1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <arpa/inet.h>
#include <endian.h>
#include <errno.h>
#include <net/if.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "alloc-util.h"
#include "errno-util.h"
#include "in-addr-util.h"
#include "logarithm.h"
#include "macro.h"
#include "parse-util.h"
#include "random-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "strxcpyx.h"
bool in4_addr_is_null(const struct in_addr *a) {
assert(a);
return a->s_addr == 0;
}
bool in6_addr_is_null(const struct in6_addr *a) {
assert(a);
return IN6_IS_ADDR_UNSPECIFIED(a);
}
int in_addr_is_null(int family, const union in_addr_union *u) {
assert(u);
if (family == AF_INET)
return in4_addr_is_null(&u->in);
if (family == AF_INET6)
return in6_addr_is_null(&u->in6);
return -EAFNOSUPPORT;
}
bool in4_addr_is_link_local(const struct in_addr *a) {
assert(a);
return (be32toh(a->s_addr) & UINT32_C(0xFFFF0000)) == (UINT32_C(169) << 24 | UINT32_C(254) << 16);
}
bool in4_addr_is_link_local_dynamic(const struct in_addr *a) {
assert(a);
if (!in4_addr_is_link_local(a))
return false;
/* 169.254.0.0/24 and 169.254.255.0/24 must not be used for the dynamic IPv4LL assignment.
* See RFC 3927 Section 2.1:
* The IPv4 prefix 169.254/16 is registered with the IANA for this purpose. The first 256 and last
* 256 addresses in the 169.254/16 prefix are reserved for future use and MUST NOT be selected by a
* host using this dynamic configuration mechanism. */
return !IN_SET(be32toh(a->s_addr) & 0x0000FF00U, 0x0000U, 0xFF00U);
}
bool in6_addr_is_link_local(const struct in6_addr *a) {
assert(a);
return IN6_IS_ADDR_LINKLOCAL(a);
}
int in_addr_is_link_local(int family, const union in_addr_union *u) {
assert(u);
if (family == AF_INET)
return in4_addr_is_link_local(&u->in);
if (family == AF_INET6)
return in6_addr_is_link_local(&u->in6);
return -EAFNOSUPPORT;
}
bool in6_addr_is_link_local_all_nodes(const struct in6_addr *a) {
assert(a);
/* ff02::1 */
return be32toh(a->s6_addr32[0]) == UINT32_C(0xff020000) &&
a->s6_addr32[1] == 0 &&
a->s6_addr32[2] == 0 &&
be32toh(a->s6_addr32[3]) == UINT32_C(0x00000001);
}
bool in4_addr_is_multicast(const struct in_addr *a) {
assert(a);
return IN_MULTICAST(be32toh(a->s_addr));
}
bool in6_addr_is_multicast(const struct in6_addr *a) {
assert(a);
return IN6_IS_ADDR_MULTICAST(a);
}
int in_addr_is_multicast(int family, const union in_addr_union *u) {
assert(u);
if (family == AF_INET)
return in4_addr_is_multicast(&u->in);
if (family == AF_INET6)
return in6_addr_is_multicast(&u->in6);
return -EAFNOSUPPORT;
}
bool in4_addr_is_local_multicast(const struct in_addr *a) {
assert(a);
return (be32toh(a->s_addr) & UINT32_C(0xffffff00)) == UINT32_C(0xe0000000);
}
bool in4_addr_is_localhost(const struct in_addr *a) {
assert(a);
/* All of 127.x.x.x is localhost. */
return (be32toh(a->s_addr) & UINT32_C(0xFF000000)) == UINT32_C(127) << 24;
}
bool in4_addr_is_non_local(const struct in_addr *a) {
/* Whether the address is not null and not localhost.
*
* As such, it is suitable to configure as DNS/NTP server from DHCP. */
return !in4_addr_is_null(a) &&
!in4_addr_is_localhost(a);
}
int in_addr_is_localhost(int family, const union in_addr_union *u) {
assert(u);
if (family == AF_INET)
return in4_addr_is_localhost(&u->in);
if (family == AF_INET6)
return IN6_IS_ADDR_LOOPBACK(&u->in6);
return -EAFNOSUPPORT;
}
int in_addr_is_localhost_one(int family, const union in_addr_union *u) {
assert(u);
if (family == AF_INET)
/* 127.0.0.1 */
return be32toh(u->in.s_addr) == UINT32_C(0x7F000001);
if (family == AF_INET6)
return IN6_IS_ADDR_LOOPBACK(&u->in6);
return -EAFNOSUPPORT;
}
bool in6_addr_is_ipv4_mapped_address(const struct in6_addr *a) {
return a->s6_addr32[0] == 0 &&
a->s6_addr32[1] == 0 &&
a->s6_addr32[2] == htobe32(UINT32_C(0x0000ffff));
}
bool in4_addr_equal(const struct in_addr *a, const struct in_addr *b) {
assert(a);
assert(b);
return a->s_addr == b->s_addr;
}
bool in6_addr_equal(const struct in6_addr *a, const struct in6_addr *b) {
assert(a);
assert(b);
return IN6_ARE_ADDR_EQUAL(a, b);
}
int in_addr_equal(int family, const union in_addr_union *a, const union in_addr_union *b) {
assert(a);
assert(b);
if (family == AF_INET)
return in4_addr_equal(&a->in, &b->in);
if (family == AF_INET6)
return in6_addr_equal(&a->in6, &b->in6);
return -EAFNOSUPPORT;
}
bool in4_addr_prefix_intersect(
const struct in_addr *a,
unsigned aprefixlen,
const struct in_addr *b,
unsigned bprefixlen) {
assert(a);
assert(b);
unsigned m = MIN3(aprefixlen, bprefixlen, (unsigned) (sizeof(struct in_addr) * 8));
if (m == 0)
return true; /* Let's return earlier, to avoid shift by 32. */
uint32_t x = be32toh(a->s_addr ^ b->s_addr);
uint32_t n = 0xFFFFFFFFUL << (32 - m);
return (x & n) == 0;
}
bool in6_addr_prefix_intersect(
const struct in6_addr *a,
unsigned aprefixlen,
const struct in6_addr *b,
unsigned bprefixlen) {
assert(a);
assert(b);
unsigned m = MIN3(aprefixlen, bprefixlen, (unsigned) (sizeof(struct in6_addr) * 8));
if (m == 0)
return true;
for (size_t i = 0; i < sizeof(struct in6_addr); i++) {
uint8_t x = a->s6_addr[i] ^ b->s6_addr[i];
uint8_t n = m < 8 ? (0xFF << (8 - m)) : 0xFF;
if ((x & n) != 0)
return false;
if (m <= 8)
break;
m -= 8;
}
return true;
}
int in_addr_prefix_intersect(
int family,
const union in_addr_union *a,
unsigned aprefixlen,
const union in_addr_union *b,
unsigned bprefixlen) {
assert(a);
assert(b);
/* Checks whether there are any addresses that are in both networks. */
if (family == AF_INET)
return in4_addr_prefix_intersect(&a->in, aprefixlen, &b->in, bprefixlen);
if (family == AF_INET6)
return in6_addr_prefix_intersect(&a->in6, aprefixlen, &b->in6, bprefixlen);
return -EAFNOSUPPORT;
}
int in_addr_prefix_next(int family, union in_addr_union *u, unsigned prefixlen) {
assert(u);
/* Increases the network part of an address by one. Returns 0 if that succeeds, or -ERANGE if
* this overflows. */
return in_addr_prefix_nth(family, u, prefixlen, 1);
}
/*
* Calculates the nth prefix of size prefixlen starting from the address denoted by u.
*
* On success 0 will be returned and the calculated prefix will be available in
* u. In case the calculation cannot be performed (invalid prefix length,
* overflows would occur) -ERANGE is returned. If the address family given isn't
* supported -EAFNOSUPPORT will be returned.
*
* Examples:
* - in_addr_prefix_nth(AF_INET, 192.168.0.0, 24, 2), returns 0, writes 192.168.2.0 to u
* - in_addr_prefix_nth(AF_INET, 192.168.0.0, 24, 0), returns 0, no data written
* - in_addr_prefix_nth(AF_INET, 255.255.255.0, 24, 1), returns -ERANGE, no data written
* - in_addr_prefix_nth(AF_INET, 255.255.255.0, 0, 1), returns -ERANGE, no data written
* - in_addr_prefix_nth(AF_INET6, 2001:db8, 64, 0xff00) returns 0, writes 2001:0db8:0000:ff00:: to u
*/
int in_addr_prefix_nth(int family, union in_addr_union *u, unsigned prefixlen, uint64_t nth) {
assert(u);
if (prefixlen <= 0)
return -ERANGE;
if (family == AF_INET) {
uint32_t c, n, t;
if (prefixlen > 32)
return -ERANGE;
c = be32toh(u->in.s_addr);
t = nth << (32 - prefixlen);
/* Check for wrap */
if (c > UINT32_MAX - t)
return -ERANGE;
n = c + t;
n &= UINT32_C(0xFFFFFFFF) << (32 - prefixlen);
u->in.s_addr = htobe32(n);
return 0;
}
if (family == AF_INET6) {
bool overflow = false;
if (prefixlen > 128)
return -ERANGE;
for (unsigned i = 16; i > 0; i--) {
unsigned t, j = i - 1, p = j * 8;
if (p >= prefixlen) {
u->in6.s6_addr[j] = 0;
continue;
}
if (prefixlen - p < 8) {
u->in6.s6_addr[j] &= 0xff << (8 - (prefixlen - p));
t = u->in6.s6_addr[j] + ((nth & 0xff) << (8 - (prefixlen - p)));
nth >>= prefixlen - p;
} else {
t = u->in6.s6_addr[j] + (nth & 0xff) + overflow;
nth >>= 8;
}
overflow = t > UINT8_MAX;
u->in6.s6_addr[j] = (uint8_t) (t & 0xff);
}
if (overflow || nth != 0)
return -ERANGE;
return 0;
}
return -EAFNOSUPPORT;
}
int in_addr_random_prefix(
int family,
union in_addr_union *u,
unsigned prefixlen_fixed_part,
unsigned prefixlen) {
assert(u);
/* Random network part of an address by one. */
if (prefixlen <= 0)
return 0;
if (family == AF_INET) {
uint32_t c, n;
if (prefixlen_fixed_part > 32)
prefixlen_fixed_part = 32;
if (prefixlen > 32)
prefixlen = 32;
if (prefixlen_fixed_part >= prefixlen)
return -EINVAL;
c = be32toh(u->in.s_addr);
c &= ((UINT32_C(1) << prefixlen_fixed_part) - 1) << (32 - prefixlen_fixed_part);
random_bytes(&n, sizeof(n));
n &= ((UINT32_C(1) << (prefixlen - prefixlen_fixed_part)) - 1) << (32 - prefixlen);
u->in.s_addr = htobe32(n | c);
return 1;
}
if (family == AF_INET6) {
struct in6_addr n;
unsigned i, j;
if (prefixlen_fixed_part > 128)
prefixlen_fixed_part = 128;
if (prefixlen > 128)
prefixlen = 128;
if (prefixlen_fixed_part >= prefixlen)
return -EINVAL;
random_bytes(&n, sizeof(n));
for (i = 0; i < 16; i++) {
uint8_t mask_fixed_part = 0, mask = 0;
if (i < (prefixlen_fixed_part + 7) / 8) {
if (i < prefixlen_fixed_part / 8)
mask_fixed_part = 0xffu;
else {
j = prefixlen_fixed_part % 8;
mask_fixed_part = ((UINT8_C(1) << (j + 1)) - 1) << (8 - j);
}
}
if (i < (prefixlen + 7) / 8) {
if (i < prefixlen / 8)
mask = 0xffu ^ mask_fixed_part;
else {
j = prefixlen % 8;
mask = (((UINT8_C(1) << (j + 1)) - 1) << (8 - j)) ^ mask_fixed_part;
}
}
u->in6.s6_addr[i] &= mask_fixed_part;
u->in6.s6_addr[i] |= n.s6_addr[i] & mask;
}
return 1;
}
return -EAFNOSUPPORT;
}
int in_addr_prefix_range(
int family,
const union in_addr_union *in,
unsigned prefixlen,
union in_addr_union *ret_start,
union in_addr_union *ret_end) {
union in_addr_union start, end;
int r;
assert(in);
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
if (ret_start) {
start = *in;
r = in_addr_prefix_nth(family, &start, prefixlen, 0);
if (r < 0)
return r;
}
if (ret_end) {
end = *in;
r = in_addr_prefix_nth(family, &end, prefixlen, 1);
if (r < 0)
return r;
}
if (ret_start)
*ret_start = start;
if (ret_end)
*ret_end = end;
return 0;
}
int in_addr_to_string(int family, const union in_addr_union *u, char **ret) {
_cleanup_free_ char *x = NULL;
size_t l;
assert(u);
assert(ret);
if (family == AF_INET)
l = INET_ADDRSTRLEN;
else if (family == AF_INET6)
l = INET6_ADDRSTRLEN;
else
return -EAFNOSUPPORT;
x = new(char, l);
if (!x)
return -ENOMEM;
errno = 0;
if (!typesafe_inet_ntop(family, u, x, l))
return errno_or_else(EINVAL);
*ret = TAKE_PTR(x);
return 0;
}
int in_addr_prefix_to_string(
int family,
const union in_addr_union *u,
unsigned prefixlen,
char *buf,
size_t buf_len) {
assert(u);
assert(buf);
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
errno = 0;
if (!typesafe_inet_ntop(family, u, buf, buf_len))
return errno_or_else(ENOSPC);
size_t l = strlen(buf);
if (!snprintf_ok(buf + l, buf_len - l, "/%u", prefixlen))
return -ENOSPC;
return 0;
}
int in_addr_port_ifindex_name_to_string(int family, const union in_addr_union *u, uint16_t port, int ifindex, const char *server_name, char **ret) {
_cleanup_free_ char *ip_str = NULL, *x = NULL;
int r;
assert(IN_SET(family, AF_INET, AF_INET6));
assert(u);
assert(ret);
/* Much like in_addr_to_string(), but optionally appends the zone interface index to the address, to properly
* handle IPv6 link-local addresses. */
r = in_addr_to_string(family, u, &ip_str);
if (r < 0)
return r;
if (family == AF_INET6) {
r = in_addr_is_link_local(family, u);
if (r < 0)
return r;
if (r == 0)
ifindex = 0;
} else
ifindex = 0; /* For IPv4 address, ifindex is always ignored. */
if (port == 0 && ifindex == 0 && isempty(server_name)) {
*ret = TAKE_PTR(ip_str);
return 0;
}
const char *separator = isempty(server_name) ? "" : "#";
server_name = strempty(server_name);
if (port > 0) {
if (family == AF_INET6) {
if (ifindex > 0)
r = asprintf(&x, "[%s]:%"PRIu16"%%%i%s%s", ip_str, port, ifindex, separator, server_name);
else
r = asprintf(&x, "[%s]:%"PRIu16"%s%s", ip_str, port, separator, server_name);
} else
r = asprintf(&x, "%s:%"PRIu16"%s%s", ip_str, port, separator, server_name);
} else {
if (ifindex > 0)
r = asprintf(&x, "%s%%%i%s%s", ip_str, ifindex, separator, server_name);
else {
x = strjoin(ip_str, separator, server_name);
r = x ? 0 : -ENOMEM;
}
}
if (r < 0)
return -ENOMEM;
*ret = TAKE_PTR(x);
return 0;
}
int in_addr_from_string(int family, const char *s, union in_addr_union *ret) {
union in_addr_union buffer;
assert(s);
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
errno = 0;
if (inet_pton(family, s, ret ?: &buffer) <= 0)
return errno_or_else(EINVAL);
return 0;
}
int in_addr_from_string_auto(const char *s, int *ret_family, union in_addr_union *ret) {
int r;
assert(s);
r = in_addr_from_string(AF_INET, s, ret);
if (r >= 0) {
if (ret_family)
*ret_family = AF_INET;
return 0;
}
r = in_addr_from_string(AF_INET6, s, ret);
if (r >= 0) {
if (ret_family)
*ret_family = AF_INET6;
return 0;
}
return -EINVAL;
}
unsigned char in4_addr_netmask_to_prefixlen(const struct in_addr *addr) {
assert(addr);
return 32U - u32ctz(be32toh(addr->s_addr));
}
/* Calculate an IPv4 netmask from prefix length, for example /8 -> 255.0.0.0. */
struct in_addr* in4_addr_prefixlen_to_netmask(struct in_addr *addr, unsigned char prefixlen) {
assert(addr);
assert(prefixlen <= 32);
/* Shifting beyond 32 is not defined, handle this specially. */
if (prefixlen == 0)
addr->s_addr = 0;
else
addr->s_addr = htobe32((0xffffffff << (32 - prefixlen)) & 0xffffffff);
return addr;
}
/* Calculate an IPv6 netmask from prefix length, for example /16 -> ffff::. */
struct in6_addr* in6_addr_prefixlen_to_netmask(struct in6_addr *addr, unsigned char prefixlen) {
assert(addr);
assert(prefixlen <= 128);
for (unsigned i = 0; i < 16; i++) {
uint8_t mask;
if (prefixlen >= 8) {
mask = 0xFF;
prefixlen -= 8;
} else if (prefixlen > 0) {
mask = 0xFF << (8 - prefixlen);
prefixlen = 0;
} else {
assert(prefixlen == 0);
mask = 0;
}
addr->s6_addr[i] = mask;
}
return addr;
}
/* Calculate an IPv4 or IPv6 netmask from prefix length, for example /8 -> 255.0.0.0 or /16 -> ffff::. */
int in_addr_prefixlen_to_netmask(int family, union in_addr_union *addr, unsigned char prefixlen) {
assert(addr);
switch (family) {
case AF_INET:
in4_addr_prefixlen_to_netmask(&addr->in, prefixlen);
return 0;
case AF_INET6:
in6_addr_prefixlen_to_netmask(&addr->in6, prefixlen);
return 0;
default:
return -EAFNOSUPPORT;
}
}
int in4_addr_default_prefixlen(const struct in_addr *addr, unsigned char *prefixlen) {
uint8_t msb_octet = *(uint8_t*) addr;
/* addr may not be aligned, so make sure we only access it byte-wise */
assert(addr);
assert(prefixlen);
if (msb_octet < 128)
/* class A, leading bits: 0 */
*prefixlen = 8;
else if (msb_octet < 192)
/* class B, leading bits 10 */
*prefixlen = 16;
else if (msb_octet < 224)
/* class C, leading bits 110 */
*prefixlen = 24;
else
/* class D or E, no default prefixlen */
return -ERANGE;
return 0;
}
int in4_addr_default_subnet_mask(const struct in_addr *addr, struct in_addr *mask) {
unsigned char prefixlen;
int r;
assert(addr);
assert(mask);
r = in4_addr_default_prefixlen(addr, &prefixlen);
if (r < 0)
return r;
in4_addr_prefixlen_to_netmask(mask, prefixlen);
return 0;
}
int in4_addr_mask(struct in_addr *addr, unsigned char prefixlen) {
struct in_addr mask;
assert(addr);
if (!in4_addr_prefixlen_to_netmask(&mask, prefixlen))
return -EINVAL;
addr->s_addr &= mask.s_addr;
return 0;
}
int in6_addr_mask(struct in6_addr *addr, unsigned char prefixlen) {
unsigned i;
for (i = 0; i < 16; i++) {
uint8_t mask;
if (prefixlen >= 8) {
mask = 0xFF;
prefixlen -= 8;
} else if (prefixlen > 0) {
mask = 0xFF << (8 - prefixlen);
prefixlen = 0;
} else {
assert(prefixlen == 0);
mask = 0;
}
addr->s6_addr[i] &= mask;
}
return 0;
}
int in_addr_mask(int family, union in_addr_union *addr, unsigned char prefixlen) {
assert(addr);
switch (family) {
case AF_INET:
return in4_addr_mask(&addr->in, prefixlen);
case AF_INET6:
return in6_addr_mask(&addr->in6, prefixlen);
default:
return -EAFNOSUPPORT;
}
}
int in4_addr_prefix_covers_full(
const struct in_addr *prefix,
unsigned char prefixlen,
const struct in_addr *address,
unsigned char address_prefixlen) {
struct in_addr masked_prefix, masked_address;
int r;
assert(prefix);
assert(address);
if (prefixlen > address_prefixlen)
return false;
masked_prefix = *prefix;
r = in4_addr_mask(&masked_prefix, prefixlen);
if (r < 0)
return r;
masked_address = *address;
r = in4_addr_mask(&masked_address, prefixlen);
if (r < 0)
return r;
return in4_addr_equal(&masked_prefix, &masked_address);
}
int in6_addr_prefix_covers_full(
const struct in6_addr *prefix,
unsigned char prefixlen,
const struct in6_addr *address,
unsigned char address_prefixlen) {
struct in6_addr masked_prefix, masked_address;
int r;
assert(prefix);
assert(address);
if (prefixlen > address_prefixlen)
return false;
masked_prefix = *prefix;
r = in6_addr_mask(&masked_prefix, prefixlen);
if (r < 0)
return r;
masked_address = *address;
r = in6_addr_mask(&masked_address, prefixlen);
if (r < 0)
return r;
return in6_addr_equal(&masked_prefix, &masked_address);
}
int in_addr_prefix_covers_full(
int family,
const union in_addr_union *prefix,
unsigned char prefixlen,
const union in_addr_union *address,
unsigned char address_prefixlen) {
assert(prefix);
assert(address);
switch (family) {
case AF_INET:
return in4_addr_prefix_covers_full(&prefix->in, prefixlen, &address->in, address_prefixlen);
case AF_INET6:
return in6_addr_prefix_covers_full(&prefix->in6, prefixlen, &address->in6, address_prefixlen);
default:
return -EAFNOSUPPORT;
}
}
int in_addr_parse_prefixlen(int family, const char *p, unsigned char *ret) {
uint8_t u;
int r;
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
r = safe_atou8(p, &u);
if (r < 0)
return r;
if (u > FAMILY_ADDRESS_SIZE(family) * 8)
return -ERANGE;
*ret = u;
return 0;
}
int in_addr_prefix_from_string(
const char *p,
int family,
union in_addr_union *ret_prefix,
unsigned char *ret_prefixlen) {
_cleanup_free_ char *str = NULL;
union in_addr_union buffer;
const char *e, *l;
unsigned char k;
int r;
assert(p);
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
e = strchr(p, '/');
if (e) {
str = strndup(p, e - p);
if (!str)
return -ENOMEM;
l = str;
} else
l = p;
r = in_addr_from_string(family, l, &buffer);
if (r < 0)
return r;
if (e) {
r = in_addr_parse_prefixlen(family, e+1, &k);
if (r < 0)
return r;
} else
k = FAMILY_ADDRESS_SIZE(family) * 8;
if (ret_prefix)
*ret_prefix = buffer;
if (ret_prefixlen)
*ret_prefixlen = k;
return 0;
}
int in_addr_prefix_from_string_auto_full(
const char *p,
InAddrPrefixLenMode mode,
int *ret_family,
union in_addr_union *ret_prefix,
unsigned char *ret_prefixlen) {
_cleanup_free_ char *str = NULL;
union in_addr_union buffer;
const char *e, *l;
unsigned char k;
int family, r;
assert(p);
e = strchr(p, '/');
if (e) {
str = strndup(p, e - p);
if (!str)
return -ENOMEM;
l = str;
} else
l = p;
r = in_addr_from_string_auto(l, &family, &buffer);
if (r < 0)
return r;
if (e) {
r = in_addr_parse_prefixlen(family, e+1, &k);
if (r < 0)
return r;
} else
switch (mode) {
case PREFIXLEN_FULL:
k = FAMILY_ADDRESS_SIZE(family) * 8;
break;
case PREFIXLEN_REFUSE:
return -ENOANO; /* To distinguish this error from others. */
default:
assert_not_reached();
}
if (ret_family)
*ret_family = family;
if (ret_prefix)
*ret_prefix = buffer;
if (ret_prefixlen)
*ret_prefixlen = k;
return 0;
}
void in_addr_hash_func(const union in_addr_union *u, int family, struct siphash *state) {
assert(u);
assert(state);
siphash24_compress(u->bytes, FAMILY_ADDRESS_SIZE(family), state);
}
void in_addr_data_hash_func(const struct in_addr_data *a, struct siphash *state) {
assert(a);
assert(state);
siphash24_compress_typesafe(a->family, state);
in_addr_hash_func(&a->address, a->family, state);
}
int in_addr_data_compare_func(const struct in_addr_data *x, const struct in_addr_data *y) {
int r;
assert(x);
assert(y);
r = CMP(x->family, y->family);
if (r != 0)
return r;
return memcmp(&x->address, &y->address, FAMILY_ADDRESS_SIZE(x->family));
}
DEFINE_HASH_OPS(
in_addr_data_hash_ops,
struct in_addr_data,
in_addr_data_hash_func,
in_addr_data_compare_func);
DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(
in_addr_data_hash_ops_free,
struct in_addr_data,
in_addr_data_hash_func,
in_addr_data_compare_func,
free);
void in6_addr_hash_func(const struct in6_addr *addr, struct siphash *state) {
assert(addr);
assert(state);
siphash24_compress_typesafe(*addr, state);
}
int in6_addr_compare_func(const struct in6_addr *a, const struct in6_addr *b) {
assert(a);
assert(b);
return memcmp(a, b, sizeof(*a));
}
DEFINE_HASH_OPS(
in6_addr_hash_ops,
struct in6_addr,
in6_addr_hash_func,
in6_addr_compare_func);
DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(
in6_addr_hash_ops_free,
struct in6_addr,
in6_addr_hash_func,
in6_addr_compare_func,
free);
|