail; LIST_FOREACH(params, i, rr->svcb.params) { r = dns_packet_append_uint16(p, i->key, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, i->length, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, i->value, i->length, NULL); if (r < 0) goto fail; } break; case DNS_TYPE_CAA: r = dns_packet_append_uint8(p, rr->caa.flags, NULL); if (r < 0) goto fail; r = dns_packet_append_string(p, rr->caa.tag, NULL); if (r < 0) goto fail; r = dns_packet_append_blob(p, rr->caa.value, rr->caa.value_size, NULL); break; case DNS_TYPE_NAPTR: r = dns_packet_append_uint16(p, rr->naptr.order, NULL); if (r < 0) goto fail; r = dns_packet_append_uint16(p, rr->naptr.preference, NULL); if (r < 0) goto fail; r = dns_packet_append_string(p, rr->naptr.flags, NULL); if (r < 0) goto fail; r = dns_packet_append_string(p, rr->naptr.services, NULL); if (r < 0) goto fail; r = dns_packet_append_string(p, rr->naptr.regexp, NULL); if (r < 0) goto fail; r = dns_packet_append_name(p, rr->naptr.replacement, /* allow_compression= */ false, /* canonical_candidate= */ true, NULL); break; case DNS_TYPE_OPT: case DNS_TYPE_OPENPGPKEY: case _DNS_TYPE_INVALID: /* unparsable */ default: r = dns_packet_append_blob(p, rr->generic.data, rr->generic.data_size, NULL); break; } if (r < 0) goto fail; /* Let's calculate the actual data size and update the field */ rdlength = p->size - rdlength_offset - sizeof(uint16_t); if (rdlength > 0xFFFF) { r = -ENOSPC; goto fail; } end = p->size; p->size = rdlength_offset; r = dns_packet_append_uint16(p, rdlength, NULL); if (r < 0) goto fail; p->size = end; if (start) *start = saved_size; if (rdata_start) *rdata_start = rds; return 0; fail: dns_packet_truncate(p, saved_size); return r; } int dns_packet_append_question(DnsPacket *p, DnsQuestion *q) { DnsResourceKey *key; int r; assert(p); DNS_QUESTION_FOREACH(key, q) { r = dns_packet_append_key(p, key, 0, NULL); if (r < 0) return r; } return 0; } int dns_packet_append_answer(DnsPacket *p, DnsAnswer *a, unsigned *completed) { DnsResourceRecord *rr; DnsAnswerFlags flags; int r; assert(p); DNS_ANSWER_FOREACH_FLAGS(rr, flags, a) { r = dns_packet_append_rr(p, rr, flags, NULL, NULL); if (r < 0) return r; if (completed) (*completed)++; } return 0; } int dns_packet_read(DnsPacket *p, size_t sz, const void **ret, size_t *start) { assert(p); assert(p->rindex <= p->size); if (sz > p->size - p->rindex) return -EMSGSIZE; if (ret) *ret = (uint8_t*) DNS_PACKET_DATA(p) + p->rindex; if (start) *start = p->rindex; p->rindex += sz; return 0; } void dns_packet_rewind(DnsPacket *p, size_t idx) { assert(p); assert(idx <= p->size); assert(idx >= DNS_PACKET_HEADER_SIZE); p->rindex = idx; } int dns_packet_read_blob(DnsPacket *p, void *d, size_t sz, size_t *start) { const void *q; int r; assert(p); assert(d); r = dns_packet_read(p, sz, &q, start); if (r < 0) return r; memcpy(d, q, sz); return 0; } static int dns_packet_read_memdup( DnsPacket *p, size_t size, void **ret, size_t *ret_size, size_t *ret_start) { const void *src; size_t start; int r; assert(p); assert(ret); r = dns_packet_read(p, size, &src, &start); if (r < 0) return r; if (size <= 0) *ret = NULL; else { void *copy; copy = memdup(src, size); if (!copy) return -ENOMEM; *ret = copy; } if (ret_size) *ret_size = size; if (ret_start) *ret_start = start; return 0; } int dns_packet_read_uint8(DnsPacket *p, uint8_t *ret, size_t *start) { const void *d; int r; assert(p); r = dns_packet_read(p, sizeof(uint8_t), &d, start); if (r < 0) return r; *ret = ((uint8_t*) d)[0]; return 0; } int dns_packet_read_uint16(DnsPacket *p, uint16_t *ret, size_t *start) { const void *d; int r; assert(p); r = dns_packet_read(p, sizeof(uint16_t), &d, start); if (r < 0) return r; if (ret) *ret = unaligned_read_be16(d); return 0; } int dns_packet_read_uint32(DnsPacket *p, uint32_t *ret, size_t *start) { const void *d; int r; assert(p); r = dns_packet_read(p, sizeof(uint32_t), &d, start); if (r < 0) return r; *ret = unaligned_read_be32(d); return 0; } int dns_packet_read_string(DnsPacket *p, char **ret, size_t *start) { _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); _cleanup_free_ char *t = NULL; const void *d; uint8_t c; int r; assert(p); r = dns_packet_read_uint8(p, &c, NULL); if (r < 0) return r; r = dns_packet_read(p, c, &d, NULL); if (r < 0) return r; r = make_cstring(d, c, MAKE_CSTRING_REFUSE_TRAILING_NUL, &t); if (r < 0) return r; if (!utf8_is_valid(t)) return -EBADMSG; *ret = TAKE_PTR(t); if (start) *start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } int dns_packet_read_raw_string(DnsPacket *p, const void **ret, size_t *size, size_t *start) { assert(p); _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); uint8_t c; int r; r = dns_packet_read_uint8(p, &c, NULL); if (r < 0) return r; r = dns_packet_read(p, c, ret, NULL); if (r < 0) return r; if (size) *size = c; if (start) *start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } int dns_packet_read_name( DnsPacket *p, char **ret, bool allow_compression, size_t *ret_start) { assert(p); _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); size_t after_rindex = 0, jump_barrier = p->rindex; _cleanup_free_ char *name = NULL; bool first = true; size_t n = 0, m = 0; int r; if (p->refuse_compression) allow_compression = false; for (;;) { uint8_t c, d; r = dns_packet_read_uint8(p, &c, NULL); if (r < 0) return r; if (c == 0) /* End of name */ break; else if (c <= 63) { const char *label; /* Literal label */ r = dns_packet_read(p, c, (const void**) &label, NULL); if (r < 0) return r; if (!GREEDY_REALLOC(name, n + !first + DNS_LABEL_ESCAPED_MAX)) return -ENOMEM; if (first) first = false; else { name[n++] = '.'; m++; } r = dns_label_escape(label, c, name + n, DNS_LABEL_ESCAPED_MAX); if (r < 0) return r; n += r; m += c; if (m > DNS_HOSTNAME_MAX) return -EBADMSG; continue; } else if (allow_compression && FLAGS_SET(c, 0xc0)) { uint16_t ptr; /* Pointer */ r = dns_packet_read_uint8(p, &d, NULL); if (r < 0) return r; ptr = (uint16_t) (c & ~0xc0) << 8 | (uint16_t) d; if (ptr < DNS_PACKET_HEADER_SIZE || ptr >= jump_barrier) return -EBADMSG; if (after_rindex == 0) after_rindex = p->rindex; /* Jumps are limited to a "prior occurrence" (RFC-1035 4.1.4) */ jump_barrier = ptr; p->rindex = ptr; } else return -EBADMSG; } if (!GREEDY_REALLOC(name, n + 1)) return -ENOMEM; name[n] = 0; if (after_rindex != 0) p->rindex= after_rindex; if (ret) *ret = TAKE_PTR(name); if (ret_start) *ret_start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } static int dns_packet_read_type_window(DnsPacket *p, Bitmap **types, size_t *start) { assert(p); assert(types); _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); uint8_t window, length; const uint8_t *bitmap; uint8_t bit = 0; bool found = false; int r; r = bitmap_ensure_allocated(types); if (r < 0) return r; r = dns_packet_read_uint8(p, &window, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &length, NULL); if (r < 0) return r; if (length == 0 || length > 32) return -EBADMSG; r = dns_packet_read(p, length, (const void **)&bitmap, NULL); if (r < 0) return r; for (uint8_t i = 0; i < length; i++) { uint8_t bitmask = 1 << 7; if (!bitmap[i]) { found = false; bit += 8; continue; } found = true; for (; bitmask; bit++, bitmask >>= 1) if (bitmap[i] & bitmask) { uint16_t n; n = (uint16_t) window << 8 | (uint16_t) bit; /* Ignore pseudo-types. see RFC4034 section 4.1.2 */ if (dns_type_is_pseudo(n)) continue; r = bitmap_set(*types, n); if (r < 0) return r; } } if (!found) return -EBADMSG; if (start) *start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } static int dns_packet_read_type_windows(DnsPacket *p, Bitmap **types, size_t size, size_t *start) { _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); int r; while (p->rindex - rewinder.saved_rindex < size) { r = dns_packet_read_type_window(p, types, NULL); if (r < 0) return r; assert(p->rindex >= rewinder.saved_rindex); /* don't read past end of current RR */ if (p->rindex - rewinder.saved_rindex > size) return -EBADMSG; } if (p->rindex - rewinder.saved_rindex != size) return -EBADMSG; if (start) *start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } int dns_packet_read_key( DnsPacket *p, DnsResourceKey **ret, bool *ret_cache_flush_or_qu, size_t *ret_start) { assert(p); _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); _cleanup_free_ char *name = NULL; bool cache_flush_or_qu = false; uint16_t class, type; int r; r = dns_packet_read_name(p, &name, true, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &type, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &class, NULL); if (r < 0) return r; if (p->protocol == DNS_PROTOCOL_MDNS) { /* See RFC6762, sections 5.4 and 10.2 */ if (type != DNS_TYPE_OPT && (class & MDNS_RR_CACHE_FLUSH_OR_QU)) { class &= ~MDNS_RR_CACHE_FLUSH_OR_QU; cache_flush_or_qu = true; } } if (ret) { DnsResourceKey *key; key = dns_resource_key_new_consume(class, type, name); if (!key) return -ENOMEM; TAKE_PTR(name); *ret = key; } if (ret_cache_flush_or_qu) *ret_cache_flush_or_qu = cache_flush_or_qu; if (ret_start) *ret_start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } static bool loc_size_ok(uint8_t size) { uint8_t m = size >> 4, e = size & 0xF; return m <= 9 && e <= 9 && (m > 0 || e == 0); } static bool dns_svc_param_is_valid(DnsSvcParam *i) { if (!i) return false; switch (i->key) { /* RFC 9460, section 7.1.1: alpn-ids must exactly fill SvcParamValue */ case DNS_SVC_PARAM_KEY_ALPN: { size_t sz = 0; if (i->length <= 0) return false; while (sz < i->length) sz += 1 + i->value[sz]; /* N.B. will not overflow */ return sz == i->length; } /* RFC 9460, section 7.1.1: value must be empty */ case DNS_SVC_PARAM_KEY_NO_DEFAULT_ALPN: return i->length == 0; /* RFC 9460, section 7.2 */ case DNS_SVC_PARAM_KEY_PORT: return i->length == 2; /* RFC 9460, section 7.3: addrs must exactly fill SvcParamValue */ case DNS_SVC_PARAM_KEY_IPV4HINT: return i->length % (sizeof (struct in_addr)) == 0; case DNS_SVC_PARAM_KEY_IPV6HINT: return i->length % (sizeof (struct in6_addr)) == 0; /* Otherwise, permit any value */ default: return true; } } int dns_packet_read_rr( DnsPacket *p, DnsResourceRecord **ret, bool *ret_cache_flush, size_t *ret_start) { assert(p); _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; size_t offset; uint16_t rdlength; bool cache_flush; int r; r = dns_packet_read_key(p, &key, &cache_flush, NULL); if (r < 0) return r; if (!dns_class_is_valid_rr(key->class) || !dns_type_is_valid_rr(key->type)) return -EBADMSG; rr = dns_resource_record_new(key); if (!rr) return -ENOMEM; r = dns_packet_read_uint32(p, &rr->ttl, NULL); if (r < 0) return r; /* RFC 2181, Section 8, suggests to treat a TTL with the MSB set as a zero TTL. We avoid doing this * for OPT records so that all 8 bits of the extended RCODE may be used .*/ if (key->type != DNS_TYPE_OPT && rr->ttl & UINT32_C(0x80000000)) rr->ttl = 0; r = dns_packet_read_uint16(p, &rdlength, NULL); if (r < 0) return r; if (rdlength > p->size - p->rindex) return -EBADMSG; offset = p->rindex; switch (rr->key->type) { case DNS_TYPE_SRV: r = dns_packet_read_uint16(p, &rr->srv.priority, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &rr->srv.weight, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &rr->srv.port, NULL); if (r < 0) return r; /* RFC 2782 states "Unless and until permitted by future standards action, name compression * is not to be used for this field." Nonetheless, we support it here, in the interest of * increasing compatibility with implementations that do not implement this correctly. After * all we didn't do this right once upon a time ourselves (see * https://github.com/systemd/systemd/issues/9793). */ r = dns_packet_read_name(p, &rr->srv.name, /* allow_compression= */ true, NULL); break; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: r = dns_packet_read_name(p, &rr->ptr.name, true, NULL); break; case DNS_TYPE_HINFO: r = dns_packet_read_string(p, &rr->hinfo.cpu, NULL); if (r < 0) return r; r = dns_packet_read_string(p, &rr->hinfo.os, NULL); break; case DNS_TYPE_SPF: /* exactly the same as TXT */ case DNS_TYPE_TXT: if (rdlength <= 0) { r = dns_txt_item_new_empty(&rr->txt.items); if (r < 0) return r; } else { DnsTxtItem *last = NULL; while (p->rindex - offset < rdlength) { DnsTxtItem *i; const void *data; size_t sz; r = dns_packet_read_raw_string(p, &data, &sz, NULL); if (r < 0) return r; i = malloc0(offsetof(DnsTxtItem, data) + sz + 1); /* extra NUL byte at the end */ if (!i) return -ENOMEM; memcpy(i->data, data, sz); i->length = sz; LIST_INSERT_AFTER(items, rr->txt.items, last, i); last = i; } } r = 0; break; case DNS_TYPE_A: r = dns_packet_read_blob(p, &rr->a.in_addr, sizeof(struct in_addr), NULL); break; case DNS_TYPE_AAAA: r = dns_packet_read_blob(p, &rr->aaaa.in6_addr, sizeof(struct in6_addr), NULL); break; case DNS_TYPE_SOA: r = dns_packet_read_name(p, &rr->soa.mname, true, NULL); if (r < 0) return r; r = dns_packet_read_name(p, &rr->soa.rname, true, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->soa.serial, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->soa.refresh, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->soa.retry, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->soa.expire, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->soa.minimum, NULL); break; case DNS_TYPE_MX: r = dns_packet_read_uint16(p, &rr->mx.priority, NULL); if (r < 0) return r; r = dns_packet_read_name(p, &rr->mx.exchange, true, NULL); break; case DNS_TYPE_LOC: { uint8_t t; size_t pos; r = dns_packet_read_uint8(p, &t, &pos); if (r < 0) return r; if (t == 0) { rr->loc.version = t; r = dns_packet_read_uint8(p, &rr->loc.size, NULL); if (r < 0) return r; if (!loc_size_ok(rr->loc.size)) return -EBADMSG; r = dns_packet_read_uint8(p, &rr->loc.horiz_pre, NULL); if (r < 0) return r; if (!loc_size_ok(rr->loc.horiz_pre)) return -EBADMSG; r = dns_packet_read_uint8(p, &rr->loc.vert_pre, NULL); if (r < 0) return r; if (!loc_size_ok(rr->loc.vert_pre)) return -EBADMSG; r = dns_packet_read_uint32(p, &rr->loc.latitude, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->loc.longitude, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->loc.altitude, NULL); if (r < 0) return r; break; } else { dns_packet_rewind(p, pos); rr->unparsable = true; goto unparsable; } } case DNS_TYPE_DS: r = dns_packet_read_uint16(p, &rr->ds.key_tag, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->ds.algorithm, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->ds.digest_type, NULL); if (r < 0) return r; if (rdlength < 4) return -EBADMSG; r = dns_packet_read_memdup(p, rdlength - 4, &rr->ds.digest, &rr->ds.digest_size, NULL); if (r < 0) return r; if (rr->ds.digest_size <= 0) /* the accepted size depends on the algorithm, but for now just ensure that the value is greater than zero */ return -EBADMSG; break; case DNS_TYPE_SSHFP: r = dns_packet_read_uint8(p, &rr->sshfp.algorithm, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->sshfp.fptype, NULL); if (r < 0) return r; if (rdlength < 2) return -EBADMSG; r = dns_packet_read_memdup(p, rdlength - 2, &rr->sshfp.fingerprint, &rr->sshfp.fingerprint_size, NULL); if (rr->sshfp.fingerprint_size <= 0) /* the accepted size depends on the algorithm, but for now just ensure that the value is greater than zero */ return -EBADMSG; break; case DNS_TYPE_DNSKEY: r = dns_packet_read_uint16(p, &rr->dnskey.flags, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->dnskey.protocol, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->dnskey.algorithm, NULL); if (r < 0) return r; if (rdlength < 4) return -EBADMSG; r = dns_packet_read_memdup(p, rdlength - 4, &rr->dnskey.key, &rr->dnskey.key_size, NULL); if (rr->dnskey.key_size <= 0) /* the accepted size depends on the algorithm, but for now just ensure that the value is greater than zero */ return -EBADMSG; break; case DNS_TYPE_RRSIG: r = dns_packet_read_uint16(p, &rr->rrsig.type_covered, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->rrsig.algorithm, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->rrsig.labels, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->rrsig.original_ttl, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->rrsig.expiration, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &rr->rrsig.inception, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &rr->rrsig.key_tag, NULL); if (r < 0) return r; r = dns_packet_read_name(p, &rr->rrsig.signer, false, NULL); if (r < 0) return r; if (rdlength < p->rindex - offset) return -EBADMSG; r = dns_packet_read_memdup(p, offset + rdlength - p->rindex, &rr->rrsig.signature, &rr->rrsig.signature_size, NULL); if (rr->rrsig.signature_size <= 0) /* the accepted size depends on the algorithm, but for now just ensure that the value is greater than zero */ return -EBADMSG; break; case DNS_TYPE_NSEC: { /* * RFC6762, section 18.14 explicitly states mDNS should use name compression. * This contradicts RFC3845, section 2.1.1 */ bool allow_compressed = p->protocol == DNS_PROTOCOL_MDNS; r = dns_packet_read_name(p, &rr->nsec.next_domain_name, allow_compressed, NULL); if (r < 0) return r; if (rdlength < p->rindex - offset) return -EBADMSG; r = dns_packet_read_type_windows(p, &rr->nsec.types, offset + rdlength - p->rindex, NULL); /* We accept empty NSEC bitmaps. The bit indicating the presence of the NSEC record itself * is redundant and in e.g., RFC4956 this fact is used to define a use for NSEC records * without the NSEC bit set. */ break; } case DNS_TYPE_NSEC3: { uint8_t size; r = dns_packet_read_uint8(p, &rr->nsec3.algorithm, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->nsec3.flags, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &rr->nsec3.iterations, NULL); if (r < 0) return r; /* this may be zero */ r = dns_packet_read_uint8(p, &size, NULL); if (r < 0) return r; r = dns_packet_read_memdup(p, size, &rr->nsec3.salt, &rr->nsec3.salt_size, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &size, NULL); if (r < 0) return r; if (size <= 0) return -EBADMSG; r = dns_packet_read_memdup(p, size, &rr->nsec3.next_hashed_name, &rr->nsec3.next_hashed_name_size, NULL); if (r < 0) return r; if (rdlength < p->rindex - offset) return -EBADMSG; r = dns_packet_read_type_windows(p, &rr->nsec3.types, offset + rdlength - p->rindex, NULL); /* empty non-terminals can have NSEC3 records, so empty bitmaps are allowed */ break; } case DNS_TYPE_TLSA: r = dns_packet_read_uint8(p, &rr->tlsa.cert_usage, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->tlsa.selector, NULL); if (r < 0) return r; r = dns_packet_read_uint8(p, &rr->tlsa.matching_type, NULL); if (r < 0) return r; if (rdlength < 3) return -EBADMSG; r = dns_packet_read_memdup(p, rdlength - 3, &rr->tlsa.data, &rr->tlsa.data_size, NULL); if (rr->tlsa.data_size <= 0) /* the accepted size depends on the algorithm, but for now just ensure that the value is greater than zero */ return -EBADMSG; break; case DNS_TYPE_SVCB: case DNS_TYPE_HTTPS: r = dns_packet_read_uint16(p, &rr->svcb.priority, NULL); if (r < 0) return r; r = dns_packet_read_name(p, &rr->svcb.target_name, false /* uncompressed */, NULL); if (r < 0) return r; DnsSvcParam *last = NULL; while (p->rindex - offset < rdlength) { _cleanup_free_ DnsSvcParam *i = NULL; uint16_t svc_param_key; uint16_t sz; r = dns_packet_read_uint16(p, &svc_param_key, NULL); if (r < 0) return r; /* RFC 9460, section 2.2 says we must consider an RR malformed if SvcParamKeys are * not in strictly increasing order */ if (last && last->key >= svc_param_key) return -EBADMSG; r = dns_packet_read_uint16(p, &sz, NULL); if (r < 0) return r; i = malloc0(offsetof(DnsSvcParam, value) + sz); if (!i) return -ENOMEM; i->key = svc_param_key; i->length = sz; r = dns_packet_read_blob(p, &i->value, sz, NULL); if (r < 0) return r; if (!dns_svc_param_is_valid(i)) return -EBADMSG; LIST_INSERT_AFTER(params, rr->svcb.params, last, i); last = TAKE_PTR(i); } break; case DNS_TYPE_CAA: r = dns_packet_read_uint8(p, &rr->caa.flags, NULL); if (r < 0) return r; r = dns_packet_read_string(p, &rr->caa.tag, NULL); if (r < 0) return r; if (rdlength < p->rindex - offset) return -EBADMSG; r = dns_packet_read_memdup(p, rdlength + offset - p->rindex, &rr->caa.value, &rr->caa.value_size, NULL); break; case DNS_TYPE_NAPTR: r = dns_packet_read_uint16(p, &rr->naptr.order, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &rr->naptr.preference, NULL); if (r < 0) return r; r = dns_packet_read_string(p, &rr->naptr.flags, NULL); if (r < 0) return r; r = dns_packet_read_string(p, &rr->naptr.services, NULL); if (r < 0) return r; r = dns_packet_read_string(p, &rr->naptr.regexp, NULL); if (r < 0) return r; r = dns_packet_read_name(p, &rr->naptr.replacement, /* allow_compressed= */ false, NULL); break; case DNS_TYPE_OPT: /* we only care about the header of OPT for now. */ case DNS_TYPE_OPENPGPKEY: default: unparsable: r = dns_packet_read_memdup(p, rdlength, &rr->generic.data, &rr->generic.data_size, NULL); break; } if (r < 0) return r; if (p->rindex - offset != rdlength) return -EBADMSG; if (ret) *ret = TAKE_PTR(rr); if (ret_cache_flush) *ret_cache_flush = cache_flush; if (ret_start) *ret_start = rewinder.saved_rindex; CANCEL_REWINDER(rewinder); return 0; } static bool opt_is_good(DnsResourceRecord *rr, bool *rfc6975) { const uint8_t* p; bool found_dau_dhu_n3u = false; size_t l; /* Checks whether the specified OPT RR is well-formed and whether it contains RFC6975 data (which is not OK in * a reply). */ assert(rr); assert(rr->key->type == DNS_TYPE_OPT); /* Check that the version is 0 */ if (((rr->ttl >> 16) & UINT32_C(0xFF)) != 0) { *rfc6975 = false; return true; /* if it's not version 0, it's OK, but we will ignore the OPT field contents */ } p = rr->opt.data; l = rr->opt.data_size; while (l > 0) { uint16_t option_code, option_length; /* At least four bytes for OPTION-CODE and OPTION-LENGTH are required */ if (l < 4U) return false; option_code = unaligned_read_be16(p); option_length = unaligned_read_be16(p + 2); if (l < option_length + 4U) return false; /* RFC 6975 DAU, DHU or N3U fields found. */ if (IN_SET(option_code, DNS_EDNS_OPT_DAU, DNS_EDNS_OPT_DHU, DNS_EDNS_OPT_N3U)) found_dau_dhu_n3u = true; p += option_length + 4U; l -= option_length + 4U; } *rfc6975 = found_dau_dhu_n3u; return true; } static int dns_packet_extract_question(DnsPacket *p, DnsQuestion **ret_question) { _cleanup_(dns_question_unrefp) DnsQuestion *question = NULL; unsigned n; int r; n = DNS_PACKET_QDCOUNT(p); if (n > 0) { question = dns_question_new(n); if (!question) return -ENOMEM; _cleanup_set_free_ Set *keys = NULL; /* references to keys are kept by Question */ keys = set_new(&dns_resource_key_hash_ops); if (!keys) return log_oom(); r = set_reserve(keys, n * 2); /* Higher multipliers give slightly higher efficiency through * hash collisions, but the gains quickly drop off after 2. */ if (r < 0) return r; for (unsigned i = 0; i < n; i++) { _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; bool qu; r = dns_packet_read_key(p, &key, &qu, NULL); if (r < 0) return r; if (!dns_type_is_valid_query(key->type)) return -EBADMSG; r = set_put(keys, key); if (r < 0) return r; if (r == 0) /* Already in the Question, let's skip */ continue; r = dns_question_add_raw(question, key, qu ? DNS_QUESTION_WANTS_UNICAST_REPLY : 0); if (r < 0) return r; } } *ret_question = TAKE_PTR(question); return 0; } static int dns_packet_extract_answer(DnsPacket *p, DnsAnswer **ret_answer) { _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL; unsigned n; _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *previous = NULL; bool bad_opt = false; int r; n = DNS_PACKET_RRCOUNT(p); if (n == 0) return 0; answer = dns_answer_new(n); if (!answer) return -ENOMEM; for (unsigned i = 0; i < n; i++) { _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; bool cache_flush = false; size_t start; if (p->rindex == p->size && p->opt) { /* If we reached the end of the packet already, but there are still more RRs * declared, then that's a corrupt packet. Let's accept the packet anyway, since it's * apparently a common bug in routers. Let's however suppress OPT support in this * case, so that we force the rest of the logic into lowest DNS baseline support. Or * to say this differently: if the DNS server doesn't even get the RR counts right, * it's highly unlikely it gets EDNS right. */ log_debug("More resource records declared in packet than included, suppressing OPT."); bad_opt = true; break; } r = dns_packet_read_rr(p, &rr, &cache_flush, &start); if (r < 0) return r; /* Try to reduce memory usage a bit */ if (previous) dns_resource_key_reduce(&rr->key, &previous->key); if (rr->key->type == DNS_TYPE_OPT) { bool has_rfc6975; if (p->opt || bad_opt) { /* Multiple OPT RRs? if so, let's ignore all, because there's * something wrong with the server, and if one is valid we wouldn't * know which one. */ log_debug("Multiple OPT RRs detected, ignoring all."); bad_opt = true; continue; } if (!dns_name_is_root(dns_resource_key_name(rr->key))) { /* If the OPT RR is not owned by the root domain, then it is bad, * let's ignore it. */ log_debug("OPT RR is not owned by root domain, ignoring."); bad_opt = true; continue; } if (i < DNS_PACKET_ANCOUNT(p) + DNS_PACKET_NSCOUNT(p)) { /* OPT RR is in the wrong section? Some Belkin routers do this. This * is a hint the EDNS implementation is borked, like the Belkin one * is, hence ignore it. */ log_debug("OPT RR in wrong section, ignoring."); bad_opt = true; continue; } if (!opt_is_good(rr, &has_rfc6975)) { log_debug("Malformed OPT RR, ignoring."); bad_opt = true; continue; } if (DNS_PACKET_QR(p)) { /* Additional checks for responses */ if (!DNS_RESOURCE_RECORD_OPT_VERSION_SUPPORTED(rr)) /* If this is a reply and we don't know the EDNS version * then something is weird... */ return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "EDNS version newer that our request, bad server."); if (has_rfc6975) { /* If the OPT RR contains RFC6975 algorithm data, then this * is indication that the server just copied the OPT it got * from us (which contained that data) back into the reply. * If so, then it doesn't properly support EDNS, as RFC6975 * makes it very clear that the algorithm data should only * be contained in questions, never in replies. Crappy * Belkin routers copy the OPT data for example, hence let's * detect this so that we downgrade early. */ log_debug("OPT RR contains RFC6975 data, ignoring."); bad_opt = true; continue; } } p->opt = dns_resource_record_ref(rr); p->opt_start = start; assert(p->rindex >= start); p->opt_size = p->rindex - start; } else { DnsAnswerFlags flags = 0; if (p->protocol == DNS_PROTOCOL_MDNS) { flags |= DNS_ANSWER_REFUSE_TTL_NO_MATCH; if (!cache_flush) flags |= DNS_ANSWER_SHARED_OWNER; } /* According to RFC 4795, section 2.9. only the RRs from the Answer section shall be * cached. Hence mark only those RRs as cacheable by default, but not the ones from * the Additional or Authority sections. * This restriction does not apply to mDNS records (RFC 6762). */ if (i < DNS_PACKET_ANCOUNT(p)) flags |= DNS_ANSWER_CACHEABLE|DNS_ANSWER_SECTION_ANSWER; else if (i < DNS_PACKET_ANCOUNT(p) + DNS_PACKET_NSCOUNT(p)) flags |= DNS_ANSWER_SECTION_AUTHORITY; else { flags |= DNS_ANSWER_SECTION_ADDITIONAL; if (p->protocol == DNS_PROTOCOL_MDNS) flags |= DNS_ANSWER_CACHEABLE; } r = dns_answer_add(answer, rr, p->ifindex, flags, NULL); if (r < 0) return r; } /* Remember this RR, so that we can potentially merge its ->key object with the * next RR. Note that we only do this if we actually decided to keep the RR around. */ DNS_RR_REPLACE(previous, dns_resource_record_ref(rr)); } if (bad_opt) { p->opt = dns_resource_record_unref(p->opt); p->opt_start = p->opt_size = SIZE_MAX; } *ret_answer = TAKE_PTR(answer); return 0; } int dns_packet_extract(DnsPacket *p) { assert(p); if (p->extracted) return 0; _cleanup_(dns_question_unrefp) DnsQuestion *question = NULL; _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL; _unused_ _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); int r; dns_packet_rewind(p, DNS_PACKET_HEADER_SIZE); r = dns_packet_extract_question(p, &question); if (r < 0) return r; r = dns_packet_extract_answer(p, &answer); if (r < 0) return r; if (p->rindex < p->size) { log_debug("Trailing garbage in packet, suppressing OPT."); p->opt = dns_resource_record_unref(p->opt); p->opt_start = p->opt_size = SIZE_MAX; } p->question = TAKE_PTR(question); p->answer = TAKE_PTR(answer); p->extracted = true; /* no CANCEL, always rewind */ return 0; } int dns_packet_is_reply_for(DnsPacket *p, const DnsResourceKey *key) { int r; assert(p); assert(key); /* Checks if the specified packet is a reply for the specified * key and the specified key is the only one in the question * section. */ if (DNS_PACKET_QR(p) != 1) return 0; /* Let's unpack the packet, if that hasn't happened yet. */ r = dns_packet_extract(p); if (r < 0) return r; if (!p->question) return 0; if (p->question->n_keys != 1) return 0; return dns_resource_key_equal(dns_question_first_key(p->question), key); } int dns_packet_patch_max_udp_size(DnsPacket *p, uint16_t max_udp_size) { assert(p); assert(max_udp_size >= DNS_PACKET_UNICAST_SIZE_MAX); if (p->opt_start == SIZE_MAX) /* No OPT section, nothing to patch */ return 0; assert(p->opt_size != SIZE_MAX); assert(p->opt_size >= 5); unaligned_write_be16(DNS_PACKET_DATA(p) + p->opt_start + 3, max_udp_size); return 1; } static int patch_rr(DnsPacket *p, usec_t age) { _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); size_t ttl_index; uint32_t ttl; uint16_t type, rdlength; int r; /* Patches the RR at the current rindex, subtracts the specified time from the TTL */ r = dns_packet_read_name(p, NULL, true, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, &type, NULL); if (r < 0) return r; r = dns_packet_read_uint16(p, NULL, NULL); if (r < 0) return r; r = dns_packet_read_uint32(p, &ttl, &ttl_index); if (r < 0) return r; if (type != DNS_TYPE_OPT) { /* The TTL of the OPT field is not actually a TTL, skip it */ ttl = LESS_BY(ttl * USEC_PER_SEC, age) / USEC_PER_SEC; unaligned_write_be32(DNS_PACKET_DATA(p) + ttl_index, ttl); } r = dns_packet_read_uint16(p, &rdlength, NULL); if (r < 0) return r; r = dns_packet_read(p, rdlength, NULL, NULL); if (r < 0) return r; CANCEL_REWINDER(rewinder); return 0; } int dns_packet_patch_ttls(DnsPacket *p, usec_t timestamp) { assert(p); assert(timestamp_is_set(timestamp)); /* Adjusts all TTLs in the packet by subtracting the time difference between now and the specified timestamp */ _unused_ _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = REWINDER_INIT(p); unsigned n; usec_t k; int r; k = now(CLOCK_BOOTTIME); assert(k >= timestamp); k -= timestamp; dns_packet_rewind(p, DNS_PACKET_HEADER_SIZE); n = DNS_PACKET_QDCOUNT(p); for (unsigned i = 0; i < n; i++) { r = dns_packet_read_key(p, NULL, NULL, NULL); if (r < 0) return r; } n = DNS_PACKET_RRCOUNT(p); for (unsigned i = 0; i < n; i++) { /* DNS servers suck, hence the RR count is in many servers off. If we reached the end * prematurely, accept that, exit early */ if (p->rindex == p->size) break; r = patch_rr(p, k); if (r < 0) return r; } return 0; } static void dns_packet_hash_func(const DnsPacket *s, struct siphash *state) { assert(s); siphash24_compress_typesafe(s->size, state); siphash24_compress(DNS_PACKET_DATA((DnsPacket*) s), s->size, state); } static int dns_packet_compare_func(const DnsPacket *x, const DnsPacket *y) { int r; r = CMP(x->size, y->size); if (r != 0) return r; return memcmp(DNS_PACKET_DATA((DnsPacket*) x), DNS_PACKET_DATA((DnsPacket*) y), x->size); } DEFINE_HASH_OPS(dns_packet_hash_ops, DnsPacket, dns_packet_hash_func, dns_packet_compare_func); bool dns_packet_equal(const DnsPacket *a, const DnsPacket *b) { return dns_packet_compare_func(a, b) == 0; } int dns_packet_ede_rcode(DnsPacket *p, int *ret_ede_rcode, char **ret_ede_msg) { const uint8_t *d; size_t l; int r; assert(p); if (!p->opt) return -ENOENT; d = p->opt->opt.data; l = p->opt->opt.data_size; while (l > 0) { uint16_t code, length; if (l < 4U) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "EDNS0 variable part has invalid size."); code = unaligned_read_be16(d); length = unaligned_read_be16(d + 2); if (l < 4U + length) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Truncated option in EDNS0 variable part."); if (code == DNS_EDNS_OPT_EXT_ERROR) { _cleanup_free_ char *msg = NULL; if (length < 2U) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "EDNS0 truncated EDE info code."); r = make_cstring((char *) d + 6, length - 2U, MAKE_CSTRING_ALLOW_TRAILING_NUL, &msg); if (r < 0) return log_debug_errno(r, "Invalid EDE text in opt."); if (ret_ede_msg) { if (!utf8_is_valid(msg)) { _cleanup_free_ char *msg_escaped = NULL; msg_escaped = cescape(msg); if (!msg_escaped) return log_oom_debug(); *ret_ede_msg = TAKE_PTR(msg_escaped); } else *ret_ede_msg = TAKE_PTR(msg); } if (ret_ede_rcode) *ret_ede_rcode = unaligned_read_be16(d + 4); return 0; } d += 4U + length; l -= 4U + length; } return -ENOENT; } bool dns_ede_rcode_is_dnssec(int ede_rcode) { return IN_SET(ede_rcode, DNS_EDE_RCODE_UNSUPPORTED_DNSKEY_ALG, DNS_EDE_RCODE_UNSUPPORTED_DS_DIGEST, DNS_EDE_RCODE_DNSSEC_INDETERMINATE, DNS_EDE_RCODE_DNSSEC_BOGUS, DNS_EDE_RCODE_SIG_EXPIRED, DNS_EDE_RCODE_SIG_NOT_YET_VALID, DNS_EDE_RCODE_DNSKEY_MISSING, DNS_EDE_RCODE_RRSIG_MISSING, DNS_EDE_RCODE_NO_ZONE_KEY_BIT, DNS_EDE_RCODE_NSEC_MISSING ); } int dns_packet_has_nsid_request(DnsPacket *p) { bool has_nsid = false; const uint8_t *d; size_t l; assert(p); if (!p->opt) return false; d = p->opt->opt.data; l = p->opt->opt.data_size; while (l > 0) { uint16_t code, length; if (l < 4U) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "EDNS0 variable part has invalid size."); code = unaligned_read_be16(d); length = unaligned_read_be16(d + 2); if (l < 4U + length) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Truncated option in EDNS0 variable part."); if (code == DNS_EDNS_OPT_NSID) { if (has_nsid) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Duplicate NSID option in EDNS0 variable part."); if (length != 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Non-empty NSID option in DNS request."); has_nsid = true; } d += 4U + length; l -= 4U + length; } return has_nsid; } size_t dns_packet_size_unfragmented(DnsPacket *p) { assert(p); if (p->fragsize == 0) /* Wasn't fragmented */ return p->size; /* The fragment size (p->fragsize) covers the whole (fragmented) IP packet, while the regular packet * size (p->size) only covers the DNS part. Thus, subtract the UDP header from the largest fragment * size, in order to determine which size of DNS packet would have gone through without * fragmenting. */ return LESS_BY(p->fragsize, udp_header_size(p->family)); } static const char* const dns_svc_param_key_table[_DNS_SVC_PARAM_KEY_MAX_DEFINED] = { [DNS_SVC_PARAM_KEY_MANDATORY] = "mandatory", [DNS_SVC_PARAM_KEY_ALPN] = "alpn", [DNS_SVC_PARAM_KEY_NO_DEFAULT_ALPN] = "no-default-alpn", [DNS_SVC_PARAM_KEY_PORT] = "port", [DNS_SVC_PARAM_KEY_IPV4HINT] = "ipv4hint", [DNS_SVC_PARAM_KEY_ECH] = "ech", [DNS_SVC_PARAM_KEY_IPV6HINT] = "ipv6hint", [DNS_SVC_PARAM_KEY_DOHPATH] = "dohpath", [DNS_SVC_PARAM_KEY_OHTTP] = "ohttp", }; DEFINE_STRING_TABLE_LOOKUP_TO_STRING(dns_svc_param_key, int); const char* format_dns_svc_param_key(uint16_t i, char buf[static DECIMAL_STR_MAX(uint16_t)+3]) { const char *p = dns_svc_param_key_to_string(i); if (p) return p; return snprintf_ok(buf, DECIMAL_STR_MAX(uint16_t)+3, "key%i", i); } static const char* const dns_rcode_table[_DNS_RCODE_MAX_DEFINED] = { [DNS_RCODE_SUCCESS] = "SUCCESS", [DNS_RCODE_FORMERR] = "FORMERR", [DNS_RCODE_SERVFAIL] = "SERVFAIL", [DNS_RCODE_NXDOMAIN] = "NXDOMAIN", [DNS_RCODE_NOTIMP] = "NOTIMP", [DNS_RCODE_REFUSED] = "REFUSED", [DNS_RCODE_YXDOMAIN] = "YXDOMAIN", [DNS_RCODE_YXRRSET] = "YRRSET", [DNS_RCODE_NXRRSET] = "NXRRSET", [DNS_RCODE_NOTAUTH] = "NOTAUTH", [DNS_RCODE_NOTZONE] = "NOTZONE", [DNS_RCODE_DSOTYPENI] = "DSOTYPENI", [DNS_RCODE_BADVERS] = "BADVERS", [DNS_RCODE_BADKEY] = "BADKEY", [DNS_RCODE_BADTIME] = "BADTIME", [DNS_RCODE_BADMODE] = "BADMODE", [DNS_RCODE_BADNAME] = "BADNAME", [DNS_RCODE_BADALG] = "BADALG", [DNS_RCODE_BADTRUNC] = "BADTRUNC", [DNS_RCODE_BADCOOKIE] = "BADCOOKIE", }; DEFINE_STRING_TABLE_LOOKUP(dns_rcode, int); const char* format_dns_rcode(int i, char buf[static DECIMAL_STR_MAX(int)]) { const char *p = dns_rcode_to_string(i); if (p) return p; return snprintf_ok(buf, DECIMAL_STR_MAX(int), "%i", i); } static const char* const dns_ede_rcode_table[_DNS_EDE_RCODE_MAX_DEFINED] = { [DNS_EDE_RCODE_OTHER] = "Other", [DNS_EDE_RCODE_UNSUPPORTED_DNSKEY_ALG] = "Unsupported DNSKEY Algorithm", [DNS_EDE_RCODE_UNSUPPORTED_DS_DIGEST] = "Unsupported DS Digest Type", [DNS_EDE_RCODE_STALE_ANSWER] = "Stale Answer", [DNS_EDE_RCODE_FORGED_ANSWER] = "Forged Answer", [DNS_EDE_RCODE_DNSSEC_INDETERMINATE] = "DNSSEC Indeterminate", [DNS_EDE_RCODE_DNSSEC_BOGUS] = "DNSSEC Bogus", [DNS_EDE_RCODE_SIG_EXPIRED] = "Signature Expired", [DNS_EDE_RCODE_SIG_NOT_YET_VALID] = "Signature Not Yet Valid", [DNS_EDE_RCODE_DNSKEY_MISSING] = "DNSKEY Missing", [DNS_EDE_RCODE_RRSIG_MISSING] = "RRSIG Missing", [DNS_EDE_RCODE_NO_ZONE_KEY_BIT] = "No Zone Key Bit Set", [DNS_EDE_RCODE_NSEC_MISSING] = "NSEC Missing", [DNS_EDE_RCODE_CACHED_ERROR] = "Cached Error", [DNS_EDE_RCODE_NOT_READY] = "Not Ready", [DNS_EDE_RCODE_BLOCKED] = "Blocked", [DNS_EDE_RCODE_CENSORED] = "Censored", [DNS_EDE_RCODE_FILTERED] = "Filtered", [DNS_EDE_RCODE_PROHIBITIED] = "Prohibited", [DNS_EDE_RCODE_STALE_NXDOMAIN_ANSWER] = "Stale NXDOMAIN Answer", [DNS_EDE_RCODE_NOT_AUTHORITATIVE] = "Not Authoritative", [DNS_EDE_RCODE_NOT_SUPPORTED] = "Not Supported", [DNS_EDE_RCODE_UNREACH_AUTHORITY] = "No Reachable Authority", [DNS_EDE_RCODE_NET_ERROR] = "Network Error", [DNS_EDE_RCODE_INVALID_DATA] = "Invalid Data", [DNS_EDE_RCODE_SIG_NEVER] = "Signature Never Valid", [DNS_EDE_RCODE_TOO_EARLY] = "Too Early", [DNS_EDE_RCODE_UNSUPPORTED_NSEC3_ITER] = "Unsupported NSEC3 Iterations", [DNS_EDE_RCODE_TRANSPORT_POLICY] = "Impossible Transport Policy", [DNS_EDE_RCODE_SYNTHESIZED] = "Synthesized", }; DEFINE_STRING_TABLE_LOOKUP_TO_STRING(dns_ede_rcode, int); const char* format_dns_ede_rcode(int i, char buf[static DECIMAL_STR_MAX(int)]) { const char *p = dns_ede_rcode_to_string(i); if (p) return p; return snprintf_ok(buf, DECIMAL_STR_MAX(int), "%i", i); } static const char* const dns_protocol_table[_DNS_PROTOCOL_MAX] = { [DNS_PROTOCOL_DNS] = "dns", [DNS_PROTOCOL_MDNS] = "mdns", [DNS_PROTOCOL_LLMNR] = "llmnr", }; DEFINE_STRING_TABLE_LOOKUP(dns_protocol, DnsProtocol);