#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-2.1-or-later # Convert ELF static PIE to PE/EFI image. # To do so we simply copy desired ELF sections while preserving their memory layout to ensure that # code still runs as expected. We then translate ELF relocations to PE relocations so that the EFI # loader/firmware can properly load the binary to any address at runtime. # # To make this as painless as possible we only operate on static PIEs as they should only contain # base relocations that are easy to handle as they have a one-to-one mapping to PE relocations. # # EDK2 does a similar process using their GenFw tool. The main difference is that they use the # --emit-relocs linker flag, which emits a lot of different (static) ELF relocation types that have # to be handled differently for each architecture and is overall more work than its worth. # # Note that on arches where binutils has PE support (x86/x86_64 mostly, aarch64 only recently) # objcopy can be used to convert ELF to PE. But this will still not convert ELF relocations, making # the resulting binary useless. gnu-efi relies on this method and contains a stub that performs the # ELF dynamic relocations at runtime. # pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init import argparse import hashlib import io import os import pathlib import time import typing from ctypes import ( c_char, c_uint8, c_uint16, c_uint32, c_uint64, LittleEndianStructure, sizeof, ) from elftools.elf.constants import SH_FLAGS from elftools.elf.elffile import ELFFile, Section as ELFSection from elftools.elf.enums import ( ENUM_DT_FLAGS_1, ENUM_RELOC_TYPE_AARCH64, ENUM_RELOC_TYPE_ARM, ENUM_RELOC_TYPE_i386, ENUM_RELOC_TYPE_x64, ) from elftools.elf.relocation import ( Relocation as ElfRelocation, RelocationTable as ElfRelocationTable, ) class PeCoffHeader(LittleEndianStructure): _fields_ = ( ("Machine", c_uint16), ("NumberOfSections", c_uint16), ("TimeDateStamp", c_uint32), ("PointerToSymbolTable", c_uint32), ("NumberOfSymbols", c_uint32), ("SizeOfOptionalHeader", c_uint16), ("Characteristics", c_uint16), ) class PeDataDirectory(LittleEndianStructure): _fields_ = ( ("VirtualAddress", c_uint32), ("Size", c_uint32), ) class PeRelocationBlock(LittleEndianStructure): _fields_ = ( ("PageRVA", c_uint32), ("BlockSize", c_uint32), ) def __init__(self, PageRVA: int): super().__init__(PageRVA) self.entries: list[PeRelocationEntry] = [] class PeRelocationEntry(LittleEndianStructure): _fields_ = ( ("Offset", c_uint16, 12), ("Type", c_uint16, 4), ) class PeOptionalHeaderStart(LittleEndianStructure): _fields_ = ( ("Magic", c_uint16), ("MajorLinkerVersion", c_uint8), ("MinorLinkerVersion", c_uint8), ("SizeOfCode", c_uint32), ("SizeOfInitializedData", c_uint32), ("SizeOfUninitializedData", c_uint32), ("AddressOfEntryPoint", c_uint32), ("BaseOfCode", c_uint32), ) class PeOptionalHeaderMiddle(LittleEndianStructure): _fields_ = ( ("SectionAlignment", c_uint32), ("FileAlignment", c_uint32), ("MajorOperatingSystemVersion", c_uint16), ("MinorOperatingSystemVersion", c_uint16), ("MajorImageVersion", c_uint16), ("MinorImageVersion", c_uint16), ("MajorSubsystemVersion", c_uint16), ("MinorSubsystemVersion", c_uint16), ("Win32VersionValue", c_uint32), ("SizeOfImage", c_uint32), ("SizeOfHeaders", c_uint32), ("CheckSum", c_uint32), ("Subsystem", c_uint16), ("DllCharacteristics", c_uint16), ) class PeOptionalHeaderEnd(LittleEndianStructure): _fields_ = ( ("LoaderFlags", c_uint32), ("NumberOfRvaAndSizes", c_uint32), ("ExportTable", PeDataDirectory), ("ImportTable", PeDataDirectory), ("ResourceTable", PeDataDirectory), ("ExceptionTable", PeDataDirectory), ("CertificateTable", PeDataDirectory), ("BaseRelocationTable", PeDataDirectory), ("Debug", PeDataDirectory), ("Architecture", PeDataDirectory), ("GlobalPtr", PeDataDirectory), ("TLSTable", PeDataDirectory), ("LoadConfigTable", PeDataDirectory), ("BoundImport", PeDataDirectory), ("IAT", PeDataDirectory), ("DelayImportDescriptor", PeDataDirectory), ("CLRRuntimeHeader", PeDataDirectory), ("Reserved", PeDataDirectory), ) class PeOptionalHeader(LittleEndianStructure): pass class PeOptionalHeader32(PeOptionalHeader): _anonymous_ = ("Start", "Middle", "End") _fields_ = ( ("Start", PeOptionalHeaderStart), ("BaseOfData", c_uint32), ("ImageBase", c_uint32), ("Middle", PeOptionalHeaderMiddle), ("SizeOfStackReserve", c_uint32), ("SizeOfStackCommit", c_uint32), ("SizeOfHeapReserve", c_uint32), ("SizeOfHeapCommit", c_uint32), ("End", PeOptionalHeaderEnd), ) class PeOptionalHeader32Plus(PeOptionalHeader): _anonymous_ = ("Start", "Middle", "End") _fields_ = ( ("Start", PeOptionalHeaderStart), ("ImageBase", c_uint64), ("Middle", PeOptionalHeaderMiddle), ("SizeOfStackReserve", c_uint64), ("SizeOfStackCommit", c_uint64), ("SizeOfHeapReserve", c_uint64), ("SizeOfHeapCommit", c_uint64), ("End", PeOptionalHeaderEnd), ) class PeSection(LittleEndianStructure): _fields_ = ( ("Name", c_char * 8), ("VirtualSize", c_uint32), ("VirtualAddress", c_uint32), ("SizeOfRawData", c_uint32), ("PointerToRawData", c_uint32), ("PointerToRelocations", c_uint32), ("PointerToLinenumbers", c_uint32), ("NumberOfRelocations", c_uint16), ("NumberOfLinenumbers", c_uint16), ("Characteristics", c_uint32), ) def __init__(self): super().__init__() self.data = bytearray() N_DATA_DIRECTORY_ENTRIES = 16 assert sizeof(PeSection) == 40 assert sizeof(PeCoffHeader) == 20 assert sizeof(PeOptionalHeader32) == 224 assert sizeof(PeOptionalHeader32Plus) == 240 # EFI mandates 4KiB memory pages. SECTION_ALIGNMENT = 4096 FILE_ALIGNMENT = 512 # Nobody cares about DOS headers, so put the PE header right after. PE_OFFSET = 64 def align_to(x: int, align: int) -> int: return (x + align - 1) & ~(align - 1) def use_section(elf_s: ELFSection) -> bool: # These sections are either needed during conversion to PE or are otherwise not needed # in the final PE image. IGNORE_SECTIONS = [ ".ARM.exidx", ".dynamic", ".dynstr", ".dynsym", ".eh_frame_hdr", ".eh_frame", ".gnu.hash", ".hash", ".note.gnu.build-id", ".rel.dyn", ".rela.dyn", ] # Known sections we care about and want to be in the final PE. COPY_SECTIONS = [ ".data", ".osrel", ".rodata", ".sbat", ".sdmagic", ".text", ] # By only dealing with allocating sections we effectively filter out debug sections. if not elf_s["sh_flags"] & SH_FLAGS.SHF_ALLOC: return False if elf_s.name in IGNORE_SECTIONS: return False # For paranoia we only handle sections we know of. Any new sections that come up should # be added to IGNORE_SECTIONS/COPY_SECTIONS and/or the linker script. if elf_s.name not in COPY_SECTIONS: raise RuntimeError(f"Unknown section {elf_s.name}, refusing.") if elf_s["sh_addr"] % SECTION_ALIGNMENT != 0: raise RuntimeError(f"Section {elf_s.name} is not aligned.") if len(elf_s.name) > 8: raise RuntimeError(f"ELF section name {elf_s.name} too long.") return True def convert_elf_section(elf_s: ELFSection) -> PeSection: pe_s = PeSection() pe_s.Name = elf_s.name.encode() pe_s.VirtualSize = elf_s.data_size pe_s.VirtualAddress = elf_s["sh_addr"] pe_s.SizeOfRawData = align_to(elf_s.data_size, FILE_ALIGNMENT) pe_s.data = bytearray(elf_s.data()) if elf_s["sh_flags"] & SH_FLAGS.SHF_EXECINSTR: pe_s.Characteristics = 0x60000020 # CNT_CODE|MEM_READ|MEM_EXECUTE elif elf_s["sh_flags"] & SH_FLAGS.SHF_WRITE: pe_s.Characteristics = 0xC0000040 # CNT_INITIALIZED_DATA|MEM_READ|MEM_WRITE else: pe_s.Characteristics = 0x40000040 # CNT_INITIALIZED_DATA|MEM_READ return pe_s def copy_sections(elf: ELFFile, opt: PeOptionalHeader) -> list[PeSection]: sections = [] for elf_s in elf.iter_sections(): if not use_section(elf_s): continue pe_s = convert_elf_section(elf_s) if pe_s.Name == b".text": opt.BaseOfCode = pe_s.VirtualAddress opt.SizeOfCode += pe_s.VirtualSize else: opt.SizeOfInitializedData += pe_s.VirtualSize if pe_s.Name == b".data" and isinstance(opt, PeOptionalHeader32): opt.BaseOfData = pe_s.VirtualAddress sections.append(pe_s) return sections def apply_elf_relative_relocation( reloc: ElfRelocation, image_base: int, sections: list[PeSection], addend_size: int ): # fmt: off [target] = [ pe_s for pe_s in sections if pe_s.VirtualAddress <= reloc["r_offset"] < pe_s.VirtualAddress + len(pe_s.data) ] # fmt: on addend_offset = reloc["r_offset"] - target.VirtualAddress if reloc.is_RELA(): addend = reloc["r_addend"] else: addend = target.data[addend_offset : addend_offset + addend_size] addend = int.from_bytes(addend, byteorder="little") # This currently assumes that the ELF file has an image base of 0. value = (image_base + addend).to_bytes(addend_size, byteorder="little") target.data[addend_offset : addend_offset + addend_size] = value def convert_elf_reloc_table( elf: ELFFile, elf_reloc_table: ElfRelocationTable, image_base: int, sections: list[PeSection], pe_reloc_blocks: dict[int, PeRelocationBlock], ): NONE_RELOC = { "EM_386": ENUM_RELOC_TYPE_i386["R_386_NONE"], "EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_NONE"], "EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_NONE"], "EM_LOONGARCH": 0, "EM_RISCV": 0, "EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_NONE"], }[elf["e_machine"]] RELATIVE_RELOC = { "EM_386": ENUM_RELOC_TYPE_i386["R_386_RELATIVE"], "EM_AARCH64": ENUM_RELOC_TYPE_AARCH64["R_AARCH64_RELATIVE"], "EM_ARM": ENUM_RELOC_TYPE_ARM["R_ARM_RELATIVE"], "EM_LOONGARCH": 3, "EM_RISCV": 3, "EM_X86_64": ENUM_RELOC_TYPE_x64["R_X86_64_RELATIVE"], }[elf["e_machine"]] for reloc in elf_reloc_table.iter_relocations(): if reloc["r_info_type"] == NONE_RELOC: continue if reloc["r_info_type"] == RELATIVE_RELOC: apply_elf_relative_relocation( reloc, image_base, sections, elf.elfclass // 8 ) # Now that the ELF relocation has been applied, we can create a PE relocation. block_rva = reloc["r_offset"] & ~0xFFF if block_rva not in pe_reloc_blocks: pe_reloc_blocks[block_rva] = PeRelocationBlock(block_rva) entry = PeRelocationEntry() entry.Offset = reloc["r_offset"] & 0xFFF # REL_BASED_HIGHLOW or REL_BASED_DIR64 entry.Type = 3 if elf.elfclass == 32 else 10 pe_reloc_blocks[block_rva].entries.append(entry) continue raise RuntimeError(f"Unsupported relocation {reloc}") def convert_elf_relocations( elf: ELFFile, opt: PeOptionalHeader, sections: list[PeSection] ) -> typing.Optional[PeSection]: dynamic = elf.get_section_by_name(".dynamic") if dynamic is None: raise RuntimeError("ELF .dynamic section is missing.") [flags_tag] = dynamic.iter_tags("DT_FLAGS_1") if not flags_tag["d_val"] & ENUM_DT_FLAGS_1["DF_1_PIE"]: raise RuntimeError("ELF file is not a PIE.") pe_reloc_blocks: dict[int, PeRelocationBlock] = {} for reloc_type, reloc_table in dynamic.get_relocation_tables().items(): if reloc_type not in ["REL", "RELA"]: raise RuntimeError("Unsupported relocation type {elf_reloc_type}.") convert_elf_reloc_table( elf, reloc_table, opt.ImageBase, sections, pe_reloc_blocks ) if len(pe_reloc_blocks) == 0: return None data = bytearray() for rva in sorted(pe_reloc_blocks): block = pe_reloc_blocks[rva] n_relocs = len(block.entries) # Each block must start on a 32-bit boundary. Because each entry is 16 bits # the len has to be even. We pad by adding a none relocation. if n_relocs % 2 != 0: n_relocs += 1 block.entries.append(PeRelocationEntry()) block.BlockSize = ( sizeof(PeRelocationBlock) + sizeof(PeRelocationEntry) * n_relocs ) data += block for entry in sorted(block.entries, key=lambda e: e.Offset): data += entry pe_reloc_s = PeSection() pe_reloc_s.Name = b".reloc" pe_reloc_s.data = data pe_reloc_s.VirtualSize = len(data) pe_reloc_s.SizeOfRawData = align_to(len(data), FILE_ALIGNMENT) pe_reloc_s.VirtualAddress = align_to( sections[-1].VirtualAddress + sections[-1].VirtualSize, SECTION_ALIGNMENT ) # CNT_INITIALIZED_DATA|MEM_READ|MEM_DISCARDABLE pe_reloc_s.Characteristics = 0x42000040 sections.append(pe_reloc_s) opt.SizeOfInitializedData += pe_reloc_s.VirtualSize return pe_reloc_s def write_pe( file, coff: PeCoffHeader, opt: PeOptionalHeader, sections: list[PeSection] ): file.write(b"MZ") file.seek(0x3C, io.SEEK_SET) file.write(PE_OFFSET.to_bytes(2, byteorder="little")) file.seek(PE_OFFSET, io.SEEK_SET) file.write(b"PE\0\0") file.write(coff) file.write(opt) offset = opt.SizeOfHeaders for pe_s in sorted(sections, key=lambda s: s.VirtualAddress): if pe_s.VirtualAddress < opt.SizeOfHeaders: # Linker script should make sure this does not happen. raise RuntimeError(f"Section {pe_s.Name} overlapping PE headers.") pe_s.PointerToRawData = offset file.write(pe_s) offset = align_to(offset + len(pe_s.data), FILE_ALIGNMENT) for pe_s in sections: file.seek(pe_s.PointerToRawData, io.SEEK_SET) file.write(pe_s.data) file.truncate(offset) def elf2efi(args: argparse.Namespace): elf = ELFFile(args.ELF) if not elf.little_endian: raise RuntimeError("ELF file is not little-endian.") if elf["e_type"] not in ["ET_DYN", "ET_EXEC"]: raise RuntimeError("Unsupported ELF type.") pe_arch = { "EM_386": 0x014C, "EM_AARCH64": 0xAA64, "EM_ARM": 0x01C2, "EM_LOONGARCH": 0x6232 if elf.elfclass == 32 else 0x6264, "EM_RISCV": 0x5032 if elf.elfclass == 32 else 0x5064, "EM_X86_64": 0x8664, }.get(elf["e_machine"]) if pe_arch is None: raise RuntimeError(f"Unuspported ELF arch {elf['e_machine']}") coff = PeCoffHeader() opt = PeOptionalHeader32() if elf.elfclass == 32 else PeOptionalHeader32Plus() # We relocate to a unique image base to reduce the chances for runtime relocation to occur. base_name = pathlib.Path(args.PE.name).name.encode() opt.ImageBase = int(hashlib.sha1(base_name).hexdigest()[0:8], 16) if elf.elfclass == 32: opt.ImageBase = (0x400000 + opt.ImageBase) & 0xFFFF0000 else: opt.ImageBase = (0x100000000 + opt.ImageBase) & 0x1FFFF0000 sections = copy_sections(elf, opt) pe_reloc_s = convert_elf_relocations(elf, opt, sections) coff.Machine = pe_arch coff.NumberOfSections = len(sections) coff.TimeDateStamp = int(os.environ.get("SOURCE_DATE_EPOCH", time.time())) coff.SizeOfOptionalHeader = sizeof(opt) # EXECUTABLE_IMAGE|LINE_NUMS_STRIPPED|LOCAL_SYMS_STRIPPED|DEBUG_STRIPPED # and (32BIT_MACHINE or LARGE_ADDRESS_AWARE) coff.Characteristics = 0x30E if elf.elfclass == 32 else 0x22E opt.AddressOfEntryPoint = elf["e_entry"] opt.SectionAlignment = SECTION_ALIGNMENT opt.FileAlignment = FILE_ALIGNMENT opt.MajorImageVersion = args.version_major opt.MinorImageVersion = args.version_minor opt.MajorSubsystemVersion = args.efi_major opt.MinorSubsystemVersion = args.efi_minor opt.Subsystem = args.subsystem opt.Magic = 0x10B if elf.elfclass == 32 else 0x20B opt.SizeOfImage = align_to( sections[-1].VirtualAddress + sections[-1].VirtualSize, SECTION_ALIGNMENT ) opt.SizeOfHeaders = align_to( PE_OFFSET + coff.SizeOfOptionalHeader + sizeof(PeSection) * max(coff.NumberOfSections, args.minimum_sections), FILE_ALIGNMENT, ) # DYNAMIC_BASE|NX_COMPAT|HIGH_ENTROPY_VA or DYNAMIC_BASE|NX_COMPAT opt.DllCharacteristics = 0x160 if elf.elfclass == 64 else 0x140 # These values are taken from a natively built PE binary (although, unused by EDK2/EFI). opt.SizeOfStackReserve = 0x100000 opt.SizeOfStackCommit = 0x001000 opt.SizeOfHeapReserve = 0x100000 opt.SizeOfHeapCommit = 0x001000 opt.NumberOfRvaAndSizes = N_DATA_DIRECTORY_ENTRIES if pe_reloc_s: opt.BaseRelocationTable = PeDataDirectory( pe_reloc_s.VirtualAddress, pe_reloc_s.VirtualSize ) write_pe(args.PE, coff, opt, sections) def main(): parser = argparse.ArgumentParser(description="Convert ELF binaries to PE/EFI") parser.add_argument( "--version-major", type=int, default=0, help="Major image version of EFI image", ) parser.add_argument( "--version-minor", type=int, default=0, help="Minor image version of EFI image", ) parser.add_argument( "--efi-major", type=int, default=0, help="Minimum major EFI subsystem version", ) parser.add_argument( "--efi-minor", type=int, default=0, help="Minimum minor EFI subsystem version", ) parser.add_argument( "--subsystem", type=int, default=10, help="PE subsystem", ) parser.add_argument( "ELF", type=argparse.FileType("rb"), help="Input ELF file", ) parser.add_argument( "PE", type=argparse.FileType("wb"), help="Output PE/EFI file", ) parser.add_argument( "--minimum-sections", type=int, default=0, help="Minimum number of sections to leave space for", ) elf2efi(parser.parse_args()) if __name__ == "__main__": main()