/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include "alloc-util.h" #include "macro.h" #include "memory-util.h" #include "random-util.h" #include "tests.h" static void test_alloca(void) { static const uint8_t zero[997] = { }; char *t; t = alloca_align(17, 512); assert_se(!((uintptr_t)t & 0xff)); memzero(t, 17); t = alloca0_align(997, 1024); assert_se(!((uintptr_t)t & 0x1ff)); assert_se(!memcmp(t, zero, 997)); } static void test_GREEDY_REALLOC(void) { _cleanup_free_ int *a = NULL, *b = NULL; size_t n_allocated = 0, i, j; /* Give valgrind a chance to verify our realloc() operations */ for (i = 0; i < 20480; i++) { assert_se(GREEDY_REALLOC(a, n_allocated, i + 1)); assert_se(n_allocated >= i + 1); assert_se(malloc_usable_size(a) >= (i + 1) * sizeof(int)); a[i] = (int) i; assert_se(GREEDY_REALLOC(a, n_allocated, i / 2)); assert_se(n_allocated >= i / 2); assert_se(malloc_usable_size(a) >= (i / 2) * sizeof(int)); } for (j = 0; j < i / 2; j++) assert_se(a[j] == (int) j); for (i = 30, n_allocated = 0; i < 20480; i += 7) { assert_se(GREEDY_REALLOC(b, n_allocated, i + 1)); assert_se(n_allocated >= i + 1); assert_se(malloc_usable_size(b) >= (i + 1) * sizeof(int)); b[i] = (int) i; assert_se(GREEDY_REALLOC(b, n_allocated, i / 2)); assert_se(n_allocated >= i / 2); assert_se(malloc_usable_size(b) >= (i / 2) * sizeof(int)); } for (j = 30; j < i / 2; j += 7) assert_se(b[j] == (int) j); } static void test_memdup_multiply_and_greedy_realloc(void) { static const int org[] = { 1, 2, 3 }; _cleanup_free_ int *dup; int *p; size_t i, allocated = 3; dup = memdup_suffix0_multiply(org, sizeof(int), 3); assert_se(dup); assert_se(dup[0] == 1); assert_se(dup[1] == 2); assert_se(dup[2] == 3); assert_se(((uint8_t*) dup)[sizeof(int) * 3] == 0); free(dup); dup = memdup_multiply(org, sizeof(int), 3); assert_se(dup); assert_se(dup[0] == 1); assert_se(dup[1] == 2); assert_se(dup[2] == 3); p = dup; assert_se(greedy_realloc0((void**) &dup, &allocated, 2, sizeof(int)) == p); p = (int *) greedy_realloc0((void**) &dup, &allocated, 10, sizeof(int)); assert_se(p == dup); assert_se(allocated >= 10); assert_se(p[0] == 1); assert_se(p[1] == 2); assert_se(p[2] == 3); for (i = 3; i < allocated; i++) assert_se(p[i] == 0); } static void test_bool_assign(void) { bool b, c, *cp = &c, d, e, f, g, h; b = 123; *cp = -11; d = 0xF & 0xFF; e = b & d; f = 0x0; g = cp; /* cast from pointer */ h = NULL; /* cast from pointer */ assert_se(b); assert_se(c); assert_se(d); assert_se(e); assert_se(!f); assert_se(g); assert_se(!h); } static int cleanup_counter = 0; static void cleanup1(void *a) { log_info("%s(%p)", __func__, a); assert_se(++cleanup_counter == *(int*) a); } static void cleanup2(void *a) { log_info("%s(%p)", __func__, a); assert_se(++cleanup_counter == *(int*) a); } static void cleanup3(void *a) { log_info("%s(%p)", __func__, a); assert_se(++cleanup_counter == *(int*) a); } static void test_cleanup_order(void) { _cleanup_(cleanup1) int x1 = 4, x2 = 3; _cleanup_(cleanup3) int z = 2; _cleanup_(cleanup2) int y = 1; log_debug("x1: %p", &x1); log_debug("x2: %p", &x2); log_debug("y: %p", &y); log_debug("z: %p", &z); } static void test_auto_erase_memory(void) { _cleanup_(erase_and_freep) uint8_t *p1, *p2; /* print address of p2, else e.g. clang-11 will optimize it out */ log_debug("p1: %p p2: %p", &p1, &p2); assert_se(p1 = new(uint8_t, 1024)); assert_se(p2 = new(uint8_t, 1024)); assert_se(genuine_random_bytes(p1, 1024, RANDOM_BLOCK) == 0); /* before we exit the scope, do something with this data, so that the compiler won't optimize this away */ memcpy(p2, p1, 1024); for (size_t i = 0; i < 1024; i++) assert_se(p1[i] == p2[i]); } #define TEST_SIZES(f, n) \ do { \ log_debug("requested=%zu vs. malloc_size=%zu vs. gcc_size=%zu", \ n * sizeof(*f), \ malloc_usable_size(f), \ __builtin_object_size(f, 0)); \ assert_se(MALLOC_ELEMENTSOF(f) >= n); \ assert_se(MALLOC_SIZEOF_SAFE(f) >= sizeof(*f) * n); \ assert_se(malloc_usable_size(f) >= sizeof(*f) * n); \ assert_se(__builtin_object_size(f, 0) >= sizeof(*f) * n); \ } while(false) static void test_malloc_size_safe(void) { _cleanup_free_ uint32_t *f = NULL; size_t n = 4711; /* Let's check the macros and built-ins work on NULL and return the expected values */ assert_se(MALLOC_ELEMENTSOF((float*) NULL) == 0); assert_se(MALLOC_SIZEOF_SAFE((float*) NULL) == 0); assert_se(malloc_usable_size(NULL) == 0); /* as per man page, this is safe and defined */ assert_se(__builtin_object_size(NULL, 0) == SIZE_MAX); /* as per docs SIZE_MAX is returned for pointers where the size isn't known */ /* Then, let's try these macros once with contant size values, so that __builtin_object_size() * definitely can work (as long as -O2 is used when compiling) */ assert_se(f = new(uint32_t, n)); TEST_SIZES(f, n); /* Finally, let's use some dynamically sized allocations, to make sure this doesn't deteriorate */ for (unsigned i = 0; i < 50; i++) { _cleanup_free_ uint64_t *g = NULL; size_t m; m = random_u64_range(16*1024); assert_se(g = new(uint64_t, m)); TEST_SIZES(g, m); } } int main(int argc, char *argv[]) { test_setup_logging(LOG_DEBUG); test_alloca(); test_GREEDY_REALLOC(); test_memdup_multiply_and_greedy_realloc(); test_bool_assign(); test_cleanup_order(); test_auto_erase_memory(); test_malloc_size_safe(); return 0; }