/* SPDX-License-Identifier: LGPL-2.1+ */ /*** Copyright © 2018 Dell Inc. ***/ #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "alloc-util.h" #include "conf-parser.h" #include "def.h" #include "env-util.h" #include "fd-util.h" #include "fileio.h" #include "log.h" #include "macro.h" #include "parse-util.h" #include "path-util.h" #include "sleep-config.h" #include "string-util.h" #include "strv.h" int parse_sleep_config(const char *verb, bool *ret_allow, char ***ret_modes, char ***ret_states, usec_t *ret_delay) { int allow_suspend = -1, allow_hibernate = -1, allow_s2h = -1, allow_hybrid_sleep = -1; bool allow; _cleanup_strv_free_ char **suspend_mode = NULL, **suspend_state = NULL, **hibernate_mode = NULL, **hibernate_state = NULL, **hybrid_mode = NULL, **hybrid_state = NULL; _cleanup_strv_free_ char **modes, **states; /* always initialized below */ usec_t delay = 180 * USEC_PER_MINUTE; const ConfigTableItem items[] = { { "Sleep", "AllowSuspend", config_parse_tristate, 0, &allow_suspend }, { "Sleep", "AllowHibernation", config_parse_tristate, 0, &allow_hibernate }, { "Sleep", "AllowSuspendThenHibernate", config_parse_tristate, 0, &allow_s2h }, { "Sleep", "AllowHybridSleep", config_parse_tristate, 0, &allow_hybrid_sleep }, { "Sleep", "SuspendMode", config_parse_strv, 0, &suspend_mode }, { "Sleep", "SuspendState", config_parse_strv, 0, &suspend_state }, { "Sleep", "HibernateMode", config_parse_strv, 0, &hibernate_mode }, { "Sleep", "HibernateState", config_parse_strv, 0, &hibernate_state }, { "Sleep", "HybridSleepMode", config_parse_strv, 0, &hybrid_mode }, { "Sleep", "HybridSleepState", config_parse_strv, 0, &hybrid_state }, { "Sleep", "HibernateDelaySec", config_parse_sec, 0, &delay}, {} }; (void) config_parse_many_nulstr(PKGSYSCONFDIR "/sleep.conf", CONF_PATHS_NULSTR("systemd/sleep.conf.d"), "Sleep\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL); if (streq(verb, "suspend")) { allow = allow_suspend != 0; /* empty by default */ modes = TAKE_PTR(suspend_mode); if (suspend_state) states = TAKE_PTR(suspend_state); else states = strv_new("mem", "standby", "freeze"); } else if (streq(verb, "hibernate")) { allow = allow_hibernate != 0; if (hibernate_mode) modes = TAKE_PTR(hibernate_mode); else modes = strv_new("platform", "shutdown"); if (hibernate_state) states = TAKE_PTR(hibernate_state); else states = strv_new("disk"); } else if (streq(verb, "hybrid-sleep")) { allow = allow_hybrid_sleep > 0 || (allow_suspend != 0 && allow_hibernate != 0); if (hybrid_mode) modes = TAKE_PTR(hybrid_mode); else modes = strv_new("suspend", "platform", "shutdown"); if (hybrid_state) states = TAKE_PTR(hybrid_state); else states = strv_new("disk"); } else if (streq(verb, "suspend-then-hibernate")) { allow = allow_s2h > 0 || (allow_suspend != 0 && allow_hibernate != 0); modes = states = NULL; } else assert_not_reached("what verb"); if ((!modes && STR_IN_SET(verb, "hibernate", "hybrid-sleep")) || (!states && !streq(verb, "suspend-then-hibernate"))) return log_oom(); if (ret_allow) *ret_allow = allow; if (ret_modes) *ret_modes = TAKE_PTR(modes); if (ret_states) *ret_states = TAKE_PTR(states); if (ret_delay) *ret_delay = delay; return 0; } int can_sleep_state(char **types) { char **type; int r; _cleanup_free_ char *p = NULL; if (strv_isempty(types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/state", W_OK) < 0) return false; r = read_one_line_file("/sys/power/state", &p); if (r < 0) return false; STRV_FOREACH(type, types) { const char *word, *state; size_t l, k; k = strlen(*type); FOREACH_WORD_SEPARATOR(word, l, p, WHITESPACE, state) if (l == k && memcmp(word, *type, l) == 0) return true; } return false; } int can_sleep_disk(char **types) { char **type; int r; _cleanup_free_ char *p = NULL; if (strv_isempty(types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/disk", W_OK) < 0) { log_debug_errno(errno, "/sys/power/disk is not writable: %m"); return false; } r = read_one_line_file("/sys/power/disk", &p); if (r < 0) { log_debug_errno(r, "Couldn't read /sys/power/disk: %m"); return false; } STRV_FOREACH(type, types) { const char *word, *state; size_t l, k; k = strlen(*type); FOREACH_WORD_SEPARATOR(word, l, p, WHITESPACE, state) { if (l == k && memcmp(word, *type, l) == 0) return true; if (l == k + 2 && word[0] == '[' && memcmp(word + 1, *type, l - 2) == 0 && word[l-1] == ']') return true; } } return false; } #define HIBERNATION_SWAP_THRESHOLD 0.98 int find_hibernate_location(char **device, char **type, size_t *size, size_t *used) { _cleanup_fclose_ FILE *f; unsigned i; f = fopen("/proc/swaps", "re"); if (!f) { log_full(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, "Failed to retrieve open /proc/swaps: %m"); assert(errno > 0); return -errno; } (void) fscanf(f, "%*s %*s %*s %*s %*s\n"); for (i = 1;; i++) { _cleanup_free_ char *dev_field = NULL, *type_field = NULL; size_t size_field, used_field; int k; k = fscanf(f, "%ms " /* device/file */ "%ms " /* type of swap */ "%zu " /* swap size */ "%zu " /* used */ "%*i\n", /* priority */ &dev_field, &type_field, &size_field, &used_field); if (k == EOF) break; if (k != 4) { log_warning("Failed to parse /proc/swaps:%u", i); continue; } if (streq(type_field, "file")) { if (endswith(dev_field, "\\040(deleted)")) { log_warning("Ignoring deleted swap file '%s'.", dev_field); continue; } } else if (streq(type_field, "partition")) { const char *fn; fn = path_startswith(dev_field, "/dev/"); if (fn && startswith(fn, "zram")) { log_debug("Ignoring compressed RAM swap device '%s'.", dev_field); continue; } } if (device) *device = TAKE_PTR(dev_field); if (type) *type = TAKE_PTR(type_field); if (size) *size = size_field; if (used) *used = used_field; return 0; } return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "No swap partitions were found."); } static bool enough_swap_for_hibernation(void) { _cleanup_free_ char *active = NULL; unsigned long long act = 0; size_t size = 0, used = 0; int r; if (getenv_bool("SYSTEMD_BYPASS_HIBERNATION_MEMORY_CHECK") > 0) return true; r = find_hibernate_location(NULL, NULL, &size, &used); if (r < 0) return false; r = get_proc_field("/proc/meminfo", "Active(anon)", WHITESPACE, &active); if (r < 0) { log_debug_errno(r, "Failed to retrieve Active(anon) from /proc/meminfo: %m"); return false; } r = safe_atollu(active, &act); if (r < 0) { log_debug_errno(r, "Failed to parse Active(anon) from /proc/meminfo: %s: %m", active); return false; } r = act <= (size - used) * HIBERNATION_SWAP_THRESHOLD; log_debug("%s swap for hibernation, Active(anon)=%llu kB, size=%zu kB, used=%zu kB, threshold=%.2g%%", r ? "Enough" : "Not enough", act, size, used, 100*HIBERNATION_SWAP_THRESHOLD); return r; } static int kernel_exists(void) { struct utsname u; sd_id128_t m; int i, r; /* Do some superficial checks whether the kernel we are currently running is still around. If it isn't we * shouldn't offer hibernation as we couldn't possible resume from hibernation again. Of course, this check is * very superficial, as the kernel's mere existance is hardly enough to know whether the hibernate/resume cycle * will succeed. However, the common case of kernel updates can be caught this way, and it's definitely worth * covering that. */ for (i = 0;; i++) { _cleanup_free_ char *path = NULL; switch (i) { case 0: /* First, let's look in /lib/modules/`uname -r`/vmlinuz. This is where current Fedora places * its RPM-managed kernels. It's a good place, as it means compiled vendor code is monopolized * in /usr, and then the kernel image is stored along with its modules in the same * hierarchy. It's also what our 'kernel-install' script is written for. */ if (uname(&u) < 0) return log_debug_errno(errno, "Failed to acquire kernel release: %m"); path = strjoin("/lib/modules/", u.release, "/vmlinuz"); break; case 1: /* Secondly, let's look in /boot/vmlinuz-`uname -r`. This is where older Fedora and other * distributions tend to place the kernel. */ path = strjoin("/boot/vmlinuz-", u.release); break; case 2: /* For the other cases, we look in the EFI/boot partition, at the place where our * "kernel-install" script copies the kernel on install by default. */ r = sd_id128_get_machine(&m); if (r < 0) return log_debug_errno(r, "Failed to read machine ID: %m"); (void) asprintf(&path, "/efi/" SD_ID128_FORMAT_STR "/%s/linux", SD_ID128_FORMAT_VAL(m), u.release); break; case 3: (void) asprintf(&path, "/boot/" SD_ID128_FORMAT_STR "/%s/linux", SD_ID128_FORMAT_VAL(m), u.release); break; case 4: (void) asprintf(&path, "/boot/efi/" SD_ID128_FORMAT_STR "/%s/linux", SD_ID128_FORMAT_VAL(m), u.release); break; default: return false; } if (!path) return -ENOMEM; log_debug("Testing whether %s exists.", path); if (access(path, F_OK) >= 0) return true; if (errno != ENOENT) log_debug_errno(errno, "Failed to determine whether '%s' exists, ignoring: %m", path); } } int read_fiemap(int fd, struct fiemap **ret) { _cleanup_free_ struct fiemap *fiemap = NULL, *result_fiemap = NULL; struct stat statinfo; uint32_t result_extents = 0; uint64_t fiemap_start = 0, fiemap_length; const size_t n_extra = DIV_ROUND_UP(sizeof(struct fiemap), sizeof(struct fiemap_extent)); size_t fiemap_allocated = n_extra, result_fiemap_allocated = n_extra; if (fstat(fd, &statinfo) < 0) return log_debug_errno(errno, "Cannot determine file size: %m"); if (!S_ISREG(statinfo.st_mode)) return -ENOTTY; fiemap_length = statinfo.st_size; /* Zero this out in case we run on a file with no extents */ fiemap = calloc(n_extra, sizeof(struct fiemap_extent)); if (!fiemap) return -ENOMEM; result_fiemap = malloc_multiply(n_extra, sizeof(struct fiemap_extent)); if (!result_fiemap) return -ENOMEM; /* XFS filesystem has incorrect implementation of fiemap ioctl and * returns extents for only one block-group at a time, so we need * to handle it manually, starting the next fiemap call from the end * of the last extent */ while (fiemap_start < fiemap_length) { *fiemap = (struct fiemap) { .fm_start = fiemap_start, .fm_length = fiemap_length, .fm_flags = FIEMAP_FLAG_SYNC, }; /* Find out how many extents there are */ if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Nothing to process */ if (fiemap->fm_mapped_extents == 0) break; /* Resize fiemap to allow us to read in the extents, result fiemap has to hold all * the extents for the whole file. Add space for the initial struct fiemap. */ if (!greedy_realloc0((void**) &fiemap, &fiemap_allocated, n_extra + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; fiemap->fm_extent_count = fiemap->fm_mapped_extents; fiemap->fm_mapped_extents = 0; if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Resize result_fiemap to allow us to copy in the extents */ if (!greedy_realloc((void**) &result_fiemap, &result_fiemap_allocated, n_extra + result_extents + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; memcpy(result_fiemap->fm_extents + result_extents, fiemap->fm_extents, sizeof(struct fiemap_extent) * fiemap->fm_mapped_extents); result_extents += fiemap->fm_mapped_extents; /* Highly unlikely that it is zero */ if (_likely_(fiemap->fm_mapped_extents > 0)) { uint32_t i = fiemap->fm_mapped_extents - 1; fiemap_start = fiemap->fm_extents[i].fe_logical + fiemap->fm_extents[i].fe_length; if (fiemap->fm_extents[i].fe_flags & FIEMAP_EXTENT_LAST) break; } } memcpy(result_fiemap, fiemap, sizeof(struct fiemap)); result_fiemap->fm_mapped_extents = result_extents; *ret = TAKE_PTR(result_fiemap); return 0; } static int can_sleep_internal(const char *verb, bool check_allowed); static bool can_s2h(void) { const char *p; int r; r = access("/sys/class/rtc/rtc0/wakealarm", W_OK); if (r < 0) { log_full(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, "/sys/class/rct/rct0/wakealarm is not writable %m"); return false; } FOREACH_STRING(p, "suspend", "hibernate") { r = can_sleep_internal(p, false); if (IN_SET(r, 0, -ENOSPC, -ENOMEDIUM, -EADV)) { log_debug("Unable to %s system.", p); return false; } if (r < 0) return log_debug_errno(r, "Failed to check if %s is possible: %m", p); } return true; } static int can_sleep_internal(const char *verb, bool check_allowed) { bool allow; _cleanup_strv_free_ char **modes = NULL, **states = NULL; int r; assert(STR_IN_SET(verb, "suspend", "hibernate", "hybrid-sleep", "suspend-then-hibernate")); r = parse_sleep_config(verb, &allow, &modes, &states, NULL); if (r < 0) return false; if (check_allowed && !allow) { log_debug("Sleep mode \"%s\" is disabled by configuration.", verb); return false; } if (streq(verb, "suspend-then-hibernate")) return can_s2h(); if (!can_sleep_state(states) || !can_sleep_disk(modes)) return false; if (streq(verb, "suspend")) return true; if (kernel_exists() <= 0) { log_debug_errno(errno, "Couldn't find kernel, not offering hibernation."); return -ENOMEDIUM; } if (!enough_swap_for_hibernation()) return -ENOSPC; return true; } int can_sleep(const char *verb) { return can_sleep_internal(verb, true); }