/* SPDX-License-Identifier: LGPL-2.1-or-later */ /*** Copyright © 2018 Dell Inc. ***/ #include #include #include #include #include #include #include #include #include #include #include #include "sd-device.h" #include "alloc-util.h" #include "battery-util.h" #include "blockdev-util.h" #include "btrfs-util.h" #include "conf-parser.h" #include "constants.h" #include "device-private.h" #include "device-util.h" #include "devnum-util.h" #include "env-util.h" #include "errno-util.h" #include "fd-util.h" #include "fileio.h" #include "hexdecoct.h" #include "id128-util.h" #include "log.h" #include "macro.h" #include "path-util.h" #include "siphash24.h" #include "sleep-util.h" #include "stat-util.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "time-util.h" #define DISCHARGE_RATE_FILEPATH "/var/lib/systemd/sleep/battery_discharge_percentage_rate_per_hour" #define BATTERY_DISCHARGE_RATE_HASH_KEY SD_ID128_MAKE(5f,9a,20,18,38,76,46,07,8d,36,58,0b,bb,c4,e0,63) static void *CAPACITY_TO_PTR(int capacity) { assert(capacity >= 0); assert(capacity <= 100); return INT_TO_PTR(capacity + 1); } static int PTR_TO_CAPACITY(void *p) { int capacity = PTR_TO_INT(p) - 1; assert(capacity >= 0); assert(capacity <= 100); return capacity; } int parse_sleep_config(SleepConfig **ret_sleep_config) { _cleanup_(free_sleep_configp) SleepConfig *sc = NULL; int allow_suspend = -1, allow_hibernate = -1, allow_s2h = -1, allow_hybrid_sleep = -1; sc = new(SleepConfig, 1); if (!sc) return log_oom(); *sc = (SleepConfig) { .hibernate_delay_usec = USEC_INFINITY, }; const ConfigTableItem items[] = { { "Sleep", "AllowSuspend", config_parse_tristate, 0, &allow_suspend }, { "Sleep", "AllowHibernation", config_parse_tristate, 0, &allow_hibernate }, { "Sleep", "AllowSuspendThenHibernate", config_parse_tristate, 0, &allow_s2h }, { "Sleep", "AllowHybridSleep", config_parse_tristate, 0, &allow_hybrid_sleep }, { "Sleep", "SuspendMode", config_parse_strv, 0, sc->modes + SLEEP_SUSPEND }, { "Sleep", "SuspendState", config_parse_strv, 0, sc->states + SLEEP_SUSPEND }, { "Sleep", "HibernateMode", config_parse_strv, 0, sc->modes + SLEEP_HIBERNATE }, { "Sleep", "HibernateState", config_parse_strv, 0, sc->states + SLEEP_HIBERNATE }, { "Sleep", "HybridSleepMode", config_parse_strv, 0, sc->modes + SLEEP_HYBRID_SLEEP }, { "Sleep", "HybridSleepState", config_parse_strv, 0, sc->states + SLEEP_HYBRID_SLEEP }, { "Sleep", "HibernateDelaySec", config_parse_sec, 0, &sc->hibernate_delay_usec }, { "Sleep", "SuspendEstimationSec", config_parse_sec, 0, &sc->suspend_estimation_usec }, {} }; (void) config_parse_config_file("sleep.conf", "Sleep\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL); /* use default values unless set */ sc->allow[SLEEP_SUSPEND] = allow_suspend != 0; sc->allow[SLEEP_HIBERNATE] = allow_hibernate != 0; sc->allow[SLEEP_HYBRID_SLEEP] = allow_hybrid_sleep >= 0 ? allow_hybrid_sleep : (allow_suspend != 0 && allow_hibernate != 0); sc->allow[SLEEP_SUSPEND_THEN_HIBERNATE] = allow_s2h >= 0 ? allow_s2h : (allow_suspend != 0 && allow_hibernate != 0); if (!sc->states[SLEEP_SUSPEND]) sc->states[SLEEP_SUSPEND] = strv_new("mem", "standby", "freeze"); if (!sc->modes[SLEEP_HIBERNATE]) sc->modes[SLEEP_HIBERNATE] = strv_new("platform", "shutdown"); if (!sc->states[SLEEP_HIBERNATE]) sc->states[SLEEP_HIBERNATE] = strv_new("disk"); if (!sc->modes[SLEEP_HYBRID_SLEEP]) sc->modes[SLEEP_HYBRID_SLEEP] = strv_new("suspend", "platform", "shutdown"); if (!sc->states[SLEEP_HYBRID_SLEEP]) sc->states[SLEEP_HYBRID_SLEEP] = strv_new("disk"); if (sc->suspend_estimation_usec == 0) sc->suspend_estimation_usec = DEFAULT_SUSPEND_ESTIMATION_USEC; /* Ensure values set for all required fields */ if (!sc->states[SLEEP_SUSPEND] || !sc->modes[SLEEP_HIBERNATE] || !sc->states[SLEEP_HIBERNATE] || !sc->modes[SLEEP_HYBRID_SLEEP] || !sc->states[SLEEP_HYBRID_SLEEP]) return log_oom(); *ret_sleep_config = TAKE_PTR(sc); return 0; } int get_capacity_by_name(Hashmap *capacities_by_name, const char *name) { void *p; assert(capacities_by_name); assert(name); p = hashmap_get(capacities_by_name, name); if (!p) return -ENOENT; return PTR_TO_CAPACITY(p); } /* Store current capacity of each battery before suspension and timestamp */ int fetch_batteries_capacity_by_name(Hashmap **ret) { _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; _cleanup_hashmap_free_ Hashmap *batteries_capacity_by_name = NULL; int r; assert(ret); batteries_capacity_by_name = hashmap_new(&string_hash_ops_free); if (!batteries_capacity_by_name) return log_oom_debug(); r = battery_enumerator_new(&e); if (r < 0) return log_debug_errno(r, "Failed to initialize battery enumerator: %m"); FOREACH_DEVICE(e, dev) { _cleanup_free_ char *battery_name_copy = NULL; const char *battery_name; int battery_capacity; battery_capacity = r = battery_read_capacity_percentage(dev); if (r < 0) continue; r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name); if (r < 0) { log_device_debug_errno(dev, r, "Failed to get POWER_SUPPLY_NAME property, ignoring: %m"); continue; } battery_name_copy = strdup(battery_name); if (!battery_name_copy) return log_oom_debug(); r = hashmap_put(batteries_capacity_by_name, battery_name_copy, CAPACITY_TO_PTR(battery_capacity)); if (r < 0) return log_device_debug_errno(dev, r, "Failed to store battery capacity: %m"); TAKE_PTR(battery_name_copy); } *ret = TAKE_PTR(batteries_capacity_by_name); return 0; } static int siphash24_compress_device_sysattr(sd_device *dev, const char *attr, struct siphash *state) { const char *x; int r; assert(dev); assert(attr); assert(state); r = sd_device_get_sysattr_value(dev, attr, &x); if (r < 0) return log_device_debug_errno(dev, r, "Failed to read '%s' attribute: %m", attr); if (!isempty(x)) siphash24_compress_string(x, state); return 0; } static int siphash24_compress_id128(int (*getter)(sd_id128_t*), const char *name, struct siphash *state) { sd_id128_t id; int r; assert(getter); assert(state); r = getter(&id); if (r < 0) return log_debug_errno(r, "Failed to get %s ID: %m", name); siphash24_compress(&id, sizeof(sd_id128_t), state); return 0; } /* Read system and battery identifier from specific location and generate hash of it */ static int get_system_battery_identifier_hash(sd_device *dev, uint64_t *ret) { struct siphash state; assert(ret); assert(dev); siphash24_init(&state, BATTERY_DISCHARGE_RATE_HASH_KEY.bytes); (void) siphash24_compress_device_sysattr(dev, "manufacturer", &state); (void) siphash24_compress_device_sysattr(dev, "model_name", &state); (void) siphash24_compress_device_sysattr(dev, "serial_number", &state); (void) siphash24_compress_id128(sd_id128_get_machine, "machine", &state); (void) siphash24_compress_id128(id128_get_product, "product", &state); *ret = siphash24_finalize(&state); return 0; } /* Return success if battery percentage discharge rate per hour is in the range 1–199 */ static bool battery_discharge_rate_is_valid(int battery_discharge_rate) { return battery_discharge_rate > 0 && battery_discharge_rate < 200; } /* Battery percentage discharge rate per hour is read from specific file. It is stored along with system * and battery identifier hash to maintain the integrity of discharge rate value */ static int get_battery_discharge_rate(sd_device *dev, int *ret) { _cleanup_fclose_ FILE *f = NULL; uint64_t current_hash_id; const char *p; int r; assert(dev); assert(ret); f = fopen(DISCHARGE_RATE_FILEPATH, "re"); if (!f) return log_debug_errno(errno, "Failed to read discharge rate from " DISCHARGE_RATE_FILEPATH ": %m"); r = get_system_battery_identifier_hash(dev, ¤t_hash_id); if (r < 0) return log_device_debug_errno(dev, r, "Failed to generate system battery identifier hash: %m"); for (;;) { _cleanup_free_ char *stored_hash_id = NULL, *stored_discharge_rate = NULL, *line = NULL; uint64_t hash_id; int discharge_rate; r = read_line(f, LONG_LINE_MAX, &line); if (r < 0) return log_debug_errno(r, "Failed to read discharge rate from " DISCHARGE_RATE_FILEPATH ": %m"); if (r == 0) break; p = line; r = extract_many_words(&p, NULL, 0, &stored_hash_id, &stored_discharge_rate, NULL); if (r < 0) return log_debug_errno(r, "Failed to parse hash_id and discharge_rate read from " DISCHARGE_RATE_FILEPATH ": %m"); if (r != 2) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid number of items fetched from " DISCHARGE_RATE_FILEPATH); r = safe_atou64(stored_hash_id, &hash_id); if (r < 0) return log_debug_errno(r, "Failed to parse hash ID read from " DISCHARGE_RATE_FILEPATH " location: %m"); if (current_hash_id != hash_id) /* matching device not found, move to next line */ continue; r = safe_atoi(stored_discharge_rate, &discharge_rate); if (r < 0) return log_device_debug_errno(dev, r, "Failed to parse discharge rate read from " DISCHARGE_RATE_FILEPATH ": %m"); if (!battery_discharge_rate_is_valid(discharge_rate)) return log_device_debug_errno(dev, SYNTHETIC_ERRNO(ERANGE), "Invalid battery discharge percentage rate per hour: %m"); *ret = discharge_rate; return 0; /* matching device found, exit iteration */ } return -ENOENT; } /* Write battery percentage discharge rate per hour along with system and battery identifier hash to file */ static int put_battery_discharge_rate(int estimated_battery_discharge_rate, uint64_t system_hash_id, bool trunc) { int r; if (!battery_discharge_rate_is_valid(estimated_battery_discharge_rate)) return log_debug_errno(SYNTHETIC_ERRNO(ERANGE), "Invalid battery discharge rate %d%% per hour: %m", estimated_battery_discharge_rate); r = write_string_filef( DISCHARGE_RATE_FILEPATH, WRITE_STRING_FILE_CREATE | WRITE_STRING_FILE_MKDIR_0755 | (trunc ? WRITE_STRING_FILE_TRUNCATE : 0), "%"PRIu64" %d", system_hash_id, estimated_battery_discharge_rate); if (r < 0) return log_debug_errno(r, "Failed to update %s: %m", DISCHARGE_RATE_FILEPATH); log_debug("Estimated discharge rate %d%% per hour successfully saved to %s", estimated_battery_discharge_rate, DISCHARGE_RATE_FILEPATH); return 0; } /* Estimate battery discharge rate using stored previous and current capacity over timestamp difference */ int estimate_battery_discharge_rate_per_hour( Hashmap *last_capacity, Hashmap *current_capacity, usec_t before_timestamp, usec_t after_timestamp) { _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; bool trunc = true; int r; assert(last_capacity); assert(current_capacity); assert(before_timestamp < after_timestamp); r = battery_enumerator_new(&e); if (r < 0) return log_debug_errno(r, "Failed to initialize battery enumerator: %m"); FOREACH_DEVICE(e, dev) { int battery_last_capacity, battery_current_capacity, battery_discharge_rate; const char *battery_name; uint64_t system_hash_id; r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name); if (r < 0) { log_device_debug_errno(dev, r, "Failed to read battery name, ignoring: %m"); continue; } battery_last_capacity = get_capacity_by_name(last_capacity, battery_name); if (battery_last_capacity < 0) continue; battery_current_capacity = get_capacity_by_name(current_capacity, battery_name); if (battery_current_capacity < 0) continue; if (battery_current_capacity >= battery_last_capacity) { log_device_debug(dev, "Battery was not discharged during suspension"); continue; } r = get_system_battery_identifier_hash(dev, &system_hash_id); if (r < 0) return log_device_debug_errno(dev, r, "Failed to generate system battery identifier hash: %m"); log_device_debug(dev, "%d%% was discharged in %s. Estimating discharge rate...", battery_last_capacity - battery_current_capacity, FORMAT_TIMESPAN(after_timestamp - before_timestamp, USEC_PER_SEC)); battery_discharge_rate = (battery_last_capacity - battery_current_capacity) * USEC_PER_HOUR / (after_timestamp - before_timestamp); r = put_battery_discharge_rate(battery_discharge_rate, system_hash_id, trunc); if (r < 0) log_device_warning_errno(dev, r, "Failed to update battery discharge rate, ignoring: %m"); else trunc = false; } return 0; } /* Calculate the suspend interval for each battery and then return their sum */ int get_total_suspend_interval(Hashmap *last_capacity, usec_t *ret) { _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; usec_t total_suspend_interval = 0; int r; assert(last_capacity); assert(ret); r = battery_enumerator_new(&e); if (r < 0) return log_debug_errno(r, "Failed to initialize battery enumerator: %m"); FOREACH_DEVICE(e, dev) { int battery_last_capacity, previous_discharge_rate = 0; const char *battery_name; usec_t suspend_interval; r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name); if (r < 0) { log_device_debug_errno(dev, r, "Failed to read battery name, ignoring: %m"); continue; } battery_last_capacity = get_capacity_by_name(last_capacity, battery_name); if (battery_last_capacity <= 0) continue; r = get_battery_discharge_rate(dev, &previous_discharge_rate); if (r < 0) { log_device_debug_errno(dev, r, "Failed to get discharge rate, ignoring: %m"); continue; } if (previous_discharge_rate == 0) continue; if (battery_last_capacity * 2 <= previous_discharge_rate) { log_device_debug(dev, "Current battery capacity percentage too low compared to discharge rate"); continue; } suspend_interval = battery_last_capacity * USEC_PER_HOUR / previous_discharge_rate; total_suspend_interval = usec_add(total_suspend_interval, suspend_interval); } /* Previous discharge rate is stored in per hour basis converted to usec. * Subtract 30 minutes from the result to keep a buffer of 30 minutes before battery gets critical */ total_suspend_interval = usec_sub_unsigned(total_suspend_interval, 30 * USEC_PER_MINUTE); if (total_suspend_interval == 0) return -ENOENT; *ret = total_suspend_interval; return 0; } /* Return true if all batteries have acpi_btp support */ int battery_trip_point_alarm_exists(void) { _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; int r; r = battery_enumerator_new(&e); if (r < 0) return log_debug_errno(r, "Failed to initialize battery enumerator: %m"); FOREACH_DEVICE(e, dev) { int battery_alarm; const char *s; r = sd_device_get_sysattr_value(dev, "alarm", &s); if (r < 0) return log_device_debug_errno(dev, r, "Failed to read battery alarm: %m"); r = safe_atoi(s, &battery_alarm); if (r < 0) return log_device_debug_errno(dev, r, "Failed to parse battery alarm: %m"); if (battery_alarm <= 0) return false; } return true; } /* Return true if wakeup type is APM timer */ int check_wakeup_type(void) { static const char dmi_object_path[] = "/sys/firmware/dmi/entries/1-0/raw"; uint8_t wakeup_type_byte, tablesize; _cleanup_free_ char *buf = NULL; size_t bufsize; int r; /* implementation via dmi/entries */ r = read_full_virtual_file(dmi_object_path, &buf, &bufsize); if (r < 0) return log_debug_errno(r, "Unable to read %s: %m", dmi_object_path); if (bufsize < 25) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Only read %zu bytes from %s (expected 25)", bufsize, dmi_object_path); /* index 1 stores the size of table */ tablesize = (uint8_t) buf[1]; if (tablesize < 25) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Table size lesser than the index[0x18] where waketype byte is available."); wakeup_type_byte = (uint8_t) buf[24]; /* 0 is Reserved and 8 is AC Power Restored. As per table 12 in * https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.4.0.pdf */ if (wakeup_type_byte >= 128) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Expected value in range 0-127"); if (wakeup_type_byte == 3) { log_debug("DMI BIOS System Information indicates wakeup type is APM Timer"); return true; } return false; } int can_sleep_state(char **requested_types) { _cleanup_free_ char *text = NULL; int r; if (strv_isempty(requested_types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/state", W_OK) < 0) { log_debug_errno(errno, "/sys/power/state is not writable, cannot sleep: %m"); return false; } r = read_one_line_file("/sys/power/state", &text); if (r < 0) { log_debug_errno(r, "Failed to read /sys/power/state, cannot sleep: %m"); return false; } const char *found; r = string_contains_word_strv(text, NULL, requested_types, &found); if (r < 0) return log_debug_errno(r, "Failed to parse /sys/power/state: %m"); if (r > 0) log_debug("Sleep mode \"%s\" is supported by the kernel.", found); else if (DEBUG_LOGGING) { _cleanup_free_ char *t = strv_join(requested_types, "/"); log_debug("Sleep mode %s not supported by the kernel, sorry.", strnull(t)); } return r; } int can_sleep_disk(char **types) { _cleanup_free_ char *text = NULL; int r; if (strv_isempty(types)) return true; /* If /sys is read-only we cannot sleep */ if (access("/sys/power/disk", W_OK) < 0) { log_debug_errno(errno, "/sys/power/disk is not writable: %m"); return false; } r = read_one_line_file("/sys/power/disk", &text); if (r < 0) { log_debug_errno(r, "Couldn't read /sys/power/disk: %m"); return false; } for (const char *p = text;;) { _cleanup_free_ char *word = NULL; r = extract_first_word(&p, &word, NULL, 0); if (r < 0) return log_debug_errno(r, "Failed to parse /sys/power/disk: %m"); if (r == 0) break; char *s = word; size_t l = strlen(s); if (s[0] == '[' && s[l-1] == ']') { s[l-1] = '\0'; s++; } if (strv_contains(types, s)) { log_debug("Disk sleep mode \"%s\" is supported by the kernel.", s); return true; } } if (DEBUG_LOGGING) { _cleanup_free_ char *t = strv_join(types, "/"); log_debug("Disk sleep mode %s not supported by the kernel, sorry.", strnull(t)); } return false; } #define HIBERNATION_SWAP_THRESHOLD 0.98 SwapEntry* swap_entry_free(SwapEntry *se) { if (!se) return NULL; free(se->path); return mfree(se); } HibernateLocation* hibernate_location_free(HibernateLocation *hl) { if (!hl) return NULL; swap_entry_free(hl->swap); return mfree(hl); } static int swap_device_to_devnum(const SwapEntry *swap, dev_t *ret_dev) { _cleanup_close_ int fd = -EBADF; struct stat sb; int r; assert(swap); assert(swap->path); fd = open(swap->path, O_CLOEXEC|O_PATH); if (fd < 0) return -errno; if (fstat(fd, &sb) < 0) return -errno; if (swap->type == SWAP_BLOCK) { if (!S_ISBLK(sb.st_mode)) return -ENOTBLK; *ret_dev = sb.st_rdev; return 0; } r = stat_verify_regular(&sb); if (r < 0) return r; return get_block_device_fd(fd, ret_dev); } /* * Attempt to calculate the swap file offset on supported filesystems. On unsupported * filesystems, a debug message is logged and ret_offset is set to UINT64_MAX. */ static int calculate_swap_file_offset(const SwapEntry *swap, uint64_t *ret_offset) { _cleanup_close_ int fd = -EBADF; _cleanup_free_ struct fiemap *fiemap = NULL; int r; assert(swap); assert(swap->path); assert(swap->type == SWAP_FILE); assert(ret_offset); fd = open(swap->path, O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) return log_debug_errno(errno, "Failed to open swap file %s to determine on-disk offset: %m", swap->path); r = fd_verify_regular(fd); if (r < 0) return log_debug_errno(r, "Selected swap file is not a regular file."); r = fd_is_fs_type(fd, BTRFS_SUPER_MAGIC); if (r < 0) return log_debug_errno(r, "Error checking %s for Btrfs filesystem: %m", swap->path); if (r > 0) { log_debug("%s: detection of swap file offset on Btrfs is not supported", swap->path); *ret_offset = UINT64_MAX; return 0; } r = read_fiemap(fd, &fiemap); if (r < 0) return log_debug_errno(r, "Unable to read extent map for '%s': %m", swap->path); *ret_offset = fiemap->fm_extents[0].fe_physical / page_size(); return 0; } static int read_resume_files(dev_t *ret_resume, uint64_t *ret_resume_offset) { _cleanup_free_ char *resume_str = NULL, *resume_offset_str = NULL; uint64_t resume_offset; dev_t resume; int r; assert(ret_resume); assert(ret_resume_offset); r = read_one_line_file("/sys/power/resume", &resume_str); if (r < 0) return log_debug_errno(r, "Error reading /sys/power/resume: %m"); r = parse_devnum(resume_str, &resume); if (r < 0) return log_debug_errno(r, "Error parsing /sys/power/resume device: %s: %m", resume_str); r = read_one_line_file("/sys/power/resume_offset", &resume_offset_str); if (r == -ENOENT) { log_debug_errno(r, "Kernel does not support resume_offset; swap file offset detection will be skipped."); resume_offset = 0; } else if (r < 0) return log_debug_errno(r, "Error reading /sys/power/resume_offset: %m"); else { r = safe_atou64(resume_offset_str, &resume_offset); if (r < 0) return log_debug_errno(r, "Failed to parse value in /sys/power/resume_offset \"%s\": %m", resume_offset_str); } if (resume_offset > 0 && resume == 0) log_debug("Warning: found /sys/power/resume_offset==%" PRIu64 ", but /sys/power/resume unset. Misconfiguration?", resume_offset); *ret_resume = resume; *ret_resume_offset = resume_offset; return 0; } /* * Determine if the HibernateLocation matches the resume= (device) and resume_offset= (file). */ static bool location_is_resume_device(const HibernateLocation *location, dev_t sys_resume, uint64_t sys_offset) { if (!location) return false; return sys_resume > 0 && sys_resume == location->devno && (sys_offset == location->offset || (sys_offset > 0 && location->offset == UINT64_MAX)); } /* * Attempt to find the hibernation location by parsing /proc/swaps, /sys/power/resume, and * /sys/power/resume_offset. * * Beware: * Never use a device or file as location that hasn't been somehow specified by a user that would also be * entrusted with full system memory access (for example via /sys/power/resume) or that isn't an already * active swap area! * Otherwise various security attacks might become possible, for example an attacker could silently attach * such a device and circumvent full disk encryption when it would be automatically used for hibernation. * Also, having a swap area on top of encryption is not per se enough to protect from all such attacks. * * Returns: * 1 - Values are set in /sys/power/resume and /sys/power/resume_offset. * ret_hibernate_location will represent matching /proc/swap entry if identified or NULL if not. * * 0 - No values are set in /sys/power/resume and /sys/power/resume_offset. ret_hibernate_location will represent the highest priority swap with most remaining space discovered in /proc/swaps. * * Negative value in the case of error. */ int find_hibernate_location(HibernateLocation **ret_hibernate_location) { _cleanup_fclose_ FILE *f = NULL; _cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL; dev_t sys_resume = 0; /* Unnecessary initialization to appease gcc */ uint64_t sys_offset = 0; bool resume_match = false; int r; /* read the /sys/power/resume & /sys/power/resume_offset values */ r = read_resume_files(&sys_resume, &sys_offset); if (r < 0) return r; f = fopen("/proc/swaps", "re"); if (!f) { log_debug_errno(errno, "Failed to open /proc/swaps: %m"); return errno == ENOENT ? -EOPNOTSUPP : -errno; /* Convert swap not supported to a recognizable error */ } (void) fscanf(f, "%*s %*s %*s %*s %*s\n"); for (unsigned i = 1;; i++) { _cleanup_(swap_entry_freep) SwapEntry *swap = NULL; _cleanup_free_ char *type = NULL; uint64_t swap_offset = 0; int k; swap = new(SwapEntry, 1); if (!swap) return -ENOMEM; *swap = (SwapEntry) { .type = _SWAP_TYPE_INVALID, }; k = fscanf(f, "%ms " /* device/file path */ "%ms " /* type of swap */ "%" PRIu64 /* swap size */ "%" PRIu64 /* used */ "%i\n", /* priority */ &swap->path, &type, &swap->size, &swap->used, &swap->priority); if (k == EOF) break; if (k != 5) { log_debug("Failed to parse /proc/swaps:%u, ignoring", i); continue; } if (streq(type, "file")) { if (endswith(swap->path, "\\040(deleted)")) { log_debug("Ignoring deleted swap file '%s'.", swap->path); continue; } swap->type = SWAP_FILE; r = calculate_swap_file_offset(swap, &swap_offset); if (r < 0) return r; } else if (streq(type, "partition")) { const char *fn; fn = path_startswith(swap->path, "/dev/"); if (fn && startswith(fn, "zram")) { log_debug("%s: ignoring zram swap", swap->path); continue; } swap->type = SWAP_BLOCK; } else { log_debug("%s: swap type %s is unsupported for hibernation, ignoring", swap->path, type); continue; } /* prefer resume device or highest priority swap with most remaining space */ if (sys_resume == 0) { if (hibernate_location && swap->priority < hibernate_location->swap->priority) { log_debug("%s: ignoring device with lower priority", swap->path); continue; } if (hibernate_location && (swap->priority == hibernate_location->swap->priority && swap->size - swap->used < hibernate_location->swap->size - hibernate_location->swap->used)) { log_debug("%s: ignoring device with lower usable space", swap->path); continue; } } dev_t swap_devno; r = swap_device_to_devnum(swap, &swap_devno); if (r < 0) return log_debug_errno(r, "%s: failed to query device number: %m", swap->path); if (swap_devno == 0) return log_debug_errno(SYNTHETIC_ERRNO(ENODEV), "%s: not backed by block device.", swap->path); hibernate_location = hibernate_location_free(hibernate_location); hibernate_location = new(HibernateLocation, 1); if (!hibernate_location) return -ENOMEM; *hibernate_location = (HibernateLocation) { .devno = swap_devno, .offset = swap_offset, .swap = TAKE_PTR(swap), }; /* if the swap is the resume device, stop the loop */ if (location_is_resume_device(hibernate_location, sys_resume, sys_offset)) { log_debug("%s: device matches configured resume settings.", hibernate_location->swap->path); resume_match = true; break; } log_debug("%s: is a candidate device.", hibernate_location->swap->path); } /* We found nothing at all */ if (!hibernate_location) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "No possible swap partitions or files suitable for hibernation were found in /proc/swaps."); /* resume= is set but a matching /proc/swaps entry was not found */ if (sys_resume != 0 && !resume_match) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "No swap partitions or files matching resume config were found in /proc/swaps."); if (hibernate_location->offset == UINT64_MAX) { if (sys_offset == 0) return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "Offset detection failed and /sys/power/resume_offset is not set."); hibernate_location->offset = sys_offset; } if (resume_match) log_debug("Hibernation will attempt to use swap entry with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i", hibernate_location->swap->path, major(hibernate_location->devno), minor(hibernate_location->devno), hibernate_location->offset, hibernate_location->swap->priority); else log_debug("/sys/power/resume is not configured; attempting to hibernate with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i", hibernate_location->swap->path, major(hibernate_location->devno), minor(hibernate_location->devno), hibernate_location->offset, hibernate_location->swap->priority); *ret_hibernate_location = TAKE_PTR(hibernate_location); if (resume_match) return 1; return 0; } static bool enough_swap_for_hibernation(void) { _cleanup_free_ char *active = NULL; _cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL; unsigned long long act = 0; int r; if (getenv_bool("SYSTEMD_BYPASS_HIBERNATION_MEMORY_CHECK") > 0) return true; r = find_hibernate_location(&hibernate_location); if (r < 0) return false; /* If /sys/power/{resume,resume_offset} is configured but a matching entry * could not be identified in /proc/swaps, user is likely using Btrfs with a swapfile; * return true and let the system attempt hibernation. */ if (r > 0 && !hibernate_location) { log_debug("Unable to determine remaining swap space; hibernation may fail"); return true; } if (!hibernate_location) return false; r = get_proc_field("/proc/meminfo", "Active(anon)", WHITESPACE, &active); if (r < 0) { log_debug_errno(r, "Failed to retrieve Active(anon) from /proc/meminfo: %m"); return false; } r = safe_atollu(active, &act); if (r < 0) { log_debug_errno(r, "Failed to parse Active(anon) from /proc/meminfo: %s: %m", active); return false; } r = act <= (hibernate_location->swap->size - hibernate_location->swap->used) * HIBERNATION_SWAP_THRESHOLD; log_debug("%s swap for hibernation, Active(anon)=%llu kB, size=%" PRIu64 " kB, used=%" PRIu64 " kB, threshold=%.2g%%", r ? "Enough" : "Not enough", act, hibernate_location->swap->size, hibernate_location->swap->used, 100*HIBERNATION_SWAP_THRESHOLD); return r; } int read_fiemap(int fd, struct fiemap **ret) { _cleanup_free_ struct fiemap *fiemap = NULL, *result_fiemap = NULL; struct stat statinfo; uint32_t result_extents = 0; uint64_t fiemap_start = 0, fiemap_length; const size_t n_extra = DIV_ROUND_UP(sizeof(struct fiemap), sizeof(struct fiemap_extent)); if (fstat(fd, &statinfo) < 0) return log_debug_errno(errno, "Cannot determine file size: %m"); if (!S_ISREG(statinfo.st_mode)) return -ENOTTY; fiemap_length = statinfo.st_size; /* Zero this out in case we run on a file with no extents */ fiemap = calloc(n_extra, sizeof(struct fiemap_extent)); if (!fiemap) return -ENOMEM; result_fiemap = malloc_multiply(n_extra, sizeof(struct fiemap_extent)); if (!result_fiemap) return -ENOMEM; /* XFS filesystem has incorrect implementation of fiemap ioctl and * returns extents for only one block-group at a time, so we need * to handle it manually, starting the next fiemap call from the end * of the last extent */ while (fiemap_start < fiemap_length) { *fiemap = (struct fiemap) { .fm_start = fiemap_start, .fm_length = fiemap_length, .fm_flags = FIEMAP_FLAG_SYNC, }; /* Find out how many extents there are */ if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Nothing to process */ if (fiemap->fm_mapped_extents == 0) break; /* Resize fiemap to allow us to read in the extents, result fiemap has to hold all * the extents for the whole file. Add space for the initial struct fiemap. */ if (!greedy_realloc0((void**) &fiemap, n_extra + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; fiemap->fm_extent_count = fiemap->fm_mapped_extents; fiemap->fm_mapped_extents = 0; if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) return log_debug_errno(errno, "Failed to read extents: %m"); /* Resize result_fiemap to allow us to copy in the extents */ if (!greedy_realloc((void**) &result_fiemap, n_extra + result_extents + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent))) return -ENOMEM; memcpy(result_fiemap->fm_extents + result_extents, fiemap->fm_extents, sizeof(struct fiemap_extent) * fiemap->fm_mapped_extents); result_extents += fiemap->fm_mapped_extents; /* Highly unlikely that it is zero */ if (_likely_(fiemap->fm_mapped_extents > 0)) { uint32_t i = fiemap->fm_mapped_extents - 1; fiemap_start = fiemap->fm_extents[i].fe_logical + fiemap->fm_extents[i].fe_length; if (fiemap->fm_extents[i].fe_flags & FIEMAP_EXTENT_LAST) break; } } memcpy(result_fiemap, fiemap, sizeof(struct fiemap)); result_fiemap->fm_mapped_extents = result_extents; *ret = TAKE_PTR(result_fiemap); return 0; } int write_resume_config(dev_t devno, uint64_t offset, const char *device) { char offset_str[DECIMAL_STR_MAX(uint64_t)]; _cleanup_free_ char *path = NULL; const char *devno_str; int r; devno_str = FORMAT_DEVNUM(devno); xsprintf(offset_str, "%" PRIu64, offset); if (!device) { r = device_path_make_canonical(S_IFBLK, devno, &path); if (r < 0) return log_error_errno(r, "Failed to format canonical device path for devno '" DEVNUM_FORMAT_STR "': %m", DEVNUM_FORMAT_VAL(devno)); device = path; } /* We write the offset first since it's safer. Note that this file is only available in 4.17+, so * fail gracefully if it doesn't exist and we're only overwriting it with 0. */ r = write_string_file("/sys/power/resume_offset", offset_str, WRITE_STRING_FILE_DISABLE_BUFFER); if (r == -ENOENT) { if (offset != 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Can't configure hibernation offset %" PRIu64 ", kernel does not support /sys/power/resume_offset. Refusing.", offset); log_warning_errno(r, "/sys/power/resume_offset is unavailable, skipping writing swap file offset."); } else if (r < 0) return log_error_errno(r, "Failed to write swap file offset %s to /sys/power/resume_offset for device '%s': %m", offset_str, device); else log_debug("Wrote resume_offset=%s for device '%s' to /sys/power/resume_offset.", offset_str, device); r = write_string_file("/sys/power/resume", devno_str, WRITE_STRING_FILE_DISABLE_BUFFER); if (r < 0) return log_error_errno(r, "Failed to write device '%s' (%s) to /sys/power/resume: %m", device, devno_str); log_debug("Wrote resume=%s for device '%s' to /sys/power/resume.", devno_str, device); return 0; } static int can_sleep_internal(const SleepConfig *sleep_config, SleepOperation operation, bool check_allowed); static bool can_s2h(const SleepConfig *sleep_config) { static const SleepOperation operations[] = { SLEEP_SUSPEND, SLEEP_HIBERNATE, }; int r; if (!clock_supported(CLOCK_BOOTTIME_ALARM)) { log_debug("CLOCK_BOOTTIME_ALARM is not supported."); return false; } for (size_t i = 0; i < ELEMENTSOF(operations); i++) { r = can_sleep_internal(sleep_config, operations[i], false); if (IN_SET(r, 0, -ENOSPC)) { log_debug("Unable to %s system.", sleep_operation_to_string(operations[i])); return false; } if (r < 0) return log_debug_errno(r, "Failed to check if %s is possible: %m", sleep_operation_to_string(operations[i])); } return true; } static int can_sleep_internal( const SleepConfig *sleep_config, SleepOperation operation, bool check_allowed) { assert(operation >= 0); assert(operation < _SLEEP_OPERATION_MAX); if (check_allowed && !sleep_config->allow[operation]) { log_debug("Sleep mode \"%s\" is disabled by configuration.", sleep_operation_to_string(operation)); return false; } if (operation == SLEEP_SUSPEND_THEN_HIBERNATE) return can_s2h(sleep_config); if (can_sleep_state(sleep_config->states[operation]) <= 0 || can_sleep_disk(sleep_config->modes[operation]) <= 0) return false; if (operation == SLEEP_SUSPEND) return true; if (!enough_swap_for_hibernation()) return -ENOSPC; return true; } int can_sleep(SleepOperation operation) { _cleanup_(free_sleep_configp) SleepConfig *sleep_config = NULL; int r; r = parse_sleep_config(&sleep_config); if (r < 0) return r; return can_sleep_internal(sleep_config, operation, true); } SleepConfig* free_sleep_config(SleepConfig *sc) { if (!sc) return NULL; for (SleepOperation i = 0; i < _SLEEP_OPERATION_MAX; i++) { strv_free(sc->modes[i]); strv_free(sc->states[i]); } return mfree(sc); } static const char* const sleep_operation_table[_SLEEP_OPERATION_MAX] = { [SLEEP_SUSPEND] = "suspend", [SLEEP_HIBERNATE] = "hibernate", [SLEEP_HYBRID_SLEEP] = "hybrid-sleep", [SLEEP_SUSPEND_THEN_HIBERNATE] = "suspend-then-hibernate", }; DEFINE_STRING_TABLE_LOOKUP(sleep_operation, SleepOperation);