/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "sd-journal.h" #include "alloc-util.h" #include "fd-util.h" #include "format-util.h" #include "hashmap.h" #include "hostname-util.h" #include "io-util.h" #include "journal-internal.h" #include "json.h" #include "log.h" #include "logs-show.h" #include "macro.h" #include "output-mode.h" #include "parse-util.h" #include "process-util.h" #include "sparse-endian.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" #include "time-util.h" #include "utf8.h" #include "util.h" /* up to three lines (each up to 100 characters) or 300 characters, whichever is less */ #define PRINT_LINE_THRESHOLD 3 #define PRINT_CHAR_THRESHOLD 300 #define JSON_THRESHOLD 4096U static int print_catalog(FILE *f, sd_journal *j) { int r; _cleanup_free_ char *t = NULL, *z = NULL; r = sd_journal_get_catalog(j, &t); if (r < 0) return r; z = strreplace(strstrip(t), "\n", "\n-- "); if (!z) return log_oom(); fputs("-- ", f); fputs(z, f); fputc('\n', f); return 0; } static int parse_field(const void *data, size_t length, const char *field, size_t field_len, char **target, size_t *target_len) { size_t nl; char *buf; assert(data); assert(field); assert(target); if (length < field_len) return 0; if (memcmp(data, field, field_len)) return 0; nl = length - field_len; buf = newdup_suffix0(char, (const char*) data + field_len, nl); if (!buf) return log_oom(); free(*target); *target = buf; if (target_len) *target_len = nl; return 1; } typedef struct ParseFieldVec { const char *field; size_t field_len; char **target; size_t *target_len; } ParseFieldVec; #define PARSE_FIELD_VEC_ENTRY(_field, _target, _target_len) \ { .field = _field, .field_len = strlen(_field), .target = _target, .target_len = _target_len } static int parse_fieldv(const void *data, size_t length, const ParseFieldVec *fields, unsigned n_fields) { unsigned i; for (i = 0; i < n_fields; i++) { const ParseFieldVec *f = &fields[i]; int r; r = parse_field(data, length, f->field, f->field_len, f->target, f->target_len); if (r < 0) return r; else if (r > 0) break; } return 0; } static int field_set_test(Set *fields, const char *name, size_t n) { char *s = NULL; if (!fields) return 1; s = strndupa(name, n); if (!s) return log_oom(); return set_get(fields, s) ? 1 : 0; } static bool shall_print(const char *p, size_t l, OutputFlags flags) { assert(p); if (flags & OUTPUT_SHOW_ALL) return true; if (l >= PRINT_CHAR_THRESHOLD) return false; if (!utf8_is_printable(p, l)) return false; return true; } static bool print_multiline( FILE *f, unsigned prefix, unsigned n_columns, OutputFlags flags, int priority, const char* message, size_t message_len, size_t highlight[2]) { const char *color_on = "", *color_off = "", *highlight_on = ""; const char *pos, *end; bool ellipsized = false; int line = 0; if (flags & OUTPUT_COLOR) { if (priority <= LOG_ERR) { color_on = ANSI_HIGHLIGHT_RED; color_off = ANSI_NORMAL; highlight_on = ANSI_HIGHLIGHT; } else if (priority <= LOG_NOTICE) { color_on = ANSI_HIGHLIGHT; color_off = ANSI_NORMAL; highlight_on = ANSI_HIGHLIGHT_RED; } } /* A special case: make sure that we print a newline when the message is empty. */ if (message_len == 0) fputs("\n", f); for (pos = message; pos < message + message_len; pos = end + 1, line++) { bool continuation = line > 0; bool tail_line; int len; for (end = pos; end < message + message_len && *end != '\n'; end++) ; len = end - pos; assert(len >= 0); /* We need to figure out when we are showing not-last line, *and* * will skip subsequent lines. In that case, we will put the dots * at the end of the line, instead of putting dots in the middle * or not at all. */ tail_line = line + 1 == PRINT_LINE_THRESHOLD || end + 1 >= message + PRINT_CHAR_THRESHOLD; if (flags & (OUTPUT_FULL_WIDTH | OUTPUT_SHOW_ALL) || (prefix + len + 1 < n_columns && !tail_line)) { if (highlight && (size_t) (pos - message) <= highlight[0] && highlight[0] < (size_t) len) { fprintf(f, "%*s%s%.*s", continuation * prefix, "", color_on, (int) highlight[0], pos); fprintf(f, "%s%.*s", highlight_on, (int) (MIN((size_t) len, highlight[1]) - highlight[0]), pos + highlight[0]); if ((size_t) len > highlight[1]) fprintf(f, "%s%.*s", color_on, (int) (len - highlight[1]), pos + highlight[1]); fprintf(f, "%s\n", color_off); } else fprintf(f, "%*s%s%.*s%s\n", continuation * prefix, "", color_on, len, pos, color_off); continue; } /* Beyond this point, ellipsization will happen. */ ellipsized = true; if (prefix < n_columns && n_columns - prefix >= 3) { if (n_columns - prefix > (unsigned) len + 3) fprintf(f, "%*s%s%.*s...%s\n", continuation * prefix, "", color_on, len, pos, color_off); else { _cleanup_free_ char *e; e = ellipsize_mem(pos, len, n_columns - prefix, tail_line ? 100 : 90); if (!e) fprintf(f, "%*s%s%.*s%s\n", continuation * prefix, "", color_on, len, pos, color_off); else fprintf(f, "%*s%s%s%s\n", continuation * prefix, "", color_on, e, color_off); } } else fputs("...\n", f); if (tail_line) break; } return ellipsized; } static int output_timestamp_monotonic(FILE *f, sd_journal *j, const char *monotonic) { sd_id128_t boot_id; uint64_t t; int r; assert(f); assert(j); r = -ENXIO; if (monotonic) r = safe_atou64(monotonic, &t); if (r < 0) r = sd_journal_get_monotonic_usec(j, &t, &boot_id); if (r < 0) return log_error_errno(r, "Failed to get monotonic timestamp: %m"); fprintf(f, "[%5"PRI_USEC".%06"PRI_USEC"]", t / USEC_PER_SEC, t % USEC_PER_SEC); return 1 + 5 + 1 + 6 + 1; } static int output_timestamp_realtime(FILE *f, sd_journal *j, OutputMode mode, OutputFlags flags, const char *realtime) { char buf[MAX(FORMAT_TIMESTAMP_MAX, 64)]; struct tm *(*gettime_r)(const time_t *, struct tm *); struct tm tm; uint64_t x; time_t t; int r; assert(f); assert(j); if (realtime) r = safe_atou64(realtime, &x); if (!realtime || r < 0 || !VALID_REALTIME(x)) r = sd_journal_get_realtime_usec(j, &x); if (r < 0) return log_error_errno(r, "Failed to get realtime timestamp: %m"); if (IN_SET(mode, OUTPUT_SHORT_FULL, OUTPUT_WITH_UNIT)) { const char *k; if (flags & OUTPUT_UTC) k = format_timestamp_utc(buf, sizeof(buf), x); else k = format_timestamp(buf, sizeof(buf), x); if (!k) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to format timestamp: %" PRIu64, x); } else { char usec[7]; gettime_r = (flags & OUTPUT_UTC) ? gmtime_r : localtime_r; t = (time_t) (x / USEC_PER_SEC); switch (mode) { case OUTPUT_SHORT_UNIX: xsprintf(buf, "%10"PRI_TIME".%06"PRIu64, t, x % USEC_PER_SEC); break; case OUTPUT_SHORT_ISO: if (strftime(buf, sizeof(buf), "%Y-%m-%dT%H:%M:%S%z", gettime_r(&t, &tm)) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to format ISO time"); break; case OUTPUT_SHORT_ISO_PRECISE: /* No usec in strftime, so we leave space and copy over */ if (strftime(buf, sizeof(buf), "%Y-%m-%dT%H:%M:%S.xxxxxx%z", gettime_r(&t, &tm)) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to format ISO-precise time"); xsprintf(usec, "%06"PRI_USEC, x % USEC_PER_SEC); memcpy(buf + 20, usec, 6); break; case OUTPUT_SHORT: case OUTPUT_SHORT_PRECISE: if (strftime(buf, sizeof(buf), "%b %d %H:%M:%S", gettime_r(&t, &tm)) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to format syslog time"); if (mode == OUTPUT_SHORT_PRECISE) { size_t k; assert(sizeof(buf) > strlen(buf)); k = sizeof(buf) - strlen(buf); r = snprintf(buf + strlen(buf), k, ".%06"PRIu64, x % USEC_PER_SEC); if (r <= 0 || (size_t) r >= k) /* too long? */ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to format precise time"); } break; default: assert_not_reached("Unknown time format"); } } fputs(buf, f); return (int) strlen(buf); } static int output_short( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) { int r; const void *data; size_t length; size_t n = 0; _cleanup_free_ char *hostname = NULL, *identifier = NULL, *comm = NULL, *pid = NULL, *fake_pid = NULL, *message = NULL, *realtime = NULL, *monotonic = NULL, *priority = NULL, *unit = NULL, *user_unit = NULL; size_t hostname_len = 0, identifier_len = 0, comm_len = 0, pid_len = 0, fake_pid_len = 0, message_len = 0, realtime_len = 0, monotonic_len = 0, priority_len = 0, unit_len = 0, user_unit_len = 0; int p = LOG_INFO; bool ellipsized = false; const ParseFieldVec fields[] = { PARSE_FIELD_VEC_ENTRY("_PID=", &pid, &pid_len), PARSE_FIELD_VEC_ENTRY("_COMM=", &comm, &comm_len), PARSE_FIELD_VEC_ENTRY("MESSAGE=", &message, &message_len), PARSE_FIELD_VEC_ENTRY("PRIORITY=", &priority, &priority_len), PARSE_FIELD_VEC_ENTRY("_HOSTNAME=", &hostname, &hostname_len), PARSE_FIELD_VEC_ENTRY("SYSLOG_PID=", &fake_pid, &fake_pid_len), PARSE_FIELD_VEC_ENTRY("SYSLOG_IDENTIFIER=", &identifier, &identifier_len), PARSE_FIELD_VEC_ENTRY("_SOURCE_REALTIME_TIMESTAMP=", &realtime, &realtime_len), PARSE_FIELD_VEC_ENTRY("_SOURCE_MONOTONIC_TIMESTAMP=", &monotonic, &monotonic_len), PARSE_FIELD_VEC_ENTRY("_SYSTEMD_UNIT=", &unit, &unit_len), PARSE_FIELD_VEC_ENTRY("_SYSTEMD_USER_UNIT=", &user_unit, &user_unit_len), }; size_t highlight_shifted[] = {highlight ? highlight[0] : 0, highlight ? highlight[1] : 0}; assert(f); assert(j); /* Set the threshold to one bigger than the actual print * threshold, so that if the line is actually longer than what * we're willing to print, ellipsization will occur. This way * we won't output a misleading line without any indication of * truncation. */ sd_journal_set_data_threshold(j, flags & (OUTPUT_SHOW_ALL|OUTPUT_FULL_WIDTH) ? 0 : PRINT_CHAR_THRESHOLD + 1); JOURNAL_FOREACH_DATA_RETVAL(j, data, length, r) { r = parse_fieldv(data, length, fields, ELEMENTSOF(fields)); if (r < 0) return r; } if (r == -EBADMSG) { log_debug_errno(r, "Skipping message we can't read: %m"); return 0; } if (r < 0) return log_error_errno(r, "Failed to get journal fields: %m"); if (!message) { log_debug("Skipping message without MESSAGE= field."); return 0; } if (!(flags & OUTPUT_SHOW_ALL)) strip_tab_ansi(&message, &message_len, highlight_shifted); if (priority_len == 1 && *priority >= '0' && *priority <= '7') p = *priority - '0'; if (mode == OUTPUT_SHORT_MONOTONIC) r = output_timestamp_monotonic(f, j, monotonic); else r = output_timestamp_realtime(f, j, mode, flags, realtime); if (r < 0) return r; n += r; if (flags & OUTPUT_NO_HOSTNAME) { /* Suppress display of the hostname if this is requested. */ hostname = mfree(hostname); hostname_len = 0; } if (hostname && shall_print(hostname, hostname_len, flags)) { fprintf(f, " %.*s", (int) hostname_len, hostname); n += hostname_len + 1; } if (mode == OUTPUT_WITH_UNIT && ((unit && shall_print(unit, unit_len, flags)) || (user_unit && shall_print(user_unit, user_unit_len, flags)))) { if (unit) { fprintf(f, " %.*s", (int) unit_len, unit); n += unit_len + 1; } if (user_unit) { if (unit) fprintf(f, "/%.*s", (int) user_unit_len, user_unit); else fprintf(f, " %.*s", (int) user_unit_len, user_unit); n += unit_len + 1; } } else if (identifier && shall_print(identifier, identifier_len, flags)) { fprintf(f, " %.*s", (int) identifier_len, identifier); n += identifier_len + 1; } else if (comm && shall_print(comm, comm_len, flags)) { fprintf(f, " %.*s", (int) comm_len, comm); n += comm_len + 1; } else fputs(" unknown", f); if (pid && shall_print(pid, pid_len, flags)) { fprintf(f, "[%.*s]", (int) pid_len, pid); n += pid_len + 2; } else if (fake_pid && shall_print(fake_pid, fake_pid_len, flags)) { fprintf(f, "[%.*s]", (int) fake_pid_len, fake_pid); n += fake_pid_len + 2; } if (!(flags & OUTPUT_SHOW_ALL) && !utf8_is_printable(message, message_len)) { char bytes[FORMAT_BYTES_MAX]; fprintf(f, ": [%s blob data]\n", format_bytes(bytes, sizeof(bytes), message_len)); } else { fputs(": ", f); ellipsized |= print_multiline(f, n + 2, n_columns, flags, p, message, message_len, highlight_shifted); } if (flags & OUTPUT_CATALOG) print_catalog(f, j); return ellipsized; } static int output_verbose( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) { const void *data; size_t length; _cleanup_free_ char *cursor = NULL; uint64_t realtime = 0; char ts[FORMAT_TIMESTAMP_MAX + 7]; const char *timestamp; int r; assert(f); assert(j); sd_journal_set_data_threshold(j, 0); r = sd_journal_get_data(j, "_SOURCE_REALTIME_TIMESTAMP", &data, &length); if (r == -ENOENT) log_debug("Source realtime timestamp not found"); else if (r < 0) return log_full_errno(r == -EADDRNOTAVAIL ? LOG_DEBUG : LOG_ERR, r, "Failed to get source realtime timestamp: %m"); else { _cleanup_free_ char *value = NULL; r = parse_field(data, length, "_SOURCE_REALTIME_TIMESTAMP=", STRLEN("_SOURCE_REALTIME_TIMESTAMP="), &value, NULL); if (r < 0) return r; assert(r > 0); r = safe_atou64(value, &realtime); if (r < 0) log_debug_errno(r, "Failed to parse realtime timestamp: %m"); } if (r < 0) { r = sd_journal_get_realtime_usec(j, &realtime); if (r < 0) return log_full_errno(r == -EADDRNOTAVAIL ? LOG_DEBUG : LOG_ERR, r, "Failed to get realtime timestamp: %m"); } r = sd_journal_get_cursor(j, &cursor); if (r < 0) return log_error_errno(r, "Failed to get cursor: %m"); timestamp = flags & OUTPUT_UTC ? format_timestamp_us_utc(ts, sizeof ts, realtime) : format_timestamp_us(ts, sizeof ts, realtime); fprintf(f, "%s [%s]\n", timestamp ?: "(no timestamp)", cursor); JOURNAL_FOREACH_DATA_RETVAL(j, data, length, r) { const char *c; int fieldlen; const char *on = "", *off = ""; c = memchr(data, '=', length); if (!c) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid field."); fieldlen = c - (const char*) data; r = field_set_test(output_fields, data, fieldlen); if (r < 0) return r; if (!r) continue; if (flags & OUTPUT_COLOR && startswith(data, "MESSAGE=")) { on = ANSI_HIGHLIGHT; off = ANSI_NORMAL; } if ((flags & OUTPUT_SHOW_ALL) || (((length < PRINT_CHAR_THRESHOLD) || flags & OUTPUT_FULL_WIDTH) && utf8_is_printable(data, length))) { fprintf(f, " %s%.*s=", on, fieldlen, (const char*)data); print_multiline(f, 4 + fieldlen + 1, 0, OUTPUT_FULL_WIDTH, 0, c + 1, length - fieldlen - 1, NULL); fputs(off, f); } else { char bytes[FORMAT_BYTES_MAX]; fprintf(f, " %s%.*s=[%s blob data]%s\n", on, (int) (c - (const char*) data), (const char*) data, format_bytes(bytes, sizeof(bytes), length - (c - (const char *) data) - 1), off); } } if (r < 0) return r; if (flags & OUTPUT_CATALOG) print_catalog(f, j); return 0; } static int output_export( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) { sd_id128_t boot_id; char sid[33]; int r; usec_t realtime, monotonic; _cleanup_free_ char *cursor = NULL; const void *data; size_t length; assert(j); sd_journal_set_data_threshold(j, 0); r = sd_journal_get_realtime_usec(j, &realtime); if (r < 0) return log_error_errno(r, "Failed to get realtime timestamp: %m"); r = sd_journal_get_monotonic_usec(j, &monotonic, &boot_id); if (r < 0) return log_error_errno(r, "Failed to get monotonic timestamp: %m"); r = sd_journal_get_cursor(j, &cursor); if (r < 0) return log_error_errno(r, "Failed to get cursor: %m"); fprintf(f, "__CURSOR=%s\n" "__REALTIME_TIMESTAMP="USEC_FMT"\n" "__MONOTONIC_TIMESTAMP="USEC_FMT"\n" "_BOOT_ID=%s\n", cursor, realtime, monotonic, sd_id128_to_string(boot_id, sid)); JOURNAL_FOREACH_DATA_RETVAL(j, data, length, r) { const char *c; /* We already printed the boot id from the data in the header, hence let's suppress it here */ if (memory_startswith(data, length, "_BOOT_ID=")) continue; c = memchr(data, '=', length); if (!c) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid field."); r = field_set_test(output_fields, data, c - (const char *) data); if (r < 0) return r; if (!r) continue; if (utf8_is_printable_newline(data, length, false)) fwrite(data, length, 1, f); else { uint64_t le64; fwrite(data, c - (const char*) data, 1, f); fputc('\n', f); le64 = htole64(length - (c - (const char*) data) - 1); fwrite(&le64, sizeof(le64), 1, f); fwrite(c + 1, length - (c - (const char*) data) - 1, 1, f); } fputc('\n', f); } if (r == -EBADMSG) { log_debug_errno(r, "Skipping message we can't read: %m"); return 0; } if (r < 0) return r; fputc('\n', f); return 0; } void json_escape( FILE *f, const char* p, size_t l, OutputFlags flags) { assert(f); assert(p); if (!(flags & OUTPUT_SHOW_ALL) && l >= JSON_THRESHOLD) fputs("null", f); else if (!(flags & OUTPUT_SHOW_ALL) && !utf8_is_printable(p, l)) { bool not_first = false; fputs("[ ", f); while (l > 0) { if (not_first) fprintf(f, ", %u", (uint8_t) *p); else { not_first = true; fprintf(f, "%u", (uint8_t) *p); } p++; l--; } fputs(" ]", f); } else { fputc('\"', f); while (l > 0) { if (IN_SET(*p, '"', '\\')) { fputc('\\', f); fputc(*p, f); } else if (*p == '\n') fputs("\\n", f); else if ((uint8_t) *p < ' ') fprintf(f, "\\u%04x", (uint8_t) *p); else fputc(*p, f); p++; l--; } fputc('\"', f); } } struct json_data { JsonVariant* name; size_t n_values; JsonVariant* values[]; }; static int update_json_data( Hashmap *h, OutputFlags flags, const char *name, const void *value, size_t size) { _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; struct json_data *d; int r; if (!(flags & OUTPUT_SHOW_ALL) && strlen(name) + 1 + size >= JSON_THRESHOLD) r = json_variant_new_null(&v); else if (utf8_is_printable(value, size)) r = json_variant_new_stringn(&v, value, size); else r = json_variant_new_array_bytes(&v, value, size); if (r < 0) return log_error_errno(r, "Failed to allocate JSON data: %m"); d = hashmap_get(h, name); if (d) { struct json_data *w; w = realloc(d, offsetof(struct json_data, values) + sizeof(JsonVariant*) * (d->n_values + 1)); if (!w) return log_oom(); d = w; assert_se(hashmap_update(h, json_variant_string(d->name), d) >= 0); } else { _cleanup_(json_variant_unrefp) JsonVariant *n = NULL; r = json_variant_new_string(&n, name); if (r < 0) return log_error_errno(r, "Failed to allocate JSON name variant: %m"); d = malloc0(offsetof(struct json_data, values) + sizeof(JsonVariant*)); if (!d) return log_oom(); r = hashmap_put(h, json_variant_string(n), d); if (r < 0) { free(d); return log_error_errno(r, "Failed to insert JSON name into hashmap: %m"); } d->name = TAKE_PTR(n); } d->values[d->n_values++] = TAKE_PTR(v); return 0; } static int update_json_data_split( Hashmap *h, OutputFlags flags, Set *output_fields, const void *data, size_t size) { const char *eq; char *name; assert(h); assert(data || size == 0); if (memory_startswith(data, size, "_BOOT_ID=")) return 0; eq = memchr(data, '=', MIN(size, JSON_THRESHOLD)); if (!eq) return 0; if (eq == data) return 0; name = strndupa(data, eq - (const char*) data); if (output_fields && !set_get(output_fields, name)) return 0; return update_json_data(h, flags, name, eq + 1, size - (eq - (const char*) data) - 1); } static int output_json( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) { char sid[SD_ID128_STRING_MAX], usecbuf[DECIMAL_STR_MAX(usec_t)]; _cleanup_(json_variant_unrefp) JsonVariant *object = NULL; _cleanup_free_ char *cursor = NULL; uint64_t realtime, monotonic; JsonVariant **array = NULL; struct json_data *d; sd_id128_t boot_id; Hashmap *h = NULL; size_t n = 0; Iterator i; int r; assert(j); (void) sd_journal_set_data_threshold(j, flags & OUTPUT_SHOW_ALL ? 0 : JSON_THRESHOLD); r = sd_journal_get_realtime_usec(j, &realtime); if (r < 0) return log_error_errno(r, "Failed to get realtime timestamp: %m"); r = sd_journal_get_monotonic_usec(j, &monotonic, &boot_id); if (r < 0) return log_error_errno(r, "Failed to get monotonic timestamp: %m"); r = sd_journal_get_cursor(j, &cursor); if (r < 0) return log_error_errno(r, "Failed to get cursor: %m"); h = hashmap_new(&string_hash_ops); if (!h) return log_oom(); r = update_json_data(h, flags, "__CURSOR", cursor, strlen(cursor)); if (r < 0) goto finish; xsprintf(usecbuf, USEC_FMT, realtime); r = update_json_data(h, flags, "__REALTIME_TIMESTAMP", usecbuf, strlen(usecbuf)); if (r < 0) goto finish; xsprintf(usecbuf, USEC_FMT, monotonic); r = update_json_data(h, flags, "__MONOTONIC_TIMESTAMP", usecbuf, strlen(usecbuf)); if (r < 0) goto finish; sd_id128_to_string(boot_id, sid); r = update_json_data(h, flags, "_BOOT_ID", sid, strlen(sid)); if (r < 0) goto finish; for (;;) { const void *data; size_t size; r = sd_journal_enumerate_data(j, &data, &size); if (r == -EBADMSG) { log_debug_errno(r, "Skipping message we can't read: %m"); r = 0; goto finish; } if (r < 0) { log_error_errno(r, "Failed to read journal: %m"); goto finish; } if (r == 0) break; r = update_json_data_split(h, flags, output_fields, data, size); if (r < 0) goto finish; } array = new(JsonVariant*, hashmap_size(h)*2); if (!array) { r = log_oom(); goto finish; } HASHMAP_FOREACH(d, h, i) { assert(d->n_values > 0); array[n++] = json_variant_ref(d->name); if (d->n_values == 1) array[n++] = json_variant_ref(d->values[0]); else { _cleanup_(json_variant_unrefp) JsonVariant *q = NULL; r = json_variant_new_array(&q, d->values, d->n_values); if (r < 0) { log_error_errno(r, "Failed to create JSON array: %m"); goto finish; } array[n++] = TAKE_PTR(q); } } r = json_variant_new_object(&object, array, n); if (r < 0) { log_error_errno(r, "Failed to allocate JSON object: %m"); goto finish; } json_variant_dump(object, (mode == OUTPUT_JSON_SSE ? JSON_FORMAT_SSE : mode == OUTPUT_JSON_SEQ ? JSON_FORMAT_SEQ : mode == OUTPUT_JSON_PRETTY ? JSON_FORMAT_PRETTY : JSON_FORMAT_NEWLINE) | (FLAGS_SET(flags, OUTPUT_COLOR) ? JSON_FORMAT_COLOR : 0), f, NULL); r = 0; finish: while ((d = hashmap_steal_first(h))) { size_t k; json_variant_unref(d->name); for (k = 0; k < d->n_values; k++) json_variant_unref(d->values[k]); free(d); } hashmap_free(h); json_variant_unref_many(array, n); free(array); return r; } static int output_cat( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) { const void *data; size_t l; int r; const char *highlight_on = "", *highlight_off = ""; assert(j); assert(f); if (flags & OUTPUT_COLOR) { highlight_on = ANSI_HIGHLIGHT_RED; highlight_off = ANSI_NORMAL; } sd_journal_set_data_threshold(j, 0); r = sd_journal_get_data(j, "MESSAGE", &data, &l); if (r == -EBADMSG) { log_debug_errno(r, "Skipping message we can't read: %m"); return 0; } if (r < 0) { /* An entry without MESSAGE=? */ if (r == -ENOENT) return 0; return log_error_errno(r, "Failed to get data: %m"); } assert(l >= 8); if (highlight && (flags & OUTPUT_COLOR)) { assert(highlight[0] <= highlight[1]); assert(highlight[1] <= l - 8); fwrite((const char*) data + 8, 1, highlight[0], f); fwrite(highlight_on, 1, strlen(highlight_on), f); fwrite((const char*) data + 8 + highlight[0], 1, highlight[1] - highlight[0], f); fwrite(highlight_off, 1, strlen(highlight_off), f); fwrite((const char*) data + 8 + highlight[1], 1, l - 8 - highlight[1], f); } else fwrite((const char*) data + 8, 1, l - 8, f); fputc('\n', f); return 0; } static int (*output_funcs[_OUTPUT_MODE_MAX])( FILE *f, sd_journal*j, OutputMode mode, unsigned n_columns, OutputFlags flags, Set *output_fields, const size_t highlight[2]) = { [OUTPUT_SHORT] = output_short, [OUTPUT_SHORT_ISO] = output_short, [OUTPUT_SHORT_ISO_PRECISE] = output_short, [OUTPUT_SHORT_PRECISE] = output_short, [OUTPUT_SHORT_MONOTONIC] = output_short, [OUTPUT_SHORT_UNIX] = output_short, [OUTPUT_SHORT_FULL] = output_short, [OUTPUT_VERBOSE] = output_verbose, [OUTPUT_EXPORT] = output_export, [OUTPUT_JSON] = output_json, [OUTPUT_JSON_PRETTY] = output_json, [OUTPUT_JSON_SSE] = output_json, [OUTPUT_JSON_SEQ] = output_json, [OUTPUT_CAT] = output_cat, [OUTPUT_WITH_UNIT] = output_short, }; int show_journal_entry( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, OutputFlags flags, char **output_fields, const size_t highlight[2], bool *ellipsized) { int ret; _cleanup_set_free_free_ Set *fields = NULL; assert(mode >= 0); assert(mode < _OUTPUT_MODE_MAX); if (n_columns <= 0) n_columns = columns(); if (output_fields) { fields = set_new(&string_hash_ops); if (!fields) return log_oom(); ret = set_put_strdupv(fields, output_fields); if (ret < 0) return ret; } ret = output_funcs[mode](f, j, mode, n_columns, flags, fields, highlight); if (ellipsized && ret > 0) *ellipsized = true; return ret; } static int maybe_print_begin_newline(FILE *f, OutputFlags *flags) { assert(f); assert(flags); if (!(*flags & OUTPUT_BEGIN_NEWLINE)) return 0; /* Print a beginning new line if that's request, but only once * on the first line we print. */ fputc('\n', f); *flags &= ~OUTPUT_BEGIN_NEWLINE; return 0; } int show_journal( FILE *f, sd_journal *j, OutputMode mode, unsigned n_columns, usec_t not_before, unsigned how_many, OutputFlags flags, bool *ellipsized) { int r; unsigned line = 0; bool need_seek = false; int warn_cutoff = flags & OUTPUT_WARN_CUTOFF; assert(j); assert(mode >= 0); assert(mode < _OUTPUT_MODE_MAX); if (how_many == (unsigned) -1) need_seek = true; else { /* Seek to end */ r = sd_journal_seek_tail(j); if (r < 0) return log_error_errno(r, "Failed to seek to tail: %m"); r = sd_journal_previous_skip(j, how_many); if (r < 0) return log_error_errno(r, "Failed to skip previous: %m"); } for (;;) { for (;;) { usec_t usec; if (need_seek) { r = sd_journal_next(j); if (r < 0) return log_error_errno(r, "Failed to iterate through journal: %m"); } if (r == 0) break; need_seek = true; if (not_before > 0) { r = sd_journal_get_monotonic_usec(j, &usec, NULL); /* -ESTALE is returned if the timestamp is not from this boot */ if (r == -ESTALE) continue; else if (r < 0) return log_error_errno(r, "Failed to get journal time: %m"); if (usec < not_before) continue; } line++; maybe_print_begin_newline(f, &flags); r = show_journal_entry(f, j, mode, n_columns, flags, NULL, NULL, ellipsized); if (r < 0) return r; } if (warn_cutoff && line < how_many && not_before > 0) { sd_id128_t boot_id; usec_t cutoff = 0; /* Check whether the cutoff line is too early */ r = sd_id128_get_boot(&boot_id); if (r < 0) return log_error_errno(r, "Failed to get boot id: %m"); r = sd_journal_get_cutoff_monotonic_usec(j, boot_id, &cutoff, NULL); if (r < 0) return log_error_errno(r, "Failed to get journal cutoff time: %m"); if (r > 0 && not_before < cutoff) { maybe_print_begin_newline(f, &flags); fprintf(f, "Warning: Journal has been rotated since unit was started. Log output is incomplete or unavailable.\n"); } warn_cutoff = false; } if (!(flags & OUTPUT_FOLLOW)) break; r = sd_journal_wait(j, USEC_INFINITY); if (r < 0) return log_error_errno(r, "Failed to wait for journal: %m"); } return 0; } int add_matches_for_unit(sd_journal *j, const char *unit) { const char *m1, *m2, *m3, *m4; int r; assert(j); assert(unit); m1 = strjoina("_SYSTEMD_UNIT=", unit); m2 = strjoina("COREDUMP_UNIT=", unit); m3 = strjoina("UNIT=", unit); m4 = strjoina("OBJECT_SYSTEMD_UNIT=", unit); (void)( /* Look for messages from the service itself */ (r = sd_journal_add_match(j, m1, 0)) || /* Look for coredumps of the service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, "MESSAGE_ID=fc2e22bc6ee647b6b90729ab34a250b1", 0)) || (r = sd_journal_add_match(j, "_UID=0", 0)) || (r = sd_journal_add_match(j, m2, 0)) || /* Look for messages from PID 1 about this service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, "_PID=1", 0)) || (r = sd_journal_add_match(j, m3, 0)) || /* Look for messages from authorized daemons about this service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, "_UID=0", 0)) || (r = sd_journal_add_match(j, m4, 0)) ); if (r == 0 && endswith(unit, ".slice")) { const char *m5; m5 = strjoina("_SYSTEMD_SLICE=", unit); /* Show all messages belonging to a slice */ (void)( (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, m5, 0)) ); } return r; } int add_matches_for_user_unit(sd_journal *j, const char *unit, uid_t uid) { int r; char *m1, *m2, *m3, *m4; char muid[sizeof("_UID=") + DECIMAL_STR_MAX(uid_t)]; assert(j); assert(unit); m1 = strjoina("_SYSTEMD_USER_UNIT=", unit); m2 = strjoina("USER_UNIT=", unit); m3 = strjoina("COREDUMP_USER_UNIT=", unit); m4 = strjoina("OBJECT_SYSTEMD_USER_UNIT=", unit); sprintf(muid, "_UID="UID_FMT, uid); (void) ( /* Look for messages from the user service itself */ (r = sd_journal_add_match(j, m1, 0)) || (r = sd_journal_add_match(j, muid, 0)) || /* Look for messages from systemd about this service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, m2, 0)) || (r = sd_journal_add_match(j, muid, 0)) || /* Look for coredumps of the service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, m3, 0)) || (r = sd_journal_add_match(j, muid, 0)) || (r = sd_journal_add_match(j, "_UID=0", 0)) || /* Look for messages from authorized daemons about this service */ (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, m4, 0)) || (r = sd_journal_add_match(j, muid, 0)) || (r = sd_journal_add_match(j, "_UID=0", 0)) ); if (r == 0 && endswith(unit, ".slice")) { const char *m5; m5 = strjoina("_SYSTEMD_SLICE=", unit); /* Show all messages belonging to a slice */ (void)( (r = sd_journal_add_disjunction(j)) || (r = sd_journal_add_match(j, m5, 0)) || (r = sd_journal_add_match(j, muid, 0)) ); } return r; } static int get_boot_id_for_machine(const char *machine, sd_id128_t *boot_id) { _cleanup_close_pair_ int pair[2] = { -1, -1 }; _cleanup_close_ int pidnsfd = -1, mntnsfd = -1, rootfd = -1; pid_t pid, child; char buf[37]; ssize_t k; int r; assert(machine); assert(boot_id); if (!machine_name_is_valid(machine)) return -EINVAL; r = container_get_leader(machine, &pid); if (r < 0) return r; r = namespace_open(pid, &pidnsfd, &mntnsfd, NULL, NULL, &rootfd); if (r < 0) return r; if (socketpair(AF_UNIX, SOCK_DGRAM, 0, pair) < 0) return -errno; r = namespace_fork("(sd-bootidns)", "(sd-bootid)", NULL, 0, FORK_RESET_SIGNALS|FORK_DEATHSIG, pidnsfd, mntnsfd, -1, -1, rootfd, &child); if (r < 0) return r; if (r == 0) { int fd; pair[0] = safe_close(pair[0]); fd = open("/proc/sys/kernel/random/boot_id", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) _exit(EXIT_FAILURE); r = loop_read_exact(fd, buf, 36, false); safe_close(fd); if (r < 0) _exit(EXIT_FAILURE); k = send(pair[1], buf, 36, MSG_NOSIGNAL); if (k != 36) _exit(EXIT_FAILURE); _exit(EXIT_SUCCESS); } pair[1] = safe_close(pair[1]); r = wait_for_terminate_and_check("(sd-bootidns)", child, 0); if (r < 0) return r; if (r != EXIT_SUCCESS) return -EIO; k = recv(pair[0], buf, 36, 0); if (k != 36) return -EIO; buf[36] = 0; r = sd_id128_from_string(buf, boot_id); if (r < 0) return r; return 0; } int add_match_this_boot(sd_journal *j, const char *machine) { char match[9+32+1] = "_BOOT_ID="; sd_id128_t boot_id; int r; assert(j); if (machine) { r = get_boot_id_for_machine(machine, &boot_id); if (r < 0) return log_error_errno(r, "Failed to get boot id of container %s: %m", machine); } else { r = sd_id128_get_boot(&boot_id); if (r < 0) return log_error_errno(r, "Failed to get boot id: %m"); } sd_id128_to_string(boot_id, match + 9); r = sd_journal_add_match(j, match, strlen(match)); if (r < 0) return log_error_errno(r, "Failed to add match: %m"); r = sd_journal_add_conjunction(j); if (r < 0) return log_error_errno(r, "Failed to add conjunction: %m"); return 0; } int show_journal_by_unit( FILE *f, const char *unit, OutputMode mode, unsigned n_columns, usec_t not_before, unsigned how_many, uid_t uid, OutputFlags flags, int journal_open_flags, bool system_unit, bool *ellipsized) { _cleanup_(sd_journal_closep) sd_journal *j = NULL; int r; assert(mode >= 0); assert(mode < _OUTPUT_MODE_MAX); assert(unit); if (how_many <= 0) return 0; r = sd_journal_open(&j, journal_open_flags); if (r < 0) return log_error_errno(r, "Failed to open journal: %m"); r = add_match_this_boot(j, NULL); if (r < 0) return r; if (system_unit) r = add_matches_for_unit(j, unit); else r = add_matches_for_user_unit(j, unit, uid); if (r < 0) return log_error_errno(r, "Failed to add unit matches: %m"); if (DEBUG_LOGGING) { _cleanup_free_ char *filter; filter = journal_make_match_string(j); if (!filter) return log_oom(); log_debug("Journal filter: %s", filter); } return show_journal(f, j, mode, n_columns, not_before, how_many, flags, ellipsized); }