/* SPDX-License-Identifier: LGPL-2.1+ */ /*** Copyright © 2018 Dell Inc. ***/ #include #include #include #include #include #include #include #include #include #include #include "alloc-util.h" #include "blockdev-util.h" #include "btrfs-util.h" #include "conf-parser.h" #include "def.h" #include "env-util.h" #include "errno-util.h" #include "fd-util.h" #include "fileio.h" #include "log.h" #include "macro.h" #include "parse-util.h" #include "path-util.h" #include "sleep-config.h" #include "stdio-util.h" #include "string-util.h" #include "strv.h" #include "time-util.h" int parse_sleep_config(SleepConfig **ret_sleep_config) { _cleanup_(free_sleep_configp) SleepConfig *sc; int allow_suspend = -1, allow_hibernate = -1, allow_s2h = -1, allow_hybrid_sleep = -1; sc = new0(SleepConfig, 1); if (!sc) return log_oom(); const ConfigTableItem items[] = { { "Sleep", "AllowSuspend", config_parse_tristate, 0, &allow_suspend }, { "Sleep", "AllowHibernation", config_parse_tristate, 0, &allow_hibernate }, { "Sleep", "AllowSuspendThenHibernate", config_parse_tristate, 0, &allow_s2h }, { "Sleep", "AllowHybridSleep", config_parse_tristate, 0, &allow_hybrid_sleep }, { "Sleep", "SuspendMode", config_parse_strv, 0, &sc->suspend_modes }, { "Sleep", "SuspendState", config_parse_strv, 0, &sc->suspend_states }, { "Sleep", "HibernateMode", config_parse_strv, 0, &sc->hibernate_modes }, { "Sleep", "HibernateState", config_parse_strv, 0, &sc->hibernate_states }, { "Sleep", "HybridSleepMode", config_parse_strv, 0, &sc->hybrid_modes }, { "Sleep", "HybridSleepState", config_parse_strv, 0, &sc->hybrid_states }, { "Sleep", "HibernateDelaySec", config_parse_sec, 0, &sc->hibernate_delay_sec}, {} }; (void) config_parse_many_nulstr(PKGSYSCONFDIR "/sleep.conf", CONF_PATHS_NULSTR("systemd/sleep.conf.d"), "Sleep\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL); /* use default values unless set */ sc->allow_suspend = allow_suspend != 0; sc->allow_hibernate = allow_hibernate != 0; sc->allow_hybrid_sleep = allow_hybrid_sleep >= 0 ? allow_hybrid_sleep : (allow_suspend != 0 && allow_hibernate != 0); sc->allow_s2h = allow_s2h >= 0 ? allow_s2h : (allow_suspend != 0 && allow_hibernate != 0); if (!sc->suspend_states) sc->suspend_states = strv_new("mem", "standby", "freeze"); if (!sc->hibernate_modes) sc->hibernate_modes = strv_new("platform", "shutdown"); if (!sc->hibernate_states) sc->hibernate_states = strv_new("disk"); if (!sc->hybrid_modes) sc->hybrid_modes = strv_new("suspend", "platform", "shutdown"); if (!sc->hybrid_states) sc->hybrid_states = strv_new("disk"); if (sc->hibernate_delay_sec == 0) sc->hibernate_delay_sec = 2 * USEC_PER_HOUR; /* ensure values set for all required fields */ if (!sc->suspend_states || !sc->hibernate_modes || !sc->hibernate_states || !sc->hybrid_modes || !sc->hybrid_states) return log_oom(); *ret_sleep_config = TAKE_PTR(sc); return 0; } int can_sleep_state(char **types) { char **type; int r; _cleanup_free_ char *p = NULL; if (strv_isempty(types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/state", W_OK) < 0) return false; r = read_one_line_file("/sys/power/state", &p); if (r < 0) return false; STRV_FOREACH(type, types) { const char *word, *state; size_t l, k; k = strlen(*type); FOREACH_WORD_SEPARATOR(word, l, p, WHITESPACE, state) if (l == k && memcmp(word, *type, l) == 0) return true; } return false; } int can_sleep_disk(char **types) { char **type; int r; _cleanup_free_ char *p = NULL; if (strv_isempty(types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/disk", W_OK) < 0) { log_debug_errno(errno, "/sys/power/disk is not writable: %m"); return false; } r = read_one_line_file("/sys/power/disk", &p); if (r < 0) { log_debug_errno(r, "Couldn't read /sys/power/disk: %m"); return false; } STRV_FOREACH(type, types) { const char *word, *state; size_t l, k; k = strlen(*type); FOREACH_WORD_SEPARATOR(word, l, p, WHITESPACE, state) { if (l == k && memcmp(word, *type, l) == 0) return true; if (l == k + 2 && word[0] == '[' && memcmp(word + 1, *type, l - 2) == 0 && word[l-1] == ']') return true; } } return false; } #define HIBERNATION_SWAP_THRESHOLD 0.98 SwapEntry* swap_entry_free(SwapEntry *se) { if (!se) return NULL; free(se->device); free(se->type); return mfree(se); } HibernateLocation* hibernate_location_free(HibernateLocation *hl) { if (!hl) return NULL; swap_entry_free(hl->swap); return mfree(hl); } static int swap_device_to_device_id(const SwapEntry *swap, dev_t *ret_dev) { struct stat sb; int r; assert(swap); assert(swap->device); assert(swap->type); r = stat(swap->device, &sb); if (r < 0) return r; if (streq(swap->type, "partition")) { if (!S_ISBLK(sb.st_mode)) return -ENOTBLK; *ret_dev = sb.st_rdev; return 0; } else return get_block_device(swap->device, ret_dev); } /* * Attempt to calculate the swap file offset on supported filesystems. On unsupported * filesystems, a debug message is logged and ret_offset is set to UINT64_MAX. */ static int calculate_swap_file_offset(const SwapEntry *swap, uint64_t *ret_offset) { _cleanup_close_ int fd = -1; _cleanup_free_ struct fiemap *fiemap = NULL; struct stat sb; int r, btrfs; assert(swap); assert(swap->device); assert(streq(swap->type, "file")); fd = open(swap->device, O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) return log_error_errno(errno, "Failed to open swap file %s to determine on-disk offset: %m", swap->device); if (fstat(fd, &sb) < 0) return log_error_errno(errno, "Failed to stat %s: %m", swap->device); btrfs = btrfs_is_filesystem(fd); if (btrfs < 0) return log_error_errno(btrfs, "Error checking %s for Btrfs filesystem: %m", swap->device); else if (btrfs > 0) { log_debug("%s: detection of swap file offset on Btrfs is not supported", swap->device); *ret_offset = UINT64_MAX; return 0; } r = read_fiemap(fd, &fiemap); if (r < 0) return log_debug_errno(r, "Unable to read extent map for '%s': %m", swap->device); *ret_offset = fiemap->fm_extents[0].fe_physical / page_size(); return 0; } static int read_resume_files(dev_t *ret_resume, uint64_t *ret_resume_offset) { _cleanup_free_ char *resume_str = NULL, *resume_offset_str = NULL; dev_t resume; uint64_t resume_offset = 0; int r; r = read_one_line_file("/sys/power/resume", &resume_str); if (r < 0) return log_debug_errno(r, "Error reading /sys/power/resume: %m"); r = parse_dev(resume_str, &resume); if (r < 0) return log_debug_errno(r, "Error parsing /sys/power/resume device: %s: %m", resume_str); r = read_one_line_file("/sys/power/resume_offset", &resume_offset_str); if (r == -ENOENT) log_debug("Kernel does not support resume_offset; swap file offset detection will be skipped."); else if (r < 0) return log_debug_errno(r, "Error reading /sys/power/resume_offset: %m"); else { r = safe_atou64(resume_offset_str, &resume_offset); if (r < 0) return log_error_errno(r, "Failed to parse value in /sys/power/resume_offset \"%s\": %m", resume_offset_str); } if (resume_offset > 0 && resume == 0) log_debug("Warning: found /sys/power/resume_offset==%" PRIu64 ", but /sys/power/resume unset. Misconfiguration?", resume_offset); *ret_resume = resume; *ret_resume_offset = resume_offset; return 0; } /* * Determine if the HibernateLocation matches the resume= (device) and resume_offset= (file). */ static bool location_is_resume_device(const HibernateLocation *location, dev_t sys_resume, uint64_t sys_offset) { if (!location) return false; return sys_resume > 0 && sys_resume == location->devno && (sys_offset == location->offset || (sys_offset > 0 && location->offset == UINT64_MAX)); } /* * Attempt to find the hibernation location by parsing /proc/swaps, /sys/power/resume, and * /sys/power/resume_offset. * * Returns: * 1 - Values are set in /sys/power/resume and /sys/power/resume_offset. * ret_hibernate_location will represent matching /proc/swap entry if identified or NULL if not. * * 0 - No values are set in /sys/power/resume and /sys/power/resume_offset. ret_hibernate_location will represent the highest priority swap with most remaining space discovered in /proc/swaps. * * Negative value in the case of error. */ int find_hibernate_location(HibernateLocation **ret_hibernate_location) { _cleanup_fclose_ FILE *f = NULL; _cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL; dev_t sys_resume; uint64_t sys_offset = 0; bool resume_match = false; int r; /* read the /sys/power/resume & /sys/power/resume_offset values */ r = read_resume_files(&sys_resume, &sys_offset); if (r < 0) return r; f = fopen("/proc/swaps", "re"); if (!f) { log_full(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, "Failed to open /proc/swaps: %m"); return negative_errno(); } (void) fscanf(f, "%*s %*s %*s %*s %*s\n"); for (unsigned i = 1;; i++) { _cleanup_(swap_entry_freep) SwapEntry *swap = NULL; uint64_t swap_offset = 0; int k; swap = new0(SwapEntry, 1); if (!swap) return log_oom(); k = fscanf(f, "%ms " /* device/file */ "%ms " /* type of swap */ "%" PRIu64 /* swap size */ "%" PRIu64 /* used */ "%i\n", /* priority */ &swap->device, &swap->type, &swap->size, &swap->used, &swap->priority); if (k == EOF) break; if (k != 5) { log_warning("Failed to parse /proc/swaps:%u", i); continue; } if (streq(swap->type, "file")) { if (endswith(swap->device, "\\040(deleted)")) { log_warning("Ignoring deleted swap file '%s'.", swap->device); continue; } r = calculate_swap_file_offset(swap, &swap_offset); if (r < 0) return r; } else if (streq(swap->type, "partition")) { const char *fn; fn = path_startswith(swap->device, "/dev/"); if (fn && startswith(fn, "zram")) { log_debug("%s: ignoring zram swap", swap->device); continue; } } else { log_debug("%s: swap type %s is unsupported for hibernation, ignoring", swap->device, swap->type); continue; } /* prefer resume device or highest priority swap with most remaining space */ if (hibernate_location && swap->priority < hibernate_location->swap->priority) { log_debug("%s: ignoring device with lower priority", swap->device); continue; } if (hibernate_location && (swap->priority == hibernate_location->swap->priority && swap->size - swap->used < hibernate_location->swap->size - hibernate_location->swap->used)) { log_debug("%s: ignoring device with lower usable space", swap->device); continue; } dev_t swap_device; r = swap_device_to_device_id(swap, &swap_device); if (r < 0) return log_error_errno(r, "%s: failed to query device number: %m", swap->device); hibernate_location = hibernate_location_free(hibernate_location); hibernate_location = new(HibernateLocation, 1); if (!hibernate_location) return log_oom(); *hibernate_location = (HibernateLocation) { .devno = swap_device, .offset = swap_offset, .swap = TAKE_PTR(swap), }; /* if the swap is the resume device, stop the loop */ if (location_is_resume_device(hibernate_location, sys_resume, sys_offset)) { log_debug("%s: device matches configured resume settings.", hibernate_location->swap->device); resume_match = true; break; } log_debug("%s: is a candidate device.", hibernate_location->swap->device); } /* We found nothing at all */ if (!hibernate_location) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "No possible swap partitions or files suitable for hibernation were found in /proc/swaps."); /* resume= is set but a matching /proc/swaps entry was not found */ if (sys_resume != 0 && !resume_match) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "No swap partitions or files matching resume config were found in /proc/swaps."); if (hibernate_location->offset == UINT64_MAX) { if (sys_offset == 0) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "Offset detection failed and /sys/power/resume_offset is not set."); hibernate_location->offset = sys_offset; } if (resume_match) log_debug("Hibernation will attempt to use swap entry with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i", hibernate_location->swap->device, major(hibernate_location->devno), minor(hibernate_location->devno), hibernate_location->offset, hibernate_location->swap->priority); else log_debug("/sys/power/resume is not configured; attempting to hibernate with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i", hibernate_location->swap->device, major(hibernate_location->devno), minor(hibernate_location->devno), hibernate_location->offset, hibernate_location->swap->priority); *ret_hibernate_location = TAKE_PTR(hibernate_location); if (resume_match) return 1; return 0; } static bool enough_swap_for_hibernation(void) { _cleanup_free_ char *active = NULL; _cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL; unsigned long long act = 0; int r; if (getenv_bool("SYSTEMD_BYPASS_HIBERNATION_MEMORY_CHECK") > 0) return true; r = find_hibernate_location(&hibernate_location); if (r < 0) return false; /* If /sys/power/{resume,resume_offset} is configured but a matching entry * could not be identified in /proc/swaps, user is likely using Btrfs with a swapfile; * return true and let the system attempt hibernation. */ if (r > 0 && !hibernate_location) { log_debug("Unable to determine remaining swap space; hibernation may fail"); return true; } if (!hibernate_location) return false; r = get_proc_field("/proc/meminfo", "Active(anon)", WHITESPACE, &active); if (r < 0) { log_debug_errno(r, "Failed to retrieve Active(anon) from /proc/meminfo: %m"); return false; } r = safe_atollu(active, &act); if (r < 0) { log_debug_errno(r, "Failed to parse Active(anon) from /proc/meminfo: %s: %m", active); return false; } r = act <= (hibernate_location->swap->size - hibernate_location->swap->used) * HIBERNATION_SWAP_THRESHOLD; log_debug("%s swap for hibernation, Active(anon)=%llu kB, size=%" PRIu64 " kB, used=%" PRIu64 " kB, threshold=%.2g%%", r ? "Enough" : "Not enough", act, hibernate_location->swap->size, hibernate_location->swap->used, 100*HIBERNATION_SWAP_THRESHOLD); return r; } int read_fiemap(int fd, struct fiemap **ret) { _cleanup_free_ struct fiemap *fiemap = NULL, *result_fiemap = NULL; struct stat statinfo; uint32_t result_extents = 0; uint64_t fiemap_start = 0, fiemap_length; const size_t n_extra = DIV_ROUND_UP(sizeof(struct fiemap), sizeof(struct fiemap_extent)); size_t fiemap_allocated = n_extra, result_fiemap_allocated = n_extra; if (fstat(fd, &statinfo) < 0) return log_debug_errno(errno, "Cannot determine file size: %m"); if (!S_ISREG(statinfo.st_mode)) return -ENOTTY; fiemap_length = statinfo.st_size; /* Zero this out in case we run on a file with no extents */ fiemap = calloc(n_extra, sizeof(struct fiemap_extent)); if (!fiemap) return -ENOMEM; result_fiemap = malloc_multiply(n_extra, sizeof(struct fiemap_extent)); if (!result_fiemap) return -ENOMEM; /* XFS filesystem has incorrect implementation of fiemap ioctl and * returns extents for only one block-group at a time, so we need * to handle it manually, starting the next fiemap call from the end * of the last extent */ while (fiemap_start < fiemap_length) { *fiemap = (struct fiemap) { .fm_start = fiemap_start, .fm_length = fiemap_length, .fm_flags = FIEMAP_FLAG_SYNC, }; /* Find out how many extents there are */ if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Nothing to process */ if (fiemap->fm_mapped_extents == 0) break; /* Resize fiemap to allow us to read in the extents, result fiemap has to hold all * the extents for the whole file. Add space for the initial struct fiemap. */ if (!greedy_realloc0((void**) &fiemap, &fiemap_allocated, n_extra + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; fiemap->fm_extent_count = fiemap->fm_mapped_extents; fiemap->fm_mapped_extents = 0; if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Resize result_fiemap to allow us to copy in the extents */ if (!greedy_realloc((void**) &result_fiemap, &result_fiemap_allocated, n_extra + result_extents + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; memcpy(result_fiemap->fm_extents + result_extents, fiemap->fm_extents, sizeof(struct fiemap_extent) * fiemap->fm_mapped_extents); result_extents += fiemap->fm_mapped_extents; /* Highly unlikely that it is zero */ if (_likely_(fiemap->fm_mapped_extents > 0)) { uint32_t i = fiemap->fm_mapped_extents - 1; fiemap_start = fiemap->fm_extents[i].fe_logical + fiemap->fm_extents[i].fe_length; if (fiemap->fm_extents[i].fe_flags & FIEMAP_EXTENT_LAST) break; } } memcpy(result_fiemap, fiemap, sizeof(struct fiemap)); result_fiemap->fm_mapped_extents = result_extents; *ret = TAKE_PTR(result_fiemap); return 0; } static int can_sleep_internal(const char *verb, bool check_allowed, const SleepConfig *sleep_config); static bool can_s2h(const SleepConfig *sleep_config) { const char *p; int r; if (!clock_supported(CLOCK_BOOTTIME_ALARM)) { log_full(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, "CLOCK_BOOTTIME_ALARM is not supported"); return false; } FOREACH_STRING(p, "suspend", "hibernate") { r = can_sleep_internal(p, false, sleep_config); if (IN_SET(r, 0, -ENOSPC, -EADV)) { log_debug("Unable to %s system.", p); return false; } if (r < 0) return log_debug_errno(r, "Failed to check if %s is possible: %m", p); } return true; } static int can_sleep_internal(const char *verb, bool check_allowed, const SleepConfig *sleep_config) { bool allow; char **modes = NULL, **states = NULL; int r; assert(STR_IN_SET(verb, "suspend", "hibernate", "hybrid-sleep", "suspend-then-hibernate")); r = sleep_settings(verb, sleep_config, &allow, &modes, &states); if (r < 0) return false; if (check_allowed && !allow) { log_debug("Sleep mode \"%s\" is disabled by configuration.", verb); return false; } if (streq(verb, "suspend-then-hibernate")) return can_s2h(sleep_config); if (!can_sleep_state(states) || !can_sleep_disk(modes)) return false; if (streq(verb, "suspend")) return true; if (!enough_swap_for_hibernation()) return -ENOSPC; return true; } int can_sleep(const char *verb) { _cleanup_(free_sleep_configp) SleepConfig *sleep_config = NULL; int r; r = parse_sleep_config(&sleep_config); if (r < 0) return r; return can_sleep_internal(verb, true, sleep_config); } int sleep_settings(const char *verb, const SleepConfig *sleep_config, bool *ret_allow, char ***ret_modes, char ***ret_states) { assert(verb); assert(sleep_config); assert(STR_IN_SET(verb, "suspend", "hibernate", "hybrid-sleep", "suspend-then-hibernate")); if (streq(verb, "suspend")) { *ret_allow = sleep_config->allow_suspend; *ret_modes = sleep_config->suspend_modes; *ret_states = sleep_config->suspend_states; } else if (streq(verb, "hibernate")) { *ret_allow = sleep_config->allow_hibernate; *ret_modes = sleep_config->hibernate_modes; *ret_states = sleep_config->hibernate_states; } else if (streq(verb, "hybrid-sleep")) { *ret_allow = sleep_config->allow_hybrid_sleep; *ret_modes = sleep_config->hybrid_modes; *ret_states = sleep_config->hybrid_states; } else if (streq(verb, "suspend-then-hibernate")) { *ret_allow = sleep_config->allow_s2h; *ret_modes = *ret_states = NULL; } /* suspend modes empty by default */ if ((!ret_modes && !streq(verb, "suspend")) || !ret_states) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "No modes or states set for %s; Check sleep.conf", verb); return 0; } void free_sleep_config(SleepConfig *sc) { if (!sc) return; strv_free(sc->suspend_modes); strv_free(sc->suspend_states); strv_free(sc->hibernate_modes); strv_free(sc->hibernate_states); strv_free(sc->hybrid_modes); strv_free(sc->hybrid_states); free(sc); }