/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include "sd-netlink.h" #include "alloc-util.h" #include "fd-util.h" #include "local-addresses.h" #include "macro.h" #include "netlink-util.h" #include "sort-util.h" static int address_compare(const struct local_address *a, const struct local_address *b) { int r; /* Order lowest scope first, IPv4 before IPv6, lowest interface index first */ if (a->family == AF_INET && b->family == AF_INET6) return -1; if (a->family == AF_INET6 && b->family == AF_INET) return 1; r = CMP(a->scope, b->scope); if (r != 0) return r; r = CMP(a->metric, b->metric); if (r != 0) return r; r = CMP(a->ifindex, b->ifindex); if (r != 0) return r; return memcmp(&a->address, &b->address, FAMILY_ADDRESS_SIZE(a->family)); } static void suppress_duplicates(struct local_address *list, size_t *n_list) { size_t old_size, new_size; /* Removes duplicate entries, assumes the list of addresses is already sorted. Updates in-place. */ if (*n_list < 2) /* list with less than two entries can't have duplicates */ return; old_size = *n_list; new_size = 1; for (size_t i = 1; i < old_size; i++) { if (address_compare(list + i, list + new_size - 1) == 0) continue; list[new_size++] = list[i]; } *n_list = new_size; } int local_addresses( sd_netlink *context, int ifindex, int af, struct local_address **ret) { _cleanup_(sd_netlink_message_unrefp) sd_netlink_message *req = NULL, *reply = NULL; _cleanup_(sd_netlink_unrefp) sd_netlink *rtnl = NULL; _cleanup_free_ struct local_address *list = NULL; size_t n_list = 0, n_allocated = 0; sd_netlink_message *m; int r; if (context) rtnl = sd_netlink_ref(context); else { r = sd_netlink_open(&rtnl); if (r < 0) return r; } r = sd_rtnl_message_new_addr(rtnl, &req, RTM_GETADDR, 0, af); if (r < 0) return r; r = sd_netlink_call(rtnl, req, 0, &reply); if (r < 0) return r; for (m = reply; m; m = sd_netlink_message_next(m)) { struct local_address *a; unsigned char flags; uint16_t type; int ifi, family; r = sd_netlink_message_get_errno(m); if (r < 0) return r; r = sd_netlink_message_get_type(m, &type); if (r < 0) return r; if (type != RTM_NEWADDR) continue; r = sd_rtnl_message_addr_get_ifindex(m, &ifi); if (r < 0) return r; if (ifindex > 0 && ifi != ifindex) continue; r = sd_rtnl_message_addr_get_family(m, &family); if (r < 0) return r; if (af != AF_UNSPEC && af != family) continue; r = sd_rtnl_message_addr_get_flags(m, &flags); if (r < 0) return r; if (flags & IFA_F_DEPRECATED) continue; if (!GREEDY_REALLOC0(list, n_allocated, n_list+1)) return -ENOMEM; a = list + n_list; r = sd_rtnl_message_addr_get_scope(m, &a->scope); if (r < 0) return r; if (ifindex == 0 && IN_SET(a->scope, RT_SCOPE_HOST, RT_SCOPE_NOWHERE)) continue; switch (family) { case AF_INET: r = sd_netlink_message_read_in_addr(m, IFA_LOCAL, &a->address.in); if (r < 0) { r = sd_netlink_message_read_in_addr(m, IFA_ADDRESS, &a->address.in); if (r < 0) continue; } break; case AF_INET6: r = sd_netlink_message_read_in6_addr(m, IFA_LOCAL, &a->address.in6); if (r < 0) { r = sd_netlink_message_read_in6_addr(m, IFA_ADDRESS, &a->address.in6); if (r < 0) continue; } break; default: continue; } a->ifindex = ifi; a->family = family; n_list++; }; if (ret) { typesafe_qsort(list, n_list, address_compare); suppress_duplicates(list, &n_list); *ret = TAKE_PTR(list); } return (int) n_list; } static int add_local_gateway( struct local_address **list, size_t *n_list, size_t *n_allocated, int af, int ifindex, uint32_t metric, const RouteVia *via) { assert(list); assert(n_list); assert(n_allocated); assert(via); if (af != AF_UNSPEC && af != via->family) return 0; if (!GREEDY_REALLOC(*list, *n_allocated, *n_list + 1)) return -ENOMEM; (*list)[(*n_list)++] = (struct local_address) { .ifindex = ifindex, .metric = metric, .family = via->family, .address = via->address, }; return 0; } int local_gateways( sd_netlink *context, int ifindex, int af, struct local_address **ret) { _cleanup_(sd_netlink_message_unrefp) sd_netlink_message *req = NULL, *reply = NULL; _cleanup_(sd_netlink_unrefp) sd_netlink *rtnl = NULL; _cleanup_free_ struct local_address *list = NULL; size_t n_list = 0, n_allocated = 0; int r; if (context) rtnl = sd_netlink_ref(context); else { r = sd_netlink_open(&rtnl); if (r < 0) return r; } r = sd_rtnl_message_new_route(rtnl, &req, RTM_GETROUTE, af, RTPROT_UNSPEC); if (r < 0) return r; r = sd_netlink_message_request_dump(req, true); if (r < 0) return r; r = sd_netlink_call(rtnl, req, 0, &reply); if (r < 0) return r; for (sd_netlink_message *m = reply; m; m = sd_netlink_message_next(m)) { _cleanup_ordered_set_free_free_ OrderedSet *multipath_routes = NULL; _cleanup_free_ void *rta_multipath = NULL; union in_addr_union gateway; uint16_t type; unsigned char dst_len, src_len, table; uint32_t ifi = 0, metric = 0; size_t rta_len; int family; RouteVia via; r = sd_netlink_message_get_errno(m); if (r < 0) return r; r = sd_netlink_message_get_type(m, &type); if (r < 0) return r; if (type != RTM_NEWROUTE) continue; /* We only care for default routes */ r = sd_rtnl_message_route_get_dst_prefixlen(m, &dst_len); if (r < 0) return r; if (dst_len != 0) continue; r = sd_rtnl_message_route_get_src_prefixlen(m, &src_len); if (r < 0) return r; if (src_len != 0) continue; r = sd_rtnl_message_route_get_table(m, &table); if (r < 0) return r; if (table != RT_TABLE_MAIN) continue; r = sd_netlink_message_read_u32(m, RTA_PRIORITY, &metric); if (r < 0 && r != -ENODATA) return r; r = sd_rtnl_message_route_get_family(m, &family); if (r < 0) return r; if (!IN_SET(family, AF_INET, AF_INET6)) continue; r = sd_netlink_message_read_u32(m, RTA_OIF, &ifi); if (r < 0 && r != -ENODATA) return r; if (r >= 0) { if (ifi <= 0) return -EINVAL; if (ifindex > 0 && (int) ifi != ifindex) continue; r = netlink_message_read_in_addr_union(m, RTA_GATEWAY, family, &gateway); if (r < 0 && r != -ENODATA) return r; if (r >= 0) { via.family = family; via.address = gateway; r = add_local_gateway(&list, &n_list, &n_allocated, af, ifi, metric, &via); if (r < 0) return r; continue; } if (family != AF_INET) continue; r = sd_netlink_message_read(m, RTA_VIA, sizeof(via), &via); if (r < 0 && r != -ENODATA) return r; if (r >= 0) { r = add_local_gateway(&list, &n_list, &n_allocated, af, ifi, metric, &via); if (r < 0) return r; continue; } } r = sd_netlink_message_read_data(m, RTA_MULTIPATH, &rta_len, &rta_multipath); if (r < 0 && r != -ENODATA) return r; if (r >= 0) { MultipathRoute *mr; r = rtattr_read_nexthop(rta_multipath, rta_len, family, &multipath_routes); if (r < 0) return r; ORDERED_SET_FOREACH(mr, multipath_routes) { if (ifindex > 0 && mr->ifindex != ifindex) continue; r = add_local_gateway(&list, &n_list, &n_allocated, af, ifi, metric, &mr->gateway); if (r < 0) return r; } } } if (ret) { typesafe_qsort(list, n_list, address_compare); suppress_duplicates(list, &n_list); *ret = TAKE_PTR(list); } return (int) n_list; } int local_outbounds( sd_netlink *context, int ifindex, int af, struct local_address **ret) { _cleanup_free_ struct local_address *list = NULL, *gateways = NULL; size_t n_list = 0, n_allocated = 0; int r, n_gateways; /* Determines our default outbound addresses, i.e. the "primary" local addresses we use to talk to IP * addresses behind the default routes. This is still an address of the local host (i.e. this doesn't * resolve NAT or so), but it's the set of addresses the local IP stack most likely uses to talk to * other hosts. * * This works by connect()ing a SOCK_DGRAM socket to the local gateways, and then reading the IP * address off the socket that was chosen for the routing decision. */ n_gateways = local_gateways(context, ifindex, af, &gateways); if (n_gateways < 0) return n_gateways; if (n_gateways == 0) { /* No gateways? Then we have no outbound addresses either. */ if (ret) *ret = NULL; return 0; } for (int i = 0; i < n_gateways; i++) { _cleanup_close_ int fd = -1; union sockaddr_union sa; socklen_t salen; fd = socket(gateways[i].family, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) return -errno; switch (gateways[i].family) { case AF_INET: sa.in = (struct sockaddr_in) { .sin_family = AF_INET, .sin_addr = gateways[i].address.in, .sin_port = htobe16(53), /* doesn't really matter which port we pick — we just care about the routing decision */ }; break; case AF_INET6: sa.in6 = (struct sockaddr_in6) { .sin6_family = AF_INET6, .sin6_addr = gateways[i].address.in6, .sin6_port = htobe16(53), .sin6_scope_id = gateways[i].ifindex, }; break; default: assert_not_reached("Unexpected protocol"); } /* So ideally we'd just use IP_UNICAST_IF here to pass the ifindex info to the kernel before * connect()ing, sot that it influences the routing decision. However, on current kernels * IP_UNICAST_IF doesn't actually influence the routing decision for UDP — which I think * should probably just be considered a bug. Once that bug is fixed this is the best API to * use, since it is the most lightweight. */ r = socket_set_unicast_if(fd, gateways[i].family, gateways[i].ifindex); if (r < 0) log_debug_errno(r, "Failed to set unicast interface index %i, ignoring: %m", gateways[i].ifindex); /* We'll also use SO_BINDTOINDEX. This requires CAP_NET_RAW on old kernels, hence there's a * good chance this fails. Since 5.7 this restriction was dropped and the first * SO_BINDTOINDEX on a socket may be done without privileges. This one has the benefit of * really influencing the routing decision, i.e. this one definitely works for us — as long * as we have the privileges for it.*/ r = socket_bind_to_ifindex(fd, gateways[i].ifindex); if (r < 0) log_debug_errno(r, "Failed to bind socket to interface %i, ignoring: %m", gateways[i].ifindex); /* Let's now connect() to the UDP socket, forcing the kernel to make a routing decision and * auto-bind the socket. We ignore failures on this, since that failure might happen for a * multitude of reasons (policy/firewall issues, who knows?) and some of them might be * *after* the routing decision and the auto-binding already took place. If so we can still * make use of the binding and return it. Hence, let's not unnecessarily fail early here: we * can still easily detect if the auto-binding worked or not, by comparing the bound IP * address with zero — which we do below. */ if (connect(fd, &sa.sa, SOCKADDR_LEN(sa)) < 0) log_debug_errno(errno, "Failed to connect SOCK_DGRAM socket to gateway, ignoring: %m"); /* Let's now read the socket address of the socket. A routing decision should have been * made. Let's verify that and use the data. */ salen = SOCKADDR_LEN(sa); if (getsockname(fd, &sa.sa, &salen) < 0) return -errno; assert(sa.sa.sa_family == gateways[i].family); assert(salen == SOCKADDR_LEN(sa)); switch (gateways[i].family) { case AF_INET: if (in4_addr_is_null(&sa.in.sin_addr)) /* Auto-binding didn't work. :-( */ continue; if (!GREEDY_REALLOC(list, n_allocated, n_list+1)) return -ENOMEM; list[n_list++] = (struct local_address) { .family = gateways[i].family, .ifindex = gateways[i].ifindex, .address.in = sa.in.sin_addr, }; break; case AF_INET6: if (in6_addr_is_null(&sa.in6.sin6_addr)) continue; if (!GREEDY_REALLOC(list, n_allocated, n_list+1)) return -ENOMEM; list[n_list++] = (struct local_address) { .family = gateways[i].family, .ifindex = gateways[i].ifindex, .address.in6 = sa.in6.sin6_addr, }; break; default: assert_not_reached("Unexpected protocol"); } } if (ret) { typesafe_qsort(list, n_list, address_compare); suppress_duplicates(list, &n_list); *ret = TAKE_PTR(list); } return (int) n_list; }